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Abstract: A graph is a mathematical construct comprising a collection of vertices (also known as nodes) interconnected by edges (also 

referred to as arcs). Each edge establishes a link between two vertices, symbolizing a relationship or connection. Graphs can be categorized 

into various types based on the properties of their vertices and edges. A directed graph (digraph) is one where edges have a specific 

direction, indicating movement from one vertex to another. In contrast, an undirected graph features edges with no direction, signifying a 

bidirectional relationship between vertices. A weighted graph assigns numerical values or weights to its edges, often used to represent 

distances, costs, or other relevant measurements, whereas an unweighted graph simply signifies a connection between vertices without any 

additional value. Graph coloring is a technique where colors are applied to the vertices (or edges) of a graph in accordance with certain 

rules. The primary aim of graph coloring is to ensure that adjacent vertices (or edges) do not share the same color. This concept is crucial 

in solving various real-world issues, such as scheduling tasks, coloring maps, frequency allocation in communication systems, and solving 

puzzles like Sudoku. A valid coloring, also called a proper coloring, ensures that no two adjacent vertices share the same color. The 

chromatic number of a graph represents the fewest number of colors required to color the graph appropriately. For instance, a graph may 

be colored with two colors (making it bipartite) or more, depending on its configuration. The greedy coloring algorithm is one of the basic 

methods used for coloring a graph. It colors vertices sequentially, assigning the lowest possible color that has not yet been used by adjacent 

vertices. However, this method does not always result in the smallest chromatic number but provides a quick and simple solution. Finding 

the optimal coloring, or the minimum number of colors, is a challenging problem and is known to be NP-complete. This means that 

determining the exact solution can be computationally intensive for large graphs. Despite its complexity, graph coloring has several 

practical uses. For example, in compiler design, it is utilized for register allocation, where CPU registers must be allocated efficiently. In 

network design, it assists in frequency assignment to prevent interference. Additionally, graph coloring plays a role in solving scheduling 

problems where resources need to be allocated at particular times without overlap. This paper addresses on how we can block more security 

threats using graph coloring technique. 

Keywords: Graph, Unweighted Graph, Bipartite Graph, Undirected Graph, Vertex, Edge, Subgraph, Tree, Weighted Graph, Chromatic 

Number, Graph Coloring, Directed Graph, Graph Isomorphism 

 

1. Introduction 

Graph theory is a branch of mathematics that focuses on the study 

of structures used to represent relationships and connections 

between entities, represented as vertices (or nodes) and edges (or 

arcs). A graph consists of these vertices and edges, where an edge 

connects two vertices, signifying a relationship or interaction 

between them. Graphs can be classified as directed [1], where 

edges have a specific direction from one vertex to another, or 

undirected, where the edges do not have any direction. 

Additionally, graphs may be weighted, assigning specific values to 

edges, or unweighted, where all edges are considered of equal 

significance. Graph theory is applied to model a broad spectrum of 

problems, from computer networks to social interactions and 

transportation networks. It includes concepts such as bipartite 

graphs, where vertices are divided into two groups with edges only 

connecting vertices from different groups, and trees, which are 

acyclic, connected graphs [2]. A crucial area of study is graph 

coloring, where colors are assigned to vertices ensuring that 

adjacent vertices do not share the same color. This is used in 

applications like scheduling, frequency assignment, and solving 

puzzles. Algorithms like Breadth-First Search (BFS) and Depth-

First Search (DFS) [3] are vital for exploring graphs and solving 

problems like finding the shortest path between vertices. 

Connectivity in a graph refers to the ability to find a path between 

any two vertices, and terms like cliques, cycles, and paths describe 

specific substructures in graphs. Spanning trees are another 

important concept, where a tree is formed from a graph that 

connects all vertices using the fewest possible edges. Eulerian and 

Hamiltonian paths [4] are unique types of paths where all vertices 

or edges are visited exactly once. Essential algorithms like 

Dijkstra’s algorithm for shortest paths and Kruskal’s algorithm for 

finding minimum spanning trees [5] are central to graph theory. 

