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Abstract: This study focuses on optimizing the design parameters of 5G smart antennas using a deep learning approach, 

specifically through the implementation of an Artificial Neural Network (ANN) model. The model was trained and validated 

on a dataset to predict key performance metrics, achieving exceptional accuracy. The results demonstrate a sharp decline in 

training and validation loss, stabilizing near zero, along with a low Mean Absolute Error (MAE), Mean Squared Error 

(MSE), and Root Mean Squared Error (RMSE) like 2.937, 2.764 and 5.2581. Additionally, the 𝑅2𝑒𝑟𝑟𝑜𝑟 value is nearly 1, 

indicating the model’s capability in optimizing antenna design.  
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1. Introduction 

Communication or data transformation from peer 

to peer is increasing daily, and the beginning of 

technologies like 4G and 5G promises 

transformative improvements in wireless 

communications, offering enhanced data rates, 

reduced latency, and increased connectivity for 

many devices. The smart antenna system is a 

required component that enables these 

advancements. These antennas are characterized by 

their ability to dynamically adjust their parameters 

to optimize signals' transmission and reception in 

the 5G network landscape. The optimization of 

smart antenna design parameters in 5G technology 

is essential in various environments. 

The complexity of modern wireless and adhoc 

communication systems, which connected with the 

dynamic and often unpredictable communication 

environment, has many challenges in designing and 

optimizing smart antennas and their parameters. 

Traditional methods for optimizing antenna 

parameters, which worked on statistical 

approaches, are increasingly insufficient with 

dynamic environment. These methods are time-

consuming, less adaptable to changing 

environments, and often fail to control the vast 

amounts of data generated by 5G networks. Many 

of the researchers implemented artificial 

intelligence methods for channel estimation, signal 

detection, and related tasks in communication 

systems, with a focus on improving accuracy and 

performance. For training these neural networks on 

network data many studies used simulated datasets 

which are not real are used to train and validate 

their models, demonstrating significant 

improvements in estimation accuracy, detection 

accuracy, and overall system performance 

compared to traditional methods.  

The rapid proliferation of fifth-generation wireless 

method has revolutionized communication 

networks, promising unprecedented data rates, 

ultra-low latency, and massive connectivity. 

Central to realizing these capabilities are smart 

antennas, which leverage beam forming and spatial 

multiplexing to enhance signal quality and network 

capacity. However, optimizing the design 

parameters of 5G smart antennas, such as beam 

width, radiation pattern, gain, and polarization, 

presents significant challenges due to the complex 

and dynamic nature of wireless environments. 

Traditional methods for antenna design and 

optimization, like heuristic and iterative algorithms, 

these approaches struggle to achieve the required 

balance between computational efficiency and 
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performance accuracy and will not provide optimal 

design. As 5G networks must adapt to various 

scenarios, including urban, suburban, and rural 

deployments where the network designs should be 

changed dynamically, designing antennas capable 

of maintaining high performance across varying 

conditions becomes very complex. And should 

consider more number of parameters likes 

bandwidth, computational space, and net work size  

etc. because concerning to the place of deployment 

these parameters will be changed and designs also 

changed.  

In this context, deep learning has emerged as a 

powerful tool for addressing optimization 

challenges in 5G antenna design to provide optimal 

design options and decrease the computational 

power of the network. These neural networks’ can 

learn from high-dimensional data, deep learning 

can provide predictive insights and enable real-time 

optimization of antenna parameters. Techniques 

such as convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and generative 

adversarial networks (GANs) offer the potential to 

refine antenna performance by understanding the 

nonlinear relationships between design variables 

and operational metrics with these one can achive 

dynamic designs and reduce the computational 

power in the updated network. 

This paper presents application of deep learning to 

optimize 5G smart antenna design parameters, 

aiming to improve key performance indicators such 

as spectral efficiency, energy efficiency, and 

coverage, so that it can reduce the computational 

time of the network. By integrating deep learning 

models into the design pipeline, the proposed 

approach that significantly reduces computational 

complexity while achieving robust performance 

across diverse operating conditions. 

