

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 163

Bhanu Prakash Reddy Rella1, Rahul Kumar Konduru2

Submitted: 01/01/2022 Revised: 25/02/2022 Accepted: 05/03/2022

Abstract: This has catalyzed the enhanced desire of real-time ML, which therefore requires effective data pipeline that

involves data pre-processing, feature selection, and model assessment. This is a system that integrates Models for automated

data pipeline; this optimizes the ML process, reduces the chances of human error, and enhance predictive models’ accuracy.

Developed with Python, the Scikit-learn library and Streamlit, the system allows for data uploading, data preprocessing,

feature selection choice and models’ assessment. Also, presented results confirm higher effectiveness and availability to a

larger number of users of the resulting products. Though there are some limitations like compatibility issues with the datasets,

computation time and memory etc, the future augmentations based on deep learning, real-time data streaming along with the

use of cloud environment for deployment will improve the prospects of automation in ML.

Keywords: Machine Learning, Automation, Automated Data pipeline, Real time interference

Chapter 1: Introduction

1.1 Introduction

Real-time inference is a complex task in industries that have

adopted the use of ML in various activities that include data

analysis, decision making, and other analysis-related tasks.

Other traditional data pipelines are however characterized

by a number of drawbacks; these include the time it takes to

implement data preprocessing, feature selection and the

deployment of a model. The necessity to implement an

automatic system for such tasks is especially important in

such fields as the financial industry, healthcare, online

selling.

The main focus of this work is to propose the concept of an

Automated Data Pipeline Optimization that can improve the

efficiency of ML inference. In particular, it is designed to be

fairly intuitive to allow nonexperts to perform data

preprocessing, select the features, and assess models’

performances in this framework. Thus, eliminating or

reducing most of the human interactions in the feature

selection and preprocessing via the proposal of the

automated version of the process enhances its scalability

and lowers the rate of human error. In this study, findings

are made that contribute to the need for real time ML

solution since the current data processing framework have

some limitation.

1.2 Research Rationale

While machine learning has become a powerful technology

for real-time decision-making to serve, data pipelines’

efficiency is a vital issue in organizations. Most of these

traditional processes are time-consuming, and even with the

involvement of personnel, they prove to be erroneous, time-

consuming and costly. Data preprocessing and model

selection Automation makes it possible to have the ML

models running in the best way possible without necessarily

requiring the involvement of a human being.

The proposed research is therefore informed by the lack of

integrated, intelligent and optimized data pipeline that can

improve real time inference on large and dynamic

environments well ahead of time. Incorporation of

automation in data processing leads to better, more efficient

generation of information and results. This research intends

to fill the existing methodological hole by creating an

efficacious automatic method of data pipeline optimization.

1.3 Research Aim

The purpose of this research is to design a concept of an

automated data pipeline and integrate the capabilities of

optimizing data preprocessing, feature selection, and

evaluation of model inference in real-time. The system is

intended to work towards increasing efficiency, scalability

and accuracy in a flow of machine learning.

Automated Data Pipeline Optimization for Real-Time Machine

Learning Inference

1 Independent Researcher, USA
ORCID ID : 0009-0007-8724-3919
2 Independent Researcher, USA
ORCID ID : 0009-0008-4217-040X

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 164

1.4 Research Objectives

● To preprocess the data and select features, an

automated process must be created using a data

pipeline.

● To achieve this outcome, there is the need to adopt

a system that will be using the dataset

characteristics to determine the best machine

learning models.

● To measure the effectiveness, capability and

expansiveness of the automated pipeline presently

in place and being used.

● In order to compare the automated method with the

traditional methods of data pipeline, it is necessary

to present the following.

● In view of this, the design of the front-end should

be made to promote flexibility in choosing the

devices through which to interact with the data

pipeline.

1.5 Research Questions

● What are the approaches toward automating data

preprocessing and feature selection in a pipeline of

a machine learning process?

● Real-time inference means that the ML model is

capable of responding to commands as soon as

they are issued, implying that selections are to be

made from the most appropriate models for

inferencing which should be highly efficient in

responding accordingly.

● How effective is automating the pipeline process

rather than manually carrying out the process step

by step?

● This section will explore how scalability of real-

time ML application is affected by automation.

● This paper focuses at how a good interface makes

the automated data pipeline system to be more easy

to use.

1.6 Background

The daily use of AI-based applications for faster decision-

making decisions has emerged as the concern for enhancing

the effectiveness of data pipelines. When it comes to the

traditional steps in ML, these are data pre-processing,

feature engineering, model training, and model testing. Each

of these stages takes time and fine-tuning and needs some

amount of domain knowledge and as a result, it results in

inefficiencies and bottlenecks. In particular, the real-time

application scenario with the immediate decision-making is

sensitive to delays in the data processing stage of proposed

methods for ML.

Automated data pipelines are a way of solving this problem

in that they reduce the process from data ingestion right up

to model deployment. This involves factors like handling of

missing values, treatment of categorical data and

normalizing numeric values and these are processes that can

be in part automated. It is also possible to use feature

selection techniques for selecting the most convenient

attributes across a set, which shall help give a model to trains

on as high-quality data as possible.

Incorporation of AutoML (Automated Machine Learning)

and AI-driven optimization means that one can select the

model depending on the dataset it will be employed on.

They simplify model selection by providing the end-users

with an opportunity to make decisions in real-world

applications without extensive machine learning

knowledge. Some fields like finance, healthcare and e-

commerce are already deploying automated ML pipeline to

increase the efficacy of fraud detection, diagnosis of

patients, and recommendation, among others.

In contrast to these characteristics, most of the existing

solutions do not offer the elegant and simple UI for

interaction with the ML pipelines even for beginners. The

research presented in this paper is going to fill this gap by

providing means for automated data processing of key steps

of the system and keeping an interface easy to use. Through

feature selection, preprocessing and model evaluation that

will be done within the framework of the system, real-time

ML inference will therefore be done in real time but with

higher accuracy and efficiency.

Chapter 2: Literature Review

2.1 Introduction

This is the case because the effectiveness of the machine

learning (ML) models and algorithms used for real-time

applications are highly correlated with the data pipelines

that feed the model. Most ML models are consolidated by

hand where the first step involves data preprocessing

followed by feature extraction and model optimization for

better performances particularly when dealing with large

sets of data. Data integration continues to be a headache

where large volumes of data originate from multiple sources

and flows through various processes Automatically data

pipelines have come up as the solution where techniques

such as AutoML, feature engineering, and real-time data

processing come into play.