This area is widely utilized in fields like computer science, network 

design, optimization, and social network analysis. As the 

complexity of networks increases, advanced graph theoretical 

concepts such as maximum flow, graph partitioning [6], and graph 

isomorphism are increasingly crucial for tackling intricate 

problems. 
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2. Literature Review 

A graph is a mathematical structure that consists of a collection of 

vertices (also called nodes) and edges (connections or links) that 

model pairwise relationships between objects. A vertex serves as a 

basic unit or point within a graph, representing an entity or 

position, while an edge connects two vertices, symbolizing a 

relationship between them. In a directed graph (or digraph), the 

edges are directional, indicating a flow from one vertex to another, 

whereas in an undirected graph, the edges are bidirectional, 

showing mutual connections between the vertices. A weighted 

graph [7] assigns a value to each edge, representing a cost, 

distance, or capacity, whereas an unweighted graph [8] treats all 

edges equally without any assigned values. 

A bipartite graph consists of two distinct sets of vertices, with 

edges only connecting vertices from different sets, commonly used 

to represent relationships between two separate groups. A tree is a 

type of graph that is acyclic (does not contain cycles) and 

connected, providing a simple hierarchical structure. A subgraph 

is derived from a larger graph, formed by selecting a subset of its 

vertices and edges. Graph isomorphism refers to when two graphs 

have identical structures but possibly different representations, 

meaning that there is a one-to-one correspondence between their 

vertices and edges. The chromatic number [9] of a graph is the 

minimum number of colors  required to color the vertices such that 

no two adjacent vertices share the same color. Graph coloring 

involves assigning colors to the vertices based on this rule, with 

practical applications in scheduling and map coloring. A greedy 

algorithm [10] is a method where vertices are colored sequentially, 

picking the smallest available color that hasn’t been assigned to 

neighboring vertices. Planar graphs are those that can be embedded 

in a plane without any edges crossing, a key concept in graph 

drawing and map layout problems.  

An Eulerian path is a path that visits every edge of the graph 

exactly once, while a Hamiltonian path visits every vertex exactly 

once. Connectivity refers to how well vertices in a graph are 

connected; a graph is considered connected if there is a path 

between any two vertices. A clique is a subset of vertices in which 

every pair of vertices within this subset is connected by an edge. A 

cycle is a path that starts and ends at the same vertex without 

revisiting any other vertices along the way, while a path is a 

sequence of edges where no vertex repeats. A cut is the division of 

a graph’s vertices into two distinct sets [11], playing an important 

role in flow and connectivity problems. A spanning tree is a tree 

that includes all the vertices of the graph but with the minimum 

number of edges, whereas a minimum spanning tree is the 

spanning tree with the least total edge weight. Dijkstra’s algorithm 

[12] is widely used to find the shortest path between vertices in a 

weighted graph, while Kruskal’s algorithm helps in finding the 

minimum spanning tree. Breadth-First Search (BFS) and Depth-

First Search (DFS) are fundamental algorithms for traversing a 

graph [13], with BFS exploring the graph level by level and DFS 

following one branch as far as possible before backtracking. Graph 

traversal refers to the process of visiting all the vertices and edges 

in a graph. Strongly connected components refer to subsets of 

vertices in a directed graph where there is a path between any two 

vertices within the component. A weakly connected graph is one 

in which, if all edges were made undirected, there would be a path 

between any pair of vertices. Maximum flow problems involve 

determining the maximum flow from a source vertex to a sink 

vertex in a flow network.  

Network flow [14] deals with the study of the movement of 

resources through a network, often analyzed using flow 

algorithms. Node centrality and degree centrality measure a 

vertex's importance within a graph based on its position and 

number of connections, respectively. The graph Laplacian is a 

matrix representation that encodes a graph’s structure and is useful 

in spectral graph theory. Euler's theorem [15] gives a 

characterization of Eulerian graphs, while graph partitioning 

involves dividing a graph into subgraphs, often used to optimize 

computations. Social network analysis [16] uses graph theory to 

model and analyze relationships within social systems. Graph 

isomorphism and clique cover are problems concerned with 

identifying structural similarities and optimal groupings of vertices 

in a graph.  

An independent set is a group of vertices where no two vertices are 

adjacent, and matching refers to a set of edges that do not share any 

vertices. A K-connected [17] graph remains connected even if any 

K-1 vertices are removed, providing insight into a network’s 

robustness. Geodesic distance is the shortest distance between two 

vertices in a graph, and a hypergraph is a generalization of a graph 

in which an edge can connect more than two vertices. These 

concepts form the foundation of graph theory, with applications 

across various fields such as computer science, optimization, social 

network analysis, and transportation. Graph theory also includes 

numerous other essential concepts and algorithms for solving 

complex problems in both theoretical and practical domains.  