Contributions: 

• The proposed ANN model achieved near-

zero training and validation losses, indicating 

highly accurate predictions of 5G smart antenna 

parameters. 

• Low error metrics, including MAE, MSE, 

and RMSE, demonstrated the model's specific 

predictive capability. 

• The R-squared value was nearly perfect, 

showcasing the model's ability to explain almost all 

variability in the design parameters, ensuring 

robust optimization. 

2. Related Work 

Machine learning techniques have gained very 

importance for their ability to optimize multi-

parameter systems in 5G antenna design and 

provide optimal design options. The researchers 

like Haque et al. [1] applied a machine learning-

based gain prediction model for broadband MIMO 

antenna arrays designed for 5G mm-wave 

applications. The study showcased how ML models 

could predict gain with high accuracy, significantly 

reducing the computational burden associated with 

traditional methods. Sree et al. [2] proposed deep 

learning algorithm to optimize a stub-loaded dual-

band four-port MIMO antenna for sub-6 GHz 5G 

and X-band satellite communication applications. 

These approaches achieved superior performance 

metrics, including higher gain and reduced error or 

loss, demonstrating the robustness of ML-driven 

optimization techniques. To achieve the optimal 

performance, the optimizer helped to push the 

performance.  But when the number of parameters 

is increasing this model will get over fitted. 

Frequency reconfigurable antennas have also been 

a focus area for designing optimal network. So 

Yahya et al. [3] implemented ML models to 

optimize the design of compact antennas, 

enhancing RSSI for long-range 5G applications. 

Similarly, Babale et al. [4] proposed ML based 

method for designing planar wideband antennas 

with tri-band filtering notches for 3G, LTE, and 5G 

applications. Their approach effectively mitigated 

interference, improving overall system 

performance, but concentrated on the very few 

parameters. Like Yang et al. [5] implemented an 

optimized model with rapid multi-parameter 

processing capabilities, which significantly 

enhanced antenna design efficiency. They observed 

that how DL-based models could reduce 

computational time while maintaining high 

accuracy in parameter optimization. And also how 

these model can handle high dimensional data, with 

complex patterns. Yuliana [6] provided a 

comparative analysis of ML algorithms for 

predicting 5G coverage. This work identified 

dominant feature parameters and evaluated the 

accuracy of different algorithms, emphasizing the 

importance of feature selection in antenna 

optimization. Luostari et al. [7] provided an 

extensive review of ML techniques for optimizing 

5G systems, covering areas such as resource 

allocation, beamforming, and interference 
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management. Deep learning techniques have 

shown great potential in solving complex problems 

in antenna design with many parameters. These 

deep learning models can handle multi dimensional 

data and provide optimal design patterns. And 

Gurulakshmi et al. [8] also implemented 

Hamiltonian deep neural networks optimized using 

the pelican optimization algorithm for the design of 

substrate-integrated waveguide antennas. This 

approach provideds high efficiency and robustness 

model, by using advanced DL applications in 

antenna design where they used small number of 

parameters. And Haque et al. [9] further 

demonstrated the use of ML for predicting 

bandwidth and frequency in N77 band 5G 

antennas. Guntupalli [10] implemented hybrid deep 

learning models to improve antenna design 

accuracy. Shakya et al. [11]conducted a detailed 

comparison of ML algorithms for optimizing 

antenna design, highlighting the trade-offs between 

computational complexity and accuracy. Sree and 

Babu [12] proposed a methodology for optimizing 

four-port MIMO systems using ML, achieving 

validated antenna parameters and enhanced 

performance. Similarly, Jain et al. [13] reviewed 

ML-driven optimization techniques for wearable 

and array antennas, identifying key challenges and 

future directions. Kaushik et al. [14] focused on 

circularly polarized antennas tailored for 5G 

communication, employing ML-based optimization 

techniques to enhance their performance. The work 

demonstrated the synergy of integrating multiple 

DL techniques for optimizing gain and bandwidth. 