Various papers pointed out the significance of the use of

automation in the ML operations. Researchers also aim at

minimizing the extent of human involvement while

enhancing the performance of the auto-generated models

using AutoML frameworks. Furthermore, large-scale data

engineering has provided an easier approach to implement

data preprocessing and also feature selection in an automatic

method. Nevertheless, there appears to be basic obstacles in

terms of the trade-off between automation and power

delegation to the user, the data quality issue and an

appropriate choice of model types for different datasets.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 165

This chapter presents critical definitions of terms

concerning automated data pipelines, theoretical

framework, independent and dependent variables, and the

state-of-the-art by presenting existing research on

automated ML systems.

2.2 Conceptual Framework

The basis for the ADP-ML architecture is derived from three

significant fields which include data preprocessing,

selection of features, and model automation. All these

components are important as they ensure efficiency in the

various machine learning processes.

Data Preprocessing: As was previously said, it is crucial to

use high-quality data to achieve high accuracy in results of

ML. It does include imputing missing values, scaling

numerical data and nominal to numerical feature

transformation. Automation methods of data preparation

apply imputation methods, normalization, and alternating

coding and recoding data so that they do not have to be

adjusted manually. Other methods such as the Principal

Component Analysis (PCA) as well as automated feature

scaling also improve the quality of data. [1]

Feature Selection: It’s an essential step of the model where

the features that are going to be useful in the analysis are

determined in order to minimize the computational cost yet

increase robustness of the model. Using feature selection

techniques such as RFE and information gain criteria, one

can choose the relevant features. These techniques make the

dataset easier to handle since the possibility of having

several similar variables in the analysis is eliminated thus

making the model more efficient.

Figure 1: General ML steps

(Source: https://media.geeksforgeeks.org/)

Model Selection and Evaluation: Since the type of data

dictates the type of an ML model, the following are some of

the basic models that can be used for the present study.

Cross-validation methods automatically determine

characteristics of a given dataset and identifies what kind of

algorithm is relevant for the prediction phase. AutoML

techniques such as hyperparameter optimization and

ensemble learning are used by AutoML in order to enhance

the model. Evaluation on metrics such as accuracy,

precision, recall, MSE, etc helps to ensure that the selected

model has the capability for real time usage.

The overall idea is used to build this framework to come up

with an end-to-end automated data pipeline, which is

flexible, extensible as well as accurate when it comes to

accuracy in producing real-time ML inference.

2.3 Independent and Dependent Variables

In the context of analysing the possible determinant of the

efficiency and effectiveness of the data pipeline in the

automated data pipeline system, both the independent and

dependent variables are associated with the system.

Independent Variables (IDVs)

Independent variables are those values that have an

influence on the efficiency of the automated data pipeline.

These include:

Data Quality: This is a hindrance to the efficiency of the

preprocessing because the data contain many cases of

missing values, outliers, or inconsistencies in the dataset.

Feature Selection Method: Method used in a particular set

of application for selecting those aspects that need to be

constructed as feature in target model directly influences the

model accuracy as well as inferences drawn from it.[2]

Model selection algorithm: it defines whether decisions

trees, neural networks, or ensemble methods should be used

in the process of investigation, with the results showing how

well predictions would perform.

Real-Time Data Processing Speed: Since the data

involved is in a streaming format, time is always of essence

in the process thus affects the use of the system.

What is more, hyperparameters of the model depend on the

choice of an algorithm that affects its accuracy, the time

needed to train the model and make predictions.

Dependent Variable (DV)

The first and key dependent variable is the performance of

the developed real-time ML inference system, and the

performance is gauged by the following factors:

Accuracy: The fact of how well or correctly the model is

able to classify data in classification problems.

Mean Squared Error (MSE): Applied to all the regression

algorithms, it aims at determining the magnitude of the

prediction errors.

Implementation Time: It includes a pre-processing time

for data, the time taken to determine features and the time

required for making inference.

Scalability: One of the features of the system, the ability to

process large amounts of data.

Feasibility: Measured by actual testing where the

participants, common consumers, manage to easily interact

with the automated pipeline.[3]

The knowledge of these bona fide independent and

dependent variables assists in improving the pipeline for

real-time ML usage. With the enhanced data preprocessing,

choosing the characteristic features, automating models, the

system significantly increases accuracy and effectiveness in

the real-time machine learning implication.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 166

2.4 Empirical Study

According to the authors Hirzel et al. 2014, they outline

an approach on how to achieve scalability in ML pipelines

with the use of stream processing in real-time applications.

It helps to meet the increasing demand for fast and effective

data processing with large amounts of data in the stream.

The authors provide a thorough analysis of the involved

issues in the process of tuning the data pipeline for real-time

ML inference in terms of latency, throughput and

scalability.

As one of the major contributions of this paper, the

effectiveness of stream processing frameworks like Apache

Kafka, Apache Flink, and Apache Storm in enhancing the

pipeline enhancement procedure is discussed. The authors

also stress on the aspect of time efficiency of machine

learning in contrast to the accuracy, pointing out that the

former is beneficial when the characteristics of data change

frequently.[4]

Moreover, the authors outline a set of recommendations of

what can be done during data ingestion, transformation, as

well as inference pipeline including parallelism and

resource utilization patterns. In their work, they elaborate on

how real-time process of data analysis is beneficial for

developing the Ai applications like detection of fraud,

recommendation systems, and self-driven vehicles.

In summary, this paper has filled a gap in the literature by

providing insights into how it is possible and necessary to

incorporate optimization into data pipelines to support the

real-time performance of models in scalable applications.

According to the authors Xiang and Kim, 2019 they

proposed a new method for improving the real-time

efficiency of DNNs with pipelined data-parallel CPU/GPU

scheduling in case of multi-DNNs. So, as real-time machine

learning inference commonly uses the parallel processing of

both CPUs and GPUs to carry out complex models, their

research pertains to the management of tasks between both

processors in terms of latency and throughput.

The authors propose a pipelined scheduling strategy to be

used in running multiple DNNs at the same time with

consideration to the sharing of the CPU-GPU computational

loads. It not only increases the velocity of computation but

at the same time achieves real-time computation without

compromising the accuracy of the results. Through making

the whole architecture of inference tasks follow a data-

parallel processing approach, the authors accomplish more

efficient use of various computational resources

available.[5]

Yet another of their primes consideration is dynamic

scheduling that enables them to address the variability in the

workloads of various models of DNN in real time. This is

important for high I/O operation requirements including

autonomous driving, real-time video analyzing, and robotic

systems.

It can be seen from the results of their experiments that their

approach is useful and efficient in that it reduces inference

latency and boosts throughput over non-pipelined methods.

This paper is a great contribution to the development of real-

time inference using a proposed point to be solved through

multiple-DNN using the CPU GPU cohesive system,

especially for real-time applications.

According to the authors Jayanthi et al. 2016, they

investigated the converge of best practices of machine

learning with real-time stream processing and provide

useful information on how successful AI based solution

closes the gap between increasing data pipelines and

processing of live actionable insights. It explains how they

utilized its concept and applied its principles for improving

the performance of real-time data processing systems in

areas like decision making, automation, as well as

adaptability.

A major concern of this paper is identifying best approaches

for processing the stream data for instance reinforcement

learning and adaptive models. It allows the systems to adjust

to the changes in data that happen through time and this

makes the pipeline work harmoniously even when it

encounters shift or unpredictability of data. According to the

authors, AI can be employed to develop intelligent pipelines

in organisations which organisations can have the capability

to optimising themselves in real time.[6]

Figure 2: Pipeline approach for real time video

processing

(Source: https://media.mobidev.biz)

The same paper also highlights the major difficulties that

need to be addressed in various stages of AI models such as

data ingestion, data transformation, and inference especially

when they are applied on large-scale systems. Abbas and

Eldred also briefly expound the need to avoid competition

of resource by implementing means of arriving at a good

way of properly utilizing computational resources and

achieving low system latency, where possible to make sure

that the data stream is processed as quickly as possible.

Also, there are some specific measures suggested by the

authors for improving data quality in real-time system

which are very much necessary in order to maintain

accuracy of the system: anomaly detection and noise

reduction techniques. Their work proves that the real-time

stream processing with enhanced machine learning can

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 167

result in the improved, scalable and more tolerant AI

solutions and their application in financial, health care and

IoT markets.

As a conclusion, Abbas and Eldred give a vision of the

development trends in AI-based data pipelines and present

how stream processing could be enriched by intelligent and

adaptive algorithms to create an improved and enhanced

stream process for real-time decision-making.

According to the authors Derakhshan et al. 2019, they

have highlighted the issues and approaches related to the

continuous delivery of ML pipelines. It meets the increase

of the frequency of development and deployment of ML

models, as well as in updating these models’ predictions.

Having discussed principles and characteristics of

production models, the paper focuses on four important

challenges that come up when deploying the ML models in

production: versioning, data checking, and retraining.

It is worth mentioning that this work also covers deployment

strategies, especially those for responding, among other

things, to a new dataset. This approach is very important in

making sure that models are relevant to new changes in the

data distribution as is common in real time machine

learning. The authors stress that in order to enable this

process of continuous deployment, it is crucial to ensure

strong link between the pipelines and the models.[7]

The paper also briefly explains more about ML pipeline

real-time operations including model performance

monitoring in a pipeline over time. For instance,

Derakhshan et al provide ways of handling issues of

performance reduction in the production models to

guarantee that quality models are being used for the

intended tasks. They also focus on the proper Exhibition of

resource allocation, increasing and controlling the process

in order to achieve great economy.

In this regard, this work offers significant information on

how best the deployment of models can be automated and

made efficient as the data of any organization changes over

time to facilitate real-time applications.

According to the authors Perumallaplli, 2014,

Randomised and Structureless while experimenting at Data

Warehousing for Scalable Machine Learning workflows,

emphasis on automating the training of the model and its

subsequent deployment. The paper aims to discuss the

issues of Large datasets and training of machine learning

models with special reference to Data warehouses.

The authors suggest a model that can perform some of the

most important steps involved in using any model in

machine learning process such as data pre-processing,

model selection/training and model assessment and

distribution. Their approach improves automation, in

addition to increasing the speed as well as updating the

models whenever there is fresh data. Such steps as these

mean that there is less of a reliance on human input thus less

opportunities for human error and the system can grow with

the data.[8]

Another strength of the paper is that the authors pay much

attention to how the data warehousing technologies,

including the cloud systems, may be employed to manage

the scalability and computation requirements for the

proposed ML tasks. Some claim that such environments

give great freedom and reasonable pricing for growing

machine learning pipelines and corresponding uses of data.

The paper’s value is that it lays the groundwork for auto-

modeling frameworks for industries which operate within

the environment of big data processing, and where new

models, developed either for monitoring or sales, need to be

put as quickly as possible into the production environment

to gain competitive advantage. Finally, the paper outlines

that AI-driven automation is gradually changing the

dynamics of data warehousing and ML by making the

process less centralized and more manageable.

According to the authors Crankshaw et al. 2020,

InferLine is a system for supporting real-time ML

applications by providing latency-aware provisioning and

scaling of prediction serving pipelines. The work

concentrates on a very important criterion for the model,

which is low latency and more specifically on how different

cloud environments may affect the system latency.

Figure 3: InferLine architecture overview

(Source: Crankshaw et al. 2020)

Before detailing their work, the authors discuss the problem

of having high throughput with low latency in prediction

serving tasks. It utilizes the machine learning models to

predict user demand trends and manages to balance the

computational resources hence eliminating the chances of

having too many idle resources that can cause an

organization a lot of money. Thus, latency-aware

provisioning keeps the necessary balance between

performance and cost by offering a valuable tool for high-

performance real-time ML.[9]

The originality of the paper is in the development and

assessment of the InferLine system that integrates the

allocation of resources in the management of cloud-based

ML pipelines through system-level enhancements and

Artificial Intelligence. The authors prove that with the help

of InferLine, the server response time can be decreased

dramatically in use cases like real-time recommendation

system, fraud detection system and personalized content

delivery system.

In addition, the paper covers how InferLine can be

implemented in the cloud environment and easily integrated

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 168

with other cloud technologies making it suitable for

different artificial intelligence projects. The results indicate

that the latency of the predictions is greatly minimized and

the serving of prediction pipelines overall is improved

making the system a valuable tool for organizations that

operate under tight real time data processing.

Therefore, Crankshaw et al.’s work can be considered an

input to the discussion among researchers who focus on the

problem of improving the efficiency of machine learning

pipelines, low latency, and high scalability within real-time

applications.

