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Abstract: Timely identification of persons predisposed to Alzheimer’s disease (AD) dementia is crucial for the development 

of disease-modifying therapeutics. This research aims to predict the clinical diagnosis, cognitive function, and ventricular 

volume of a person at each subsequent month indefinitely, based on multimodal Alzheimer's disease indicators and clinical 

diagnoses from one or more timepoints. We introduced a recurrent neural network (RNN) model and used it on data from The 

Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) challenge, which includes longitudinal data from 

1,677 people (Marinescu et al. 2018) sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We evaluated 

the efficacy of the RNN model against three baseline algorithms over a forecast period of six years. Most prior research on 

forecasting Alzheimer's disease development neglects the problem of missing data, a common challenge in longitudinal 

studies. We examined three distinct ways for addressing missing data. Two of the solutions addressed the missing data as a 

"preprocessing" concern by imputing the absent data via the prior timepoint ("forward filling") or linear interpolation ("linear 

filling"). The third technique used the RNN model to complete the missing data during both training and testing, referred to as 

"model filling." Our findings indicate that the RNN using "model filling" outperformed baseline techniques, such as support 

vector machines/regression and linear state space (LSS) models. Nonetheless, there was no statistically significant difference 

between the RNN and LSS in predicting cognition and ventricular volume. Significantly, while using longitudinal data in the 

training process, our analysis revealed that the trained RNN model had comparable performance whether utilizing either one 

or four input timepoints, indicating that our methodology may be effective with just cross-sectional data. An previous iteration 

of our methodology achieved a 5th place ranking among 53 submissions in the TADPOLE competition in 2019. The present 

methodology is positioned 2nd among 56 submissions as of August 12, 2019. 
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Introduction 

Alzheimer's disease (AD) dementia is a debilitating 

neurological condition characterized by an extended 

prodromal phase and the absence of a treatment. An 

successful treatment plan should early target persons 

at risk for Alzheimer's disease (Scheltens et al., 

2016). As a result, there is considerable interest in 

forecasting the longitudinal course of illness in 

people. A primary challenge is that although 

Alzheimer's disease often manifests as an amnestic 

state, there exists considerable variation across 

people (Murray et al., 2011; Noh et al., 2014; Zhang 

et al., 2016; Risacher et al., 2017; Young et al., 2018; 

Sun et al., 2019). Given that Alzheimer's disease 

dementia is characterized by injuries mediated by 

beta-amyloid and tau, leading to brain atrophy and 

cognitive deterioration (Jack et al., 2010, 2013), a 

multimodal strategy may prove more efficacious 

than a singular modality in elucidating this 

heterogeneity and forecasting longitudinal disease 

progression (Marinescu et al., 2018).  

This work presents a machine learning method 

designed to forecast multimodal Alzheimer's disease 

indicators (e.g., ventricular volume, cognitive 

scores) and the clinical diagnosis of individual 

individuals for each month extending up to six years 

ahead. Most prior research has concentrated on a 

"static" variant of the problem, wherein the objective 

is to forecast a singular timepoint (Duchesne et al., 

2009; Stonnington et al., 2010; Zhang and Shen, 

2012; Moradi et al., 2015; Albert et al., 2018; Ding 

et al., 2018) or a predetermined set of future 

timepoints (regularized regression; (Wang et al., 

2012; Johnson et al., 2012; McArdle et al., 2016; 

Wang et al., 2016)). In contrast, our objective is the 

longitudinal forecasting of clinical diagnoses and 

multimodal Alzheimer's disease markers at an 

ostensibly infinite number of future timepoints, as 

delineated by The Alzheimer's Disease Prediction 

Of Longitudinal Evolution (TADPOLE) challenge 
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(Marinescu et al., 2018), which is arguably a more 

pertinent and comprehensive aim for tasks such as 

prognosis and cohort selection.   

A prevalent method for addressing this longitudinal 

prediction challenge is mixed-effect regression 

modeling, which characterizes the longitudinal 

trajectories of Alzheimer's disease biomarkers using 

linear or sigmoidal curves (Vemuri et al., 2009; Ito 

et al., 2010; Sabuncu et al., 2014; Samtani et al., 

2012; Zhu and Sabuncu, 2018). Nonetheless, this 

modeling technique requires previous knowledge of 

the geometries of the biomarker trajectories. 

Moreover, whereas biomarker trajectories may 

exhibit linear or sigmoidal patterns when averaged 

across individuals (Caroli and Frisoni, 2010; Jack et 

al., 2010; Sabuncu et al., 2011), individual patients 

may substantially diverge from the anticipated 

parametric forms. 

Methods 

Problem setup  

The issue configuration adheres to that of the 

TADPOLE challenge (Marinescu et al. 2018). 

Utilizing multimodal Alzheimer's disease markers 

and the diagnostic status of a participant from one or 

more timepoints, we aim to forecast cognition (as 

assessed by ADAS-Cog13; Mohs et al., 1997), 

ventricular volume (as evaluated by structural MRI), 

and clinical diagnosis of the participant for each 

month indefinitely into the future. 