Pandi et al. [15] investigated how AI could 

revolutionize 5G wireless networks by enhancing 

connectivity and resource allocation. Their study 

demonstrated the potential of ML-driven 

optimization in creating smarter and more adaptive 

networks. Kamble and Nayak [16] extended this 

concept to array and wearable antennas, presenting 

a comprehensive overview of ML applications in 

modern antenna systems. Additionally, Rai et al. 

[17] optimized wideband MIMO hybrid antennas 

for n261 5G NR millimeter wave applications 

using ML, achieving enhanced performance and 

reliability. 

Shrote and Poshattiwar [18] implemented ML 

techniques to dynamic spectrum sensing method in 

5G cognitive radio networks. Their approach 

improved spectrum utilization and reduced 

interference, highlighting the role of AI in efficient 

resource management. Maher Al-Hatim and Al 

Janaby [19] explored reinforcement learning for 

beamforming in 5G networks. Their work focused 

on power-efficient user targeting, showing how AI 

could dynamically adapt to varying network 

conditions. 

Similarly, Ilyas et al. [20] used EfficientNet-B7 

deep learning models to enhance beam forming in 

massive MIMO systems, achieving energy-efficient 

and high-performance outcomes. 

Comparative analyses of various ML and DL 

approaches have provided valuable insights into 

their relative strengths and weaknesses in antenna 

optimization. By combining ML and DL models 

with hybrid model also provide optimal 

frameworks in networks analysis. The study 

underlined the adaptability of ML approaches in 

addressing specific communication requirements. 

Soni et al. [21] proposed an optimized sequence 

method for sparse channel estimation in a 5G 

MIMO system to overcome the challenges, and 

shows and observed that how ML techniques could 

improve spectral efficiency and signal quality. 

The integration of ML and DL into broader 5G 

system optimization to handle multidimensional 

data and complex parameters to provide better 

computational methods. Their findings emphasized 

the transformative impact of ML in improving 

network efficiency and scalability. Amini [22] 

addressed resource optimization for fixed wireless 

access in rural settings using ML [23], overcoming 

connectivity challenges in underserved areas. 

Recent works have also explored novel techniques 

to address emerging challenges in 5G antenna 

design.  

3. Methodology 

We implemented an optimized Artificial Neural 

Network (ANN) to train the normalized data. The 

model consists of an input layer takes the data with 

8 features, and then three hidden layers with 64, 32, 

and 16 neurons respectively, all three layers are 

using the ReLU activation function to normalize 

the data. The output layer is fully connected layer 

has one neuron with a linear activation function for 

prediction. In ANN at final layer ADAM optimizer 

is used to update the weights, and MSE as the loss 

function, while also tracking MAE as a metric. The 

training process involves splitting the data into 

training and test sets, and further splitting the 

training set into 80% training and 20% validation 

data. After feature engineering we trained the 
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model for different epochs like 30, 50 and 100, and 

different batch sizes 6, 16 and 32. But when the 

model is trained for 100 epochs at a batch size of 

32 the model performance is good. Before training 

the model we did feature engineering in this 

converted antenna positions to X, Y and Z 

columns.  

3.1 Data set 

We manually collected data on eight features, like 

user position, antenna angle, signal strength, 

interference, environment conditions, data 

transmission speed, coverage area, and efficiency. 

And collected 1000 samples over these features. 

Figure 1 is a correlation matrix heat map that 

illustrates the relationships between various metrics 

related to 5G smart antenna performance. The 

features include Antenna Angle, Signal Strength, 

Interference Level, Data Transmission Speed, 

Coverage Area, and Efficiency. The color intensity 

in the heat map indicates the strength and direction 

of the correlations; it is clearly observed that a high 

positive correlation and blue represents a high 

negative correlation. Notable observations include: 

• A moderate positive correlation between 

Antenna Angle and Signal Strength is 0.6. 

• A strong negative correlation exists 

between Interference Level and Signal Strength -

0.69 and Data Transmission Speed -0.81. 

• A moderate positive correlation between 

Efficiency and Interference Level 0.52. 