According to the authors González et al. 2019, they

propose an approach of an automated analysis pipeline

about biomedical image processing based on

containerization, AI, and DL. The study under discussion

also focuses on the application of automated data workflows

in processing medium to large biomedical datasets which is

quite labor intensive if done manually. By demographics,

containerized environments, and orchestration the given

pipeline improves scalability, the ability to reproduce the

experiments, and computational effectiveness in the medical

image analysis.

The paper provides a description of a modular approach that

encompasses data preprocessing with the help of AI, feature

engineering, and the subsequent classification relying on

deep learning models all contained in a single unified

environment within a container. They help in minimizing

the need for intervention by people while at the same time

promoting and maintaining standardization across several

configurations of the computer. The study illustrates how

effective the automated pipelines are when it comes to

processing data in real-time in the various ways and how

this helps healthcare and biomedical research professionals

to move from data gathering to getting useful

information.[10]

It is evident from the results that for machine learning

inference especially in biomedical datasets with a large

number of features, automated data pipeline optimization is

crucial. It is also in line with what the current study seeks to

accomplish in terms of method selection, pre-processing,

and validation of features for real-time Machine Learning

practices. Containerization brings an increased level of

reproducibility, one of the main need points for future

improvements of the introduced ML-based automation. As

González and Evans (2019) mainly consider image-based

medical data, the methodology of the automated pipeline

and the real-time data processing step is also applicable to

other types of data in ML, such as the structured and tabular

ones.

According to the authors Alves et al. 2019, they presented

ML4IoT, this is a machine learning framework that aims at

automating ML systems for IoT data. The work focuses on

the challenges of large-scale IoT data processing as a real-

time stream of data must be preprocessed, analyzed, and

classified in IoT settings with numerous sensors. Thus, the

focus of the study aims at adopting AutoML in feature

engineering, model deployment, and hyperparameter tuning

of the ML applications based on the IoT systems.

The proposed framework combines the technologies of edge

computing and cloud computing which will allow the

ingestion, transformation, and inferencing processes to be

done in real-time. The research proves the importance of

active data streams where the model changes regularly in

responding to the data streams. Hence, common techniques

including, workflow scheduling, parallelism, and caching

are applied to minimize the likelihood of high latency during

inference to make the IoT systems low-latency ML

systems.[11]

The results of the study expounded in the current research

suggest that automation of ML pipelines is an essential

subject, in line with the research objectives. They both focus

on automation of feature selection and on-line

classification/cross-validation, reviewing how automation

of workflow increases the performance of the model.

Nevertheless, while Alves et al. (2019) consider IoT-driven

ML workflows, the current work considers similar points of

interest for structured tabular data, thus generalizing an

automation solution for various tasks in ML pipelines.

Scalability of cloud systems and method of automated

model selection in ML4IoT gives an understanding of real-

time machine learning and how pipeline optimization for

such fields is highly relevant in AI applications.

2.5 Theories & Models

In ADP-MLO (Automated Data Pipeline Optimization),

some theories and models are vital in improving the system

performance level and capacity as well as flexibility to the

dynamic environment in data handling. The theories and

models comprise of:

Stream Processing Theory : The Stream processing

models like Lambda Architecture and Kappa Architecture

are considered as basic structures to the real-time

applications. Lambda Architecture, where the batch and

stream processing are implemented and where the stream

processing runs both in batch and real time with fault

tolerance and maintainability as the priority, this is what the

Kappa Architecture aims to minimize by using the

streaming model. Such models enable the system to

accommodate the analytic of huge amount of data while at

the same time being able to support minimal latency when

making machine learning predictions.

Queueing Theory: Queueing theory deals with the data

flow which is essential to manage the real-time resources. It

also applied in managing requests and reducing collection

and the overall time taken or dozing off resources hence

improving on the time taken in carrying out inference. It

helps in load sharing among the different nodes (CPU, GPU

etc) of the system required for the efficient running of the

CPU.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 169

AutoML and Reinforcement Learning Models: AutoML

is a type of setup that allows designing of machine learning

models as well as its optimization. Also, in the real-time

pipes, the Reinforcement Learning (RL) models are used to

learn hyperparameters and configuration of the models

dynamically, and thus, the system becomes more flexible

and efficient over time. RL can be very effective when it

comes to adjusting allocation of resources and reducing the

time of the inference taking place in the system.

Prediction Serving Models: For real time machine learning

inference, there is an infrastructure designated for low

latency serving known as the prediction serving models

including the InferLine. These models ensure that when

making a machine learning inference, it is done quickly

without having to invest in more resources to accomplish it

hence increasing the efficiency and cutting cost.

Altogether, these models and theories help in formulating

architecture of simple yet elastic data management pipelines

for real time machine learning inference.

2.6 Literature Gap

This paper discusses some of the existing shortcomings in

the state-of-the-art RAPL framework and explains why

more research is needed in this important area of study.

Another gap is that most of the earlier works have not

considered the dynamic aspects of the job scheduling

system and particularly the ability to scale up or down in

response to increased or decreased load in real-time

pipelines. Currently most of the studies focus on static

organisation hence the configuration they propose might not

be very effective in handling dynamic fluctuations of

working load in machine learning.

One is the lack of standards for the integration of cross-

platform data processing and especially the real-time driven

cloud-edge-fusion and cloud-on-premise-fusion processing.

The literature review reveals the fact that most of the

investigations are carried out in the context of centralized

cloud-based architectures, while the application of edge

computing and hybrid solutions in terms of scalability and

latency for ML inference remains uninvestigated in some

extent.

Further, while employing RL for the improvement of some

machine learning processes and AutoML for the

improvement of machine learning workflows is mentioned

in some works, there are no model that encompasses these

techniques for the constant and instant model deployment

and update. This integration proves useful in applications

that require regular model update and recalibration when

new data comes in.

Finally, most works are action-focused, dedicating mostly

on certain areas of application such as recommendations

methods or fraud detection without offering the general

procedures that could be implemented for other problems

and domains. This clearly indicates that there exists huge

potential for more of these general-purpose ones that can

work across a broad spectrum of RT-ML inferencing use

cases.

Chapter 3: Methodology

3.1 Introduction

This section follows the definition of the strategy that was

employed in the achievement of the objectives in order to

design an efficient automated data pipeline for real-time

inference of results in machine learning. It presents the

conception of the overall research philosophy and steps

adopted in the development of the proposed system to

enhance its efficiency along with credibility.

In this chapter, one starts with the understanding of the

research philosophy – that is the assumption upon which the

study is based. Secondly, the research approach is

presented: this section describes the ways of data gathering

and preprocessing its steps the method of choosing the set

of features that can be useful in the further analysis the type

of model that was chosen and the strategies of evaluation

Last of all, the research method indicates the technological

details of the work in terms of the software applications,

formulae and the criteria that defined the current study.

3.2 Research Philosophy

The research philosophy looks at the presumptions that have

been held with regards to the acquisition of knowledge in

any given study. Based on the research objectives of this

paper, a pragmatic research philosophy is used since it

involves the approach to the problem rather than the

perspective that is taken.

Ontology (Nature of Reality)

This work presupposes that data pipeline is the critical

component in increasing the efficiency of a machine

learning inference. This paper aims to show that the

application of MDE for automating data pipelines will result

in better accuracy, scalability, automated and real-time

capability. This work is intended to show the practical

aspects of automated ML pipeline with reference to real-

world use case and not philosophy.

Epistemology (Nature of Knowledge)

The type of knowledge used in this study is obtained from

realistic data, algorithm assessment, and model results. As

opposed to method of approach that bases on hypothesis,

simulation models, and other hypothetical data this work

aims to use experimental evaluation, statistical analysis, and

real data sets to assess the efficiency of the proposed

solution.

Axiology (Role of Values in Research)

To ensure the research does not make any prejudicial

conclusions, measurements such as accuracy, time to

implement the approach, and scalability are adopted for the

automated pipeline. Privacy is therefore respected in the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 170

processing of the data and issues of bias when making

predictions are also considered.

The applicability of a pragmatic approach to this research

problem is because it permits the utilization of quantitative

measure (accuracy of the model, time taken when executing

the model) and qualitative measures (usability of the

developed automated system). Thus, the proposed research

is characterized by a strong focus on theory application and

at the same time is grounded in practice.

3.3 Research Approach

Research approach is a general process of carrying out the

study It involves defining the plan of approach in any

research activity. According to the research approach used

for this study, which is the deductive approach, this study is

informed by available theories and frameworks on

automated ML pipelines to design and develop the proposed

system.

Deductive Reasoning

● This research starts from the known theories in

data preprocessing, feature selection, AutoML

methods.

● This is why hypothesis such as “automating feature

selection enhances the ML model performance”

are formulated and tested with empirical evidence.

● Consequently, the study either confirms or denies

current knowledge and strengthens the optimal

guidelines for automatic data pipelines.

Quantitative Research Approach

● Therefore, in order to determine the effectiveness

of this automated system, statistical measures

defining such aspects as accuracy, mean squared

error or execution time shall be provided.

● Using actual comparisons of the manual and the

automated ML pipeline gives a factual

performance measurement on the enhancements.

Experimental Implementation

● The evaluation is performed using and real datasets

such as healthcare or financial and it is carried out

to mimic real-time ML inference.

● The performance measurement is also repeated

severally to ensure reliability.

Such an approach of the research guarantees an objective

confirmation of data flowed through the automated data

pipeline but, at the same time, provides a rigid basis for

hypothesis testing. The method allows for the critical

assessment of results which in return makes all the analysis

replicative and applicable to other machine learning fields.

3.4 Research Method

Before presenting the findings of the analyzed data, the

research method describes technical and procedural

environments involving data gathering, data preparation,

feature selection strategies, assessment approaches, and

used software.

1. Data Collection

● The study employs datasets that can be accessed

from the public domain, such as datasets of

Kaggle.

● The data for further analysis is chosen depending

on its capability to be used for classification and

regression problems to compare the results of

different ML models.

● The very nature of datasets involves features that

could be either numerical or categorical thereby

raising diverse issues of pre-processing them.

2. Data Preprocessing

Missing Data Management: Numerical Dataset

imputations to be done using the mean imputation while

imputations for categorical datasets to be done through

mode imputation.

Scaling: Normalization and standardization are used with

the same meaning to scale up the numerical attributes.

Preprocessing: Imputation is not considered one of the

most common preprocessing methods, while label encoding

and one-hot encoding are used for handling categorical

variables.

3. Feature Selection Algorithms

Recursive Feature Elimination (RFE): Find the most

important features

Mutual Information (MI): Find dependency of features on

target variable

Automated Feature Importance Ranking: A form of

feature selection where the model employs machine

learning techniques to placed features in an arrangement of

how useful they are in regards to predicting the outcomes.

4. Machine Learning Model Selection

Regression Models: Random Forest Regressor

Classification Models: Random Forest Classifier

Cross validation is done through grid search and

hyperparameters tuning on the dataset.

5. Model Evaluation

Mean Squared Error (MSE), Coefficient of determination

(R The aim is to apply these metrics in the context of climate

change and use linear, logarithmic and geometric models for

analyzing the change in average global temperature.

6. Software Tools

Programming Language: Python

Libraries Used:

● Scikit-learn for machine learning algorithms

● Pandas, NumPy for data handling

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 171

● Matplotlib, Seaborn for data visualization

● Streamlit for UI development

In this way, the application of these methods is twofold: it

makes the outlined by the research automated pipeline fast

and conducive to scale, as well as relevant to real-life

scenarios of machine learning.

Chapter 4: Implementation

4.1 Introduction

The concept of the Automated Data Pipeline Optimization

for Real-Time Machine Learning Inference involves

designing a procedure that would make integration of data

modeling pipeline pre-processing, feature selection, model

training and evaluation fully automatic. The developed

system is in Python with many libraries from Machine

Learning to implement an automated solution.

This chapter aims to explain the plan of implementing the

system, the principal components of the system, the

graphical user interface interface, and the approaches to

model selections. Streamlit is used to develop the GUI for

the system in which user inputs can be provided to the

automated pipeline. The unintended advantage of using the

platform to implement the operations is that the users can

upload datasets, preprocess features, choose the best fitting

machine learning algorithm, and model assessment without

programming.

Also, in this chapter, some of the problems that arise during

implementation, and some of them include: compatibility of

datasets, the generalization of models, computing capability

are also discussed. Finally, the promotion of a conclusion is

done by sharing an assessment of the systems’ efficiency

and the prospects of enhancement.