Data  

We used the data supplied by the TADPOLE 

challenge (Marinescu et al., 2018). The dataset 

included 1,677 participants from the ADNI database 

(Jack et al., 2008). Every subject had scanning at 

many time intervals. The mean number of 

timepoints was 7.3 ± 4.0 (Figure 1A), while the 

mean duration from the first timepoint to the last 

timepoint was 3.6 ± 2.5 years (Figure 1B). 

Figure 1. (A) Distribution of the number of timepoints for all subjects in the dataset. (B) Distribution of 

the number of years between the first and last timepoints for all subjects in the dataset. 

To ensure consistency, we used the same collection 

of 23 variables suggested by the TADPOLE 

challenge, including diagnosis, neuropsychological 

test scores, anatomical characteristics obtained from 

T1 magnetic resonance imaging (MRI), positron 

emission tomography (PET) metrics, and 

cerebrospinal fluid (CSF) biomarkers (Table 1). The 

diagnostic classifications were normal control (NC), 

moderate cognitive impairment (MCI), and 

Alzheimer’s disease (AD). We arbitrarily 

partitioned the data into training, validation, and test 

subsets. The proportion of participants in the 

training, validation, and test sets was 18:1:1. The 

training dataset was used to train the model. The 

validation set was used to determine the 

hyperparameters. The test set was used to assess the 

models' performance. In the validation and test sets, 

the first half of the timepoints for each subject was 

used to forecast the subsequent half of the timepoints 

for the same subject. All variables, with the 

exception of the diagnostic category, which was 

categorical rather than continuous, were z-

normalized. Z-normalization was conducted on the 

training set. The mean and standard deviation from 

the training set were then used to z-normalize the 

validation and test sets. The data was randomly 

divided into training, validation, and test sets. 
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Figure 2. (A) MinimalRNN. (B) MinimalRNN update equations. 

 

𝒔𝒕 and 𝒈𝒕 represent categorical (i.e., diagnostic) and 

continuous variables, respectively (Table 1). The 

input 𝒙𝒕 to each RNN cell consisted of the diagnostic 

𝒔𝒕 and continuous variables 𝒈𝒕 (Eq. 1). Observe that 

𝒔𝒕 was shown with one-hot encoding. The concealed 

state 𝒉𝒕 was an amalgamation of the preceding 

hidden state 𝒉𝒕−𝟏 and the altered input 𝒛𝒕 (Eq. 4). 

The forget gate 𝒖𝒕 evaluated the influences of the 

preceding hidden state 𝒉𝒕−𝟏 and the current 

transformed input 𝒛𝒕 on the present hidden state 𝒉𝒕 

(Eq. 3). The model forecasted the subsequent 

month's diagnostic 𝒔 ̂𝒕+𝟏 and continuous variables 

𝒈̂𝒕+𝟏 using the hidden state 𝒉𝒕 (Eqs. 5 and 6). ⊙ 

and 𝝈 represent the element-wise product and the 

sigmoid function, respectively. We modified the 

minimalRNN (Chen, 2017) for forecasting illness 

progression. The model architecture and update 

equations are shown in the figure. 1. Let 𝒙𝒕 represent 

all variables observed at time 𝑡, including the 

diagnosis 𝒔𝒕 and the other continuous variables 𝒈𝒕 

(Eq. 1 in Figure 2B). Diagnosis was expressed using 

one-hot encoding. In other words, the diagnosis was 

shown as a vector of length three. If the first input 

was one, then the person was classified as a normal 

control. If the second input was one, then the person 

had minor cognitive impairment. If the third entry 

was one, then the subject had Alzheimer's disease 

dementia. a. Currently, we presume that all variables 

were recorded at every timepoint; the problem of 

missing data will be discussed in Section 2. At each 

time point, the transformed input 𝒛𝒕 (Equation 2 in 

Figure 2) and the preceding hidden state 𝒉𝒕−𝟏 were 

used to update the hidden state 𝒉𝒕 (Equations 3 and 

4 in Figure 2B). The concealed state may be seen as 

encapsulating all knowledge about the issue up to 

that specific moment. The concealed state 𝒉𝒕 was 

then used to forecast the observations at the 

subsequent timepoint 𝒙𝒕+𝟏 (Eqs. 5 and 6 in Figure 

1B). Data in the ADNI database were gathered at a 

minimum period of six months. Data may, in reality, 

be gathered at an unanticipated period (e.g., month 

8 instead of month 6). The interval between 

timepoints 𝑡 and 𝑡+1 in the RNN was established as 

1 month. th 

Results 

Overall performance  

Figure 3 depicts the test performance of 

minimalRNN alongside three baseline models: 

SVM/SVR, constant prediction, and LSS. For 

clarity, we only presented RNN with mixed filling 

(RNN–MF), LSS with mixed filling (LSS–MF), and 

SVM/SVR with a single input timepoint, since they 

produced the most favorable outcomes within their 

respective model categories. The test performance 

of all models (RNN, SVM/SVR, constant 
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prediction, and LSS) across the three ways for 

handling missing data.   