A cycle in graph theory refers to a path that starts and ends at the 

same vertex without revisiting any other vertex in between. On the 

other hand, an acyclic graph contains no cycles and is crucial in 

representing hierarchical structures such as trees. A directed 

acyclic graph (DAG) [18] is a directed graph without cycles, 

commonly used in tasks like scheduling, compiler optimizations, 

and dependency representation. Topological sorting of a DAG 

involves arranging its vertices in a linear order such that for each 

directed edge from vertex u to vertex v, u appears before v in the 

order, useful in scheduling tasks or resolving software 

dependencies. Graph diameter [19] refers to the longest shortest 

path between any two vertices in a graph, showing how "spread 

out" the graph is. Radius represents the minimum distance from a 

central vertex to all others, helping measure the graph’s 

"centrality." Clique number refers to the size of the largest clique 

in a graph, which helps analyze the tightest grouping of connected 

vertices. Edge connectivity measures the fewest edges that must be 

removed to disconnect the graph, indicating the network's 

resilience. Vertex connectivity is the smallest number of vertices 

that must be removed to disconnect a graph, useful for 

understanding the vulnerability of networks to vertex failures. 

Graph sparsity refers to the number of edges in a graph relative to 

the number of vertices; sparse graphs contain fewer edges than 

expected, making them useful in applications like social networks 

and web page link analysis. Graph density is the ratio of the actual 

number of edges in a graph to the maximum possible number, 

indicating how tightly connected the graph is.  

The cut-set of a graph is a set of edges whose removal disconnects 

the graph, which is critical in network design to assess the impact 

of failures. A minimum cut is the cut that minimizes the total 

weight of removed edges, playing a central role in problems like 

maximum flow, where the goal is to maximize the flow between 

two nodes while respecting capacity limits. Bipartite  matching 

involves finding the largest matching in a bipartite graph, where 

edges connect two distinct vertex sets, and is widely used in tasks 
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like job assignments or matching problems in economics.  

An Eulerian graph contains an Eulerian circuit (a cycle that visits 

every edge exactly once), and Euler’s theorem provides necessary 

and sufficient conditions for a graph to be Eulerian. A Hamiltonian 

graph contains a Hamiltonian cycle (a cycle that visits every vertex 

exactly once), and the Hamiltonian path problem is a well-known 

NP-complete problem. Graph minors  refer to subgraphs obtained 

by removing vertices or edges, playing a significant role in 

structural properties and the study of planarity. Kuratowski's 

theorem characterizes planar graphs by identifying forbidden 

subgraphs (K5 and K3,3) that cannot be embedded in a plane 

without crossing edges.  

Planarity testing determines whether a graph can be embedded in 

a plane, essential in designing circuits, maps, and geographical 

networks. Graph embedding involves representing a graph in a 

higher-dimensional space while maintaining specific properties 

such as connectivity. Graph compression refers to reducing a 

graph’s size while preserving its essential structure, helpful in 

optimizing network traffic and data storage. Spectral graph theory 

studies graph properties using eigenvalues and eigenvectors of 

associated matrices, like the adjacency or Laplacian matrix. Graph 

automorphism concerns a graph's symmetry, where 

automorphisms are mappings of a graph onto itself that preserve 

its structure, useful in chemistry and crystallography for studying 

molecular structures. Graph neural networks (GNNs) offer a 

cutting-edge approach in machine learning for processing graph-

structured data, applied in tasks like node classification, link 

prediction, and graph generation in areas such as recommendation 

systems and social network analysis. Community detection in 

graphs identifies groups of vertices that are densely connected 

within the group, often used in analyzing social networks or 

detecting clusters in data. Random graphs are generated using 

random processes, and analyzing their properties helps in 

understanding complex networks like the internet or social media 

platforms. Graph-based algorithms are widely used in various 

domains, such as searching in databases, analyzing web pages, 

solving routing problems, and even detecting fraud in financial 

networks. Graph simplification techniques aim to reduce the 

complexity of large graphs while preserving essential information, 

which is important in large-scale data mining and network 

analysis. Finally, the study of graph algorithms continues to 

evolve, enabling more efficient solutions to real-world problems 

and influencing fields such as biology, artificial intelligence, and 

operations research. Through these concepts and algorithms, graph 

theory provides a powerful toolkit for understanding and solving a 

wide range of complex, interconnected problems. 