4.2 Findings & Analysis

4.2.1 Implementation

Figure 4: Libraries

(Source: Made by self in VS Code)

Python with some very effective libraries namely, pandas,

NumPy, Scikit, matplotlib, seaborn, and Streamlit is used to

implement the system. These libraries give some functions

for data analysis, data visualization, as well as the model

selection and evaluation. While scikit-learn is applied to

filter important features and to train the created model,

Streamlit is essential for creating a user-friendly interface.

Figure 5: Load data function

(Source: Made by self in VS Code)

There is a function created that allows the uploading of CSV

files from certain user groups into the system. When a file

is uploaded, the file is read using the Pandas tool, and a few

entries of the dataset are provided. This step enables the

users to check on the accuracy of the information input

before submitting it.

Figure 6: Function for EDA

(Source: Made by self in VS Code)

The EDA function gives the users things like name of the

columns, data type and whether there is any missing data in

the given data set. It also shares the result of executing

df.describe() and df.info() which allows users to know data

distribution, feature variability and the existence of missing

values before data visualization.

Figure 7: Function to preprocess data

(Source: Made by self in VS Code)

Certain preprocessing steps are applied on the dataset such

as handling of missing values, categorization and

normalization of scales. The target variables can be

automatically set, and the user can automate some

preprocessing steps such as scaling or encoding of

numerical and categorical variables respectively, duplicity

of features, and missing value imputation eliminating the

need of addressing them during feature engineering.

Figure 8: Function for feature selection

(Source: Made by self in VS Code)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 172

Reduction of the features is done using feature ranking and

reduction models from the machine learning techniques.

Then, in the case where the user does not want to apply

feature weights, a manually segregating selection of a list of

features is provided to the user. This step is to minimize the

number of input features that is fed into the model in order

to avoid wastage of time during the model training process.

Figure 9: Train model Function

(Source: Made by self in VS Code)

Classification or regression model is used depending on the

nature of the target variable with the help of the

classification mode. , and further partitions the given data

into training and validation set, trains the selected model,

and checks the efficiency by using accuracy measures for

classification problems or Mean Squared Error measure for

regression problems.

Figure 10: Main function to run the system

(Source: Made by self in VS Code)

The utility function collects all the components into a single

application through, with the help of Streamlit. The

application is designed to have a sequence-first approach to

data selection, visualization, feature engineering and

cleaning, and modeling to assess model performance.

4.2.2 Analysis

Figure 11: Running the system

(Source: Made by self in VS Code)

At the instance of the launch of the system, it starts up and

avails the appearance of an interface that is very much like

a dashboard. This makes the users follow a well-defined

process flow in the usage of the tool for the analysis of the

data as well as model deployment.

Figure 12: Landing page

(Source: Made by self in VS Code)

The first page appears as a simple webpage with the general

information about the system and the buttons with the

possibility to upload a dataset and to switch between various

functions of the program. This enables the users to have

clear perception of the system’s flow of work from the start.

Figure 13: Data selection

(Source: Made by self in VS Code)

It invites users to choose the desired dataset in the CSV

format which should be uploaded by them. The file-

checking process checks whether the file provides

structured data, which facilitates other processes required

for the verification.

Figure 14: Data preview

(Source: Made by self in VS Code)

A data preview table provides information on the data that

have been loaded into the program or application, which

may comprise the first few rows of such data. This enables

users to check the content that is contained in a dataset in

addition to the names of the columns and the ‘type’ of data

that is contained in it.

Figure 15: Statistical Summary

(Source: Made by self in VS Code)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 173

The general statistics of the given dataset are as follows

which is obtained using df.describe(): It includes mean,

standard deviation, minimum, maximum value for

quantitative variables and it also calculates quantiles that

offers information on data distribution as well as dispersion.

Figure 16: Selection for data visualization

(Source: Made by self in VS Code)

The fields that can be used for visualization are presented as

options into the drop-down list of the form. There are

different types of plot options which encompasses

histogram, box plot, scatter plot among them which help

users to visualize trends and patterns in data.

Figure 17: Visualization created

(Source: Made by self in VS Code)

Once the user selects columns, the system uses Matplotlib

and Seaborn libraries to develop a plot. Histograms plot

density of distributions, while boxplots characterize spread

of values noting outliers on the data and scatter plots

illustrate the correlation between two variables.

Figure 18: Select target column and preprocess data

(Source: Made by self in VS Code)

The system invites the users to enter the variable to be used

for training the model. Further, basic data preparation steps

like handling of missing data, conversion of categorical

independent variables, normalizing of numerical data are

available for data preprocessing.

Figure 19: Automatic feature selection based on feature

weights

(Source: Made by self in VS Code)

There is an option to display feature importance scores for

each feature created in the process of feature selection,

which might be useful for manual selection of features to be

used in the model training. This improves the predictions

and the time taken in performing the computations.

Figure 20: Model Evaluation

(Source: Made by self in VS Code)

Finally, the system displays the metrics of the model, which

are accuracy in case of classification model and mean-

squared error is in case of a regression model. The accuracy

of the selected model is evident from the results of the model

on the test data set.

4.3 Limitations

Despite all enhancements made on automation of data

pipeline, some factors limiting the scalability and flexibility

of the algorithm to be used on real data.

Dataset Compatibility Issues:

1. Due to the organizational structure of receiving and

storing data in tables in the format of CSV, it

remains unfit for use of unstructured data types

such as image processing, text data or use of real-

time stream data.

2. Large data sets are often characterized by a large

number of objects and attributes and therefore their

use in operations can create a memory bottleneck.

Model Generalization Challenges:

1. The automatic pipeline takes decision based on

some specific rules and conditions about general

machine learning but it may not always choose the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 174

most suitable machine learning model for the

specific areas and sectors.

2. The models such as deep learning models that

depend on much computational resources are not

considered in the current implementation.

Computational Resource Constraints:

1. But utilizing feature selection and optimizing the

model makes it more complex and time-consuming

especially when the data is huge.

2. The system does not have the ability to do parallel

process, and this can reduce the rate of processing

large data.

User Dependency on Predefined Options:

1. Although the major operations for the selection of

attributes and preprocessing are managed by the

system, the users have to make some significant

choices such as the selection of features and many

more, which requires prior knowledge of ML

algorithms.

2. Several of these limitations could be solved in the

future versions of the developed system that would

improve the system’s performance for practical

application.

4.4 Conclusion

The AD-PROMISE experiment proves that the chosen set

of ML-related tasks and the index of user-controlled vs

automatic stages can serve as a backbone for an efficient and

easy-to-use tool for automating the outlined stages of the

ML workflow. The data preparation and feature selection

steps along with model selection and model assessment

steps have been effectively incorporated into the front end

of this system so that the user’s intervention is minimal.

However, the proposed system has some drawbacks

concerning the generalization of the dataset, generality of

the model, and the computational complexity of the process

Nevertheless, all these limitations pave the way for future

developments. Solve all these problems in the future to

increase scalability, add real-time analysis capability for big

data, and enhance the application of deep learning models,

so that the system can be used for real world machine

learning.

Chapter 5: Conclusion

5.1 Discussion

The aim of the Automated Data Pipeline Optimization for

Real-Time Machine Learning Inference is achieved because

the proposed solution includes data preprocessing, feature

selection, model selection, and evaluation components. The

system diminishes the amount of work to be done manually

and improves the quality of model algorithms with dynamic

features and algorithms choice.

They reveal that the features of data preprocessing can

sustain its integrity which saves time and eradicate errors

and feature selection can magnify the predictability through

the removal of the reiterative variables. The implementation

of the pipeline is designed to be used as standalone and to

integrate well with Streamlit for use in developing easy-to-

use interfaces which requires relative minimal programming

knowledge.

However, some drawbacks that could be associated with

data clustering or attributed to using this work include the

following: compatibility of the datasets under consideration,

limitations in computational power and memory, and

limitations arising from the use of predesigned machine

learning models. Currently, the proposed system operates

only on structured tabular data format, therefore can only

cater for data of these formats like images or text data.

However, the pipeline does not support the streaming of the

actual data in real-time, which is useful in such regularly

developing data sets.

The study also re-establishes that, indeed, the ML pipeline

automation is useful for increasing efficiency, accuracy, and

scalability in real-life applications. They didn’t scale well,

the generalization of the model is still an issue, and it is not

very compatible to diverse data formats for the inference of

machine learning.

5.2 Recommendations

For improving the efficiency and flexibility of the data

processing AML the following suggestions are given:

Improvement of data compatibility: Future

implementations should cater for stream data and also data

in other formats including images and text data. All of the

aforementioned applications would allow for advanced

computing tasks in artificial intelligence, especially as

related to computer vision, natural language processing, and

Internet of Things-based analytics.

ML and DL models: More refined techniques which can be

incorporated are NNAS or AutoML for model selection to

enhance the adaptability of the system for a number of

datasets.

Improving Computational Performance: One way to

address this issue is by integrating parallelism and cloud

computing in the system mechanism, so as to contain the

problem of large datasets.

Adaptive Preprocessing of Data: The use of user-specified

preprocessing step is not often effective as the current state-

of-art has the ability to learn preprocessing steps according

to the properties of a given dataset.

Enhancing the Customization of Parameters: As with

any other similar application, extending the choice and

letting users adjust hyperparameters and try out different

algorithms within the interface would be beneficial for

highly specific fields.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 175

According to these suggestions, the system will reach the

robust and highly-scalable ML automation tool for various

industries, as well as enhance the real-time ML inference.

5.3 Future Work

The current system can, therefore, as a basis for an

automated data pipeline, be defined as solid, but there are

changes that can be made with regard to the scope and

effectiveness of the system worth considering.

Interoperability with the cloud services: The future

releases of the system can be hosted on cloud platforms

including AWS, Google Cloud, or Microsoft Azure for the

purpose of distributed and scalable model training.

An integration of deep learning models: In the near

future, they should incorporate advance ML frameworks

like TensorFlow, PyTorch for the usage of image

classification, NLP and sophisticated time series prediction.

Hyperparameter tuning: adaptive tuning with the viable

options often involve using Bayesian optimization, genetic

algorithms, or reinforcement learning in order to automate

the process of hyperparameter tuning.

Real-Time Data Processing: Apache Kafka or Spark

Streaming can be integrated into the system to update data

in real-time; therefore, making the system useful for use in

risk prediction in the financial markets, credit card risk, and

other IoT based applications.

Enhancing the interpretability of models from an

explainable AI perspective: We are talking about the

application of the SHAP (SHapley Additive Explanations)

or LIME (Local Interpretable Model-agnostic Explanations)

to increase the model explainability in front of the user to

explain why some features affect the results.

As the system has been extended, it will be able to be

applied to more practical scenarios and boost its

performance in a broad spectrum of industries and fields of

machine learning.

5.4 Conclusion

The research does achieve its stated research goals

effectively by proposing an Automated Data Pipeline

Optimization for Real-Time ML Inference, coverages for

the major issues of data preprocessing, feature selection, and

model selection. The system brings a logic of an efficient,

flexible, and scalable way of automating the essential ML

tasks, thus reducing the chances of human interferences and

enhancing the accuracy of predictions.

While the system excels at structured datasets, certain

differences, the operational status at the time of processing,

and computation scaling issues require enhancement. With

the deep learning, cloud deployment, and streaming

additions, the system can further develop into a robust and

highly efficient ML automation system.

Hence, it is possible to state that the present study can be

viewed as laying a solid groundwork for further

advancements in relation to AMLP. As to the mentioned

shortcomings, it is possible to state that the introduction of

more advanced automation methods would allow improving

the organization of real-time machine learning inference

within a wide range of industries.

Reference List

Journals

[1]. Li, Y., Han, Z., Zhang, Q., Li, Z. and Tan, H., 2020,

July. Automating cloud deployment for deep learning

inference of real-time online services. In IEEE

INFOCOM 2020-IEEE Conference on Computer

Communications (pp. 1668-1677). IEEE.

[2]. Sinha, R., 2017. Automation of Data Pipelines in

Machine Learning Workflows: Trends, Tools, and

Challenges. International Journal of Artificial

Intelligence and Machine Learning, 4(2).

[3]. González, G. and Evans, C.L., 2019. Biomedical Image

Processing with Containers and Deep Learning: An

Automated Analysis Pipeline: Data architecture,

artificial intelligence, automated processing,

containerization, and clusters orchestration ease the

transition from data acquisition to insights in medium‐

to‐large datasets. BioEssays, 41(6), p.1900004.

[4]. Hirzel, M., Soulé, R., Schneider, S., Gedik, B. and

Grimm, R., 2014. A catalog of stream processing

optimizations. ACM Computing Surveys (CSUR),

46(4), pp.1-34.

[5]. Xiang, Y. and Kim, H., 2019, December. Pipelined

data-parallel CPU/GPU scheduling for multi-DNN

real-time inference. In 2019 IEEE Real-Time Systems

Symposium (RTSS) (pp. 392-405). IEEE.

[6]. Jayanthi, M.D., Sumathi, G. and Sriperumbudur, S.,

2016. A framework for real-time streaming analytics

using machine learning approach. In Proceedings of

national conference on communication and

informatics-2016. Derakhshan, B., Mahdiraji, A.R.,

Rabl, T. and Markl, V., 2019, March. Continuous

Deployment of Machine Learning Pipelines. In EDBT

(pp. 397-408).

[7]. Perumallaplli, R., 2014. Conversational AI for

Customer Support: Automation in Large Enterprises.

Available at SSRN 5228517.

[8]. Crankshaw, D., Sela, G.E., Mo, X., Zumar, C., Stoica,

I., Gonzalez, J. and Tumanov, A., 2020, October.

InferLine: latency-aware provisioning and scaling for

prediction serving pipelines. In Proceedings of the 11th

ACM Symposium on Cloud Computing (pp. 477-491).

[9]. González, G. and Evans, C.L., 2019. Biomedical Image

Processing with Containers and Deep Learning: An

Automated Analysis Pipeline: Data architecture,

artificial intelligence, automated processing,

containerization, and clusters orchestration ease the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 163–176 | 176

transition from data acquisition to insights in medium‐

to‐large datasets. BioEssays, 41(6), p.1900004.

[10]. Alves, J.M., Honório, L.M. and Capretz, M.A.,

2019. ML4IoT: A framework to orchestrate machine

learning workflows on internet of things data. IEEE

Access, 7, pp.152953-152967.

[11]. Malikireddy, S.K.R., Algubelli, B. and Tadanki,

S., 2021. Knowledge graph-driven real-time data

engineering for context-aware machine learning

pipelines. European Journal of Advances in

Engineering and Technology, 8(5), pp.65-76.

[12]. Boppiniti, S.T., 2021. Real-time data analytics

with ai: Leveraging stream processing for dynamic

decision support. International Journal of Management

Education for Sustainable Development, 4(4).

[13]. Xiang, Y. and Kim, H., 2019, December. Pipelined

data-parallel CPU/GPU scheduling for multi-DNN

real-time inference. In 2019 IEEE Real-Time Systems

Symposium (RTSS) (pp. 392-405). IEEE.

[14]. Elshawi, R., Maher, M. and Sakr, S., 2019.

Automated machine learning: State-of-the-art and open

challenges. arXiv preprint arXiv:1906.02287.

[15]. Niu, W., Li, Z., Ma, X., Dong, P., Zhou, G., Qian,

X., Lin, X., Wang, Y. and Ren, B., 2021. Grim: A

general, real-time deep learning inference framework

for mobile devices based on fine-grained structured

weight sparsity. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 44(10), pp.6224-6239.

[16]. Prosper, J., 2019. Deploying Scalable Deep

Learning Models for Real-Time Customer Insight.

[17]. Liu, S., Yao, S., Fu, X., Tabish, R., Yu, S., Bansal,

A., Yun, H., Sha, L. and Abdelzaher, T., 2020,

December. On removing algorithmic priority inversion

from mission-critical machine inference pipelines. In

2020 IEEE Real-Time Systems Symposium (RTSS)

(pp. 319-332). IEEE.

[18]. Derakhshan, B., Mahdiraji, A.R., Rabl, T. and

Markl, V., 2019, March. Continuous Deployment of

Machine Learning Pipelines. In EDBT (pp. 397-408).

[19]. Shen, Y., Cao, D., Ruddy, K. and Teixeira de

Moraes, L.F., 2020. Near real-time hydraulic fracturing

event recognition using deep learning methods. SPE

Drilling & Completion, 35(03), pp.478-489.

[20]. Smistad, E., Østvik, A., Salte, I.M., Melichova, D.,

Nguyen, T.M., Haugaa, K., Brunvand, H., Edvardsen,

T., Leclerc, S., Bernard, O. and Grenne, B., 2020. Real-

time automatic ejection fraction and foreshortening

detection using deep learning. IEEE transactions on

ultrasonics, ferroelectrics, and frequency control,

67(12), pp.2595-2604.

[21]. Zhao, Z., Wang, K., Ling, N. and Xing, G., 2021,

May. Edgeml: An automl framework for real-time deep

learning on the edge. In Proceedings of the international

conference on internet-of-things design and

implementation (pp. 133-144).3.

[22]. Li, Y., Mahjoubfar, A., Chen, C.L., Niazi, K.R.,

Pei, L. and Jalali, B., 2019. Deep cytometry: deep

learning with real-time inference in cell sorting and

flow cytometry. Scientific reports, 9(1), p.11088.

[23]. Zaharia, M., Chen, A., Davidson, A., Ghodsi, A.,

Hong, S.A., Konwinski, A., Murching, S., Nykodym,

T., Ogilvie, P., Parkhe, M. and Xie, F., 2018.

Accelerating the machine learning lifecycle with

MLflow. IEEE Data Eng. Bull., 41(4), pp.39-45.

[24]. Crankshaw, D., Sela, G.E., Mo, X., Zumar, C.,

Stoica, I., Gonzalez, J. and Tumanov, A., 2020,

October. InferLine: latency-aware provisioning and

scaling for prediction serving pipelines. In Proceedings

of the 11th ACM Symposium on Cloud Computing (pp.

477-491).

[25]. Alves, J.M., Honório, L.M. and Capretz, M.A.,

2019. ML4IoT: A framework to orchestrate machine

learning workflows on internet of things data. IEEE

Access, 7, pp.152953-152967.

[26]. Elshawi, R., Maher, M. and Sakr, S., 2019.

Automated machine learning: State-of-the-art and open

challenges. arXiv preprint arXiv:1906.02287.

[27]. Jiang, Z., Chen, T. and Li, M., 2018. Efficient deep

learning inference on edge devices.

[28]. Abbas, A. and Kollwitz, E., 2021. Building Robust

AI/ML Data Pipelines with Scalable AI Workflows

MLOps and Software Automation in Medical Imaging

Processing.

[29]. Verma, G., Gupta, Y., Malik, A.M. and Chapman,

B., 2021, June. Performance evaluation of deep

learning compilers for edge inference. In 2021 IEEE

international parallel and distributed processing

symposium workshops (IPDPSW) (pp. 858-865).

IEEE.