We conducted statistical analyses comparing the 

three RNN variations (RNN–FF, RNN–LF, and 

RNN–MF) against all other baseline methods (LSS, 

constant prediction, SVM/SVR). Multiple 

comparisons were adjusted using a false discovery 

rate (FDR) of q < 0.05. In clinical diagnostic 

prediction, RNN–MF exhibited superior 

performance and was statistically more effective 

than other baseline methods (LSS, constant 

prediction, SVM/SVR). Regarding ADAS-Cog13 

and ventricular volume, RNN-MF exhibited 

superior performance and was statistically more 

effective than other baseline methods, with the 

exception of LSS with model filling (LSS–MF; p = 

0.59). 

 

 

Figure 3. Performance of the best models from each model class averaged across 20 test sets. 

Error bars represent the standard error across the test 

sets. In clinical diagnostics, elevated mAUC and 

BCA values signify superior performance. A 

reduced MAE for ADAS-Cog13 and Ventricles 

signifies superior performance. The RNN model is 

equivalent to RNN–MF as shown in Table 4. The In 

both RNN and LSS, mixed filling outperformed 

forward filling and linear filling, particularly in the 

prediction of ADAS-Cog13 and ventricular volume 

(Table 4). Notably, an increased number of input 

timepoints does not inherently enhance prediction 

accuracy in the context of SVM/SVR. The 

SVM/SVR model using a single timepoint 

demonstrated superior numerical performance 

compared to SVM/SVR models employing multiple 

timepoints, however the differences were minimal. 

  

Figure 4 illustrates the disaggregation of the 

predictive performance from Figure 8 in annual 

intervals extending up to six years into the future. 

The performance of all algorithms deteriorated for 

forecasts extending deeper into the future. The 

constant baseline exhibited strong competitiveness 

versus other models in the first year; however, 

performance declined rapidly in later years. The 

RNN model was either equivalent to or superior to 

all baseline methods over all years. 
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Figure 4 
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Discussion 

In this study, we modified a simple RNN model to 

forecast longitudinal progression in Alzheimer's 

disease dementia. Our methodology demonstrated 

superior performance relative to baseline 

techniques, including SVM/SVR and LSS models. 

Nonetheless, we see that there was no statistical 

difference between the minimalRNN and LSS in 

predicting ADAS-Cog13 and ventricular volume, 

despite earlier research indicating advantages of 

modeling non-linear interactions among 

characteristics (Popescu et al., 2019).   

When establishing the SVM/SVR baseline models 

(Section 2.5.2), several edge situations must be 

addressed to modify a "static" prediction method 

(e.g., SVM/SVR) for the more "dynamic" 

longitudinal prediction issue examined here. For 

instance, data is always squandered since static 

methods often presume that participants possess a 

same quantity of input timepoints. Consequently, for 

the SVM/SVR models using four input timepoints, 

we ultimately retained just 1454 people from the 

initial 1677 participants. This may elucidate why the 

SVM/SVR model using one input timepoint 

performed better compared to the SVM/SVR model 

employing four input timepoints (Table 4). 

Additionally, we constructed many distinct 

SVM/SVR models to forecast a certain number of 

future timepoints and executed interpolation at 

intermediate timepoints. In contrast, state-based 

models (e.g., minimalRNN or LSS) exhibit more 

elegance since they accommodate participants with 

varying numbers of timepoints and, in theory, can 

forecast an endless number of future timepoints. 

  

Although the ADNI dataset included individuals 

with several timepoints, for the algorithm to be 

therapeutically effective, it must proficiently 

manage missing data and persons with just a single 

input timepoint. Our findings indicate that the 

"integrative" method of using the model for data 

imputation (i.e., model filling) is superior than 

"preprocessing" techniques, such as forward filling 

or linear interpolation. Nonetheless, it is conceivable 

that more advanced "preprocessing" techniques, 

such as matrix factorization (Mazumder et al., 2010; 

Nie et al., 2017; Thung et al., 2016) or wavelet 

interpolation (Mondal and Percival, 2010), might 

provide superior outcomes. Our model filling 

methodology may be seen as a variant of matrix 

completion, since the RNN (or LSS) was trained to 

minimize prediction loss, which corresponds to 

maximizing the probability of the training data. 

Matrix completion often presumes that the training 

data may be expressed as a matrix that is factorable 

into low-rank or other specifically structured 

matrices. 

Conclusion 

Utilizing 1677 people from the ADNI database, we 

demonstrated that the minimalRNN model 

outperformed alternative baseline algorithms in the 

longitudinal prediction of multimodal Alzheimer's 

disease biomarkers and clinical diagnoses of patients 

up to six years ahead. We examined three distinct 

techniques to address the problem of missing data in 

longitudinal studies. The RNN model can 

independently address the missing data problem, so 

offering a comprehensive technique for managing 

data deficiencies. Additionally, we discovered that 

after training with longitudinal data, the trained 

RNN model demonstrates commendable 

performance with a single input timepoint, 

indicating that this methodology may also be 

applicable to cross-sectional data. 
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