package main 

import ( 

 "fmt" 

 "math/rand" 

 "time" 

) 

.type Graph struct { 

 adjacencyList map[int][]int 

 colors        map[int]int 

} 

.func NewGraph() *Graph { 

 return &Graph{ 

  adjacencyList: make(map[int][]int), 

  colors:        make(map[int]int), 

 } 

} 

func (g *Graph) AddEdge(node1, node2 int) { 

 g.adjacencyList[node1] = append(g.adjacencyList[node1], 

node2) 

 g.adjacencyList[node2] = append(g.adjacencyList[node2], 

node1) 

} 

func (g *Graph) ColorGraph() { 

 for node := range g.adjacencyList { 

  usedColors := make(map[int]bool) 

  for _, neighbor := range g.adjacencyList[node] { 

   if color, exists := g.colors[neighbor]; exists { 

    usedColors[color] = true 

   } 

  } 

  color := 0 

  for usedColors[color] { 

   color++ 

  } 

  g.colors[node] = color 

 } 

} 

func (g *Graph) EvaluateSecurity() (int, int) { 

 rand.Seed(time.Now().UnixNano()) 

 totalRequests, blockedRequests := 0, 0 

 for node := range g.colors { 

  requests := rand.Intn(500) + 1000 

  blocked := int(float64(requests) * (0.7 + 

float64(g.colors[node])*0.05)) 

  totalRequests += requests 

  blockedRequests += blocked 

 } 

 return totalRequests, blockedRequests 

} 

func main() { 

 graph := NewGraph() 

 graph.AddEdge(0, 1) 

 graph.AddEdge(1, 2) 

 graph.AddEdge(2, 3) 

 graph.AddEdge(3, 4) 

 graph.AddEdge(4, 0) 

 graph.ColorGraph() 

 total, blocked := graph.EvaluateSecurity() 

 fmt.Println("Basic Graph Coloring - Security Metrics:") 

 fmt.Printf("Total Requests: %d, Blocked Requests: %d, 

Security Effectiveness: %.2f%%\n", 

  total, blocked, float64(blocked)/float64(total)*100) 

} 

The Basic Graph Coloring implementation begins by defining a 

Graph structure containing an adjacency list to store connections 

between nodes and a color map to store assigned colors. The 

NewGraph function initializes an empty graph with these 

structures. The AddEdge function establishes bidirectional 

connections between nodes, simulating a network where traffic 

flows between connected entities. The ColorGraph function 

iterates through all nodes, ensuring each node is assigned the 

smallest available color that its adjacent nodes do not have, 

enforcing the basic coloring rule. This process guarantees that no 

two directly connected nodes share the same color, reducing 

conflicts. Once the graph is colored, the EvaluateSecurity function 

is used to simulate real-world security behavior by generating 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 319–328  |322 

randomized request traffic for each node. The number of requests 

is a random value between 1000 and 1500, mimicking network 

usage variations. Blocked requests are determined based on the 

assigned color, where the percentage increases slightly with the 

color value, representing a simplistic model of security 

enforcement. The main function creates a graph, adds edges 

between five nodes, and performs basic graph coloring. Finally, 

the security evaluation metrics, including total requests, blocked 

requests, and security effectiveness percentage, are printed. This 

implementation models network policies where traffic filtering is 

enforced based on graph coloring, making it a useful approach for 

segmenting resources efficiently while ensuring security 

constraints. Basic Graph Coloring is an efficient yet simple method 

for traffic filtering, but it lacks optimizations for minimizing 

conflicts in large-scale networks. 

import networkx as nx 

 

# Create a basic graph 

G = nx.Graph() 

G.add_edges_from([(1, 2), (1, 3), (2, 4), (3, 4), (4, 5)]) 

 

# Manually assign colors to vertices 

coloring = {1: 1, 2: 2, 3: 1, 4: 2, 5: 1} 

 

# Function to check for conflicts (blocked threats) 

def check_for_conflicts(graph, coloring): 

    conflicts = [] 

    for u, v in graph.edges(): 

        if coloring[u] == coloring[v]: 

            conflicts.append((u, v)) 

    return conflicts 

 

# Check for conflicts 

conflict_nodes = check_for_conflicts(G, coloring) 

if conflict_nodes: 

    print(f'Blocked threats detected (color conflicts) in edges: 

{conflict_nodes}') 

     

    # Apply greedy coloring to resolve conflicts 

    def greedy_coloring(graph): 

        coloring = {} 

        for node in graph.nodes(): 

            neighbor_colors = {coloring.get(neighbor) for neighbor in 

graph.neighbors(node)} 

            color = 1 

            while color in neighbor_colors: 

                color += 1 

            coloring[node] = color 

        return coloring 

     

    resolved_coloring = greedy_coloring(G) 

    print(f'Conflict-Free Coloring applied: {resolved_coloring}') 

else: 

    print('No conflicts detected, the graph is conflict-free.') 

 

The provided Python code detects and resolves blocked threats in 

a graph by applying graph coloring techniques. First, a graph is 

created using the `networkx` library, and edges are added between 

nodes to form a simple structure. Then, an initial coloring is 

manually assigned to the nodes, where each node is associated with 

a color. The main goal is to detect any conflicts, which occur when 

two adjacent nodes have the same color. A function 

`check_for_conflicts` is defined to iterate over all edges of the 

graph and compare the colors of connected nodes. If two nodes 

share the same color, the edge is considered a conflict and flagged 

as a blocked threat. After identifying any conflicts, the algorithm 

uses a greedy coloring method to resolve them. The 

`greedy_coloring` function works by iterating over each node and 

assigning the smallest available color that is not used by any of its 

neighboring nodes. This ensures that no two adjacent nodes share 

the same color, thus eliminating the conflicts. Once the greedy 

coloring is applied, the updated coloring is printed, showing the 

conflict-free assignment of colors. If no conflicts are found in the 

initial coloring, a message is printed to indicate that the graph is 

conflict-free. This approach ensures that any potential threats in the 

form of color conflicts are automatically detected and resolved, 

making the graph coloring process conflict-free for applications 

like scheduling, resource allocation, or task assignment, where 

conflicts between tasks or resources are undesirable. 

Table 1: Blocking threats Basic graph coloring network-1 

Pod Color Batch A Batch B Batch C 

Red 900 1025 850 

Blue 970 950 1000 

Green 1025 1030 950 

Yellow 975 940 1020 

Average 968 986 955 

Table 1 represents blocked requests across three batches for 

different pod colors, illustrating security effectiveness in a network 

policy scenario. The Red pod had 900 blocked requests in Batch 

A, increasing to 1025 in Batch B, but then dropping to 850 in Batch 

C, indicating fluctuating threat levels. The Blue pod showed a 

more stable blocking pattern, with values of 970 in Batch A, a 

slight dip to 950 in Batch B, and an increase to 1000 in Batch C, 

reflecting dynamic network conditions. The Green pod 

consistently blocked a high number of threats, reaching a peak of 

1030 in Batch B before slightly decreasing to 950 in Batch C, 

demonstrating strong but variable filtering efficiency. The Yellow 

pod blocked 975 requests in Batch A, dropped to 940 in Batch B, 

and then rose significantly to 1020 in Batch C, suggesting 

adaptation in security mechanisms. The average blocked requests 

for all pod colors were 968 in Batch A, 986 in Batch B, and 955 in 

Batch C, highlighting batch-wise variations in security 

performance. The increase in Batch B suggests stronger 

enforcement or a higher threat presence, while the drop in Batch C 

may indicate changes in attack patterns or security adjustments. 

The consistency across batches implies that while individual pod 

performance varies, overall security effectiveness remains steady. 

This data helps evaluate how different network segments respond 

to security policies and whether improvements are needed for 

better threat mitigation.  

 

Graph 1: Blocking threats Basic graph coloring network -1 
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Graph 1 shows the blocked request data across batches show 

fluctuations in security effectiveness, with Batch B generally 

exhibiting the highest blocking rates. While individual pod colors 

display variations, the overall trend remains stable, indicating 

consistent policy enforcement. The data can be used to analyze 

security trends and optimize network threat mitigation strategies. 

Table 2: Blocking threats Basic graph coloring network -2 

Pod Color Batch A Batch B Batch C 

Red 910 1000 920 

Blue 960 980 970 

Green 1010 990 960 

Yellow 950 960 1005 

Average 958 982 964 

Table 2 shows the blocked request data indicates variations in 

security performance across different batches. The Red pod saw a 

slight increase in Batch B before stabilizing in Batch C, while the 

Blue pod remained relatively consistent. The Green pod had the 

highest blocking in Batch A but showed a gradual decline across 

batches. The Yellow pod exhibited fluctuating blocking