The figures 2 and 4 show the distribution plots for 

Signal Strength, Interference Level, Data 

Transmission Speed, and Coverage Area. These 

histograms reveal that the values for each metric 

tend to cluster around specific points, indicating 

stability and consistency within the observed 

ranges. The signal strength values are concentrated 

around distinct levels between -73 and -65 dB, and 

Data Transmission Speed shows peaks around 

certain values between 110 and 150 Mbps. 

Similarly, Interference Level and Coverage Area 

also exhibit distinct peaks, suggesting that 

interference and coverage tend to stabilize at 

certain points. These distribution patterns are 

crucial for understanding the performance and 

optimization of 5G smart antenna systems in IoT 

applications. 

 

Figure 1 correlation matrix of data 
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Figure 2 Distribution plot of signal strength and interference level. 

 

 

Figure 3 distribution plot of data transmission speed and coverage area. 

4. Result analysis 

We trained the ANN model for 100 epochs, after 

normalizing the data, and calculated MSE as loss as 

shown in Figure 4, the performance of a ANN 

model over a training period and its predictive 

accuracy, the Training and Validation Loss (left) 

and the Training and Validation Mean Absolute 

Error (MAE) (right) across 100 epochs. Both plots 

indicate that the model's training and validation 

losses, as well as MAE, drop sharply and stabilize 

close to zero, suggesting that the model is well-

fitted to the data without significant overfitting. 

The Figure 5 and 6 further confirm the model's 

accuracy. The Distribution of Prediction Errors plot 

shows the frequency of prediction errors clustered 

around two points, with a majority of errors being 

very close to zero, indicating high prediction 

accuracy. The final plot, depicting Actual vs. 

Predicted Data Transmission Speed, reveals a 

nearly perfect linear relationship along the 

diagonal, highlighting the model's precise 

predictions matching the actual data points closely. 

 

Figure 4 Training performance of ANN model 
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Table 1 error of ANN model 

Result of ANN model  

MAE 2.937316821771674e-06 

MSE 2.7648638586952323e-11 

RMSE 5.258197234070394e-06 

𝑅2 0.9999999999998468 

 

Table 1 presents the error metrics for the ANN 

model, demonstrating its exceptional performance. 

The MAE is 2.9373e-06, indicating that the model's 

predictions are almost optimal and same as the 

actual values by a minimal amount. The MSE is 

2.7649e-11, and the RMSE is 5.2582e-06, 

illustrating the model's high accuracy with minimal 

error variance. The R-squared (R^2) value is nearly 

1 (0.9999999999998468), indicating that the model 

explains almost all the variability in the target data 

points, confirming the models is near-perfect fit 

and predictive power compare to the other model. 

 

Figure 5 Prediction error of proposed model 

From figure 7 and 8 it is observed that, the 

performance of proposed model is illustrated. The 

figure 8 represents the feature importance of 

various parameters based on permutation 

importance, indicating that "Antenna_Angle 

(degrees)" and "Interference_Level (dB)" are the 

most significant features influencing the model's 

predictions. The figure 7 illustrates a residual plot, 

showing the predicted values and the actual values. 

The residuals appear to be close to zero for most of 

the predicted values, suggesting that the model 

predictions are fairly accurate. However, there are a 

few points with larger residuals, indicating some 

discrepancies between the model predictions and 

the actual outcomes (true values).  

 

Figure 6 Actual vs predicted on test data of proposed model 
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Figure 7 predicted values of residual plot 

 

Figure 8 feature importance plot 

 

5. Conclusion 

The results of the ANN model underscore its 

effectiveness in optimizing 5G smart antenna 

design parameters with high precision. The error 

metrics, including a MAE of 2.9373e-06, MSE of 

2.7649e-11, and RMSE of 5.2582e-06, alongside 

an R-squared value close to 1, demonstrate the 

model's excellent performance. Visualization of the 

training and validation metrics, prediction error 

distribution, and the close alignment of actual vs. 

predicted data transmission speeds further validate 

the robustness and reliability of the ANN approach. 

This study highlights the potential of deep learning 

techniques in advancing 5G technology through 

precise and efficient antenna design optimization. 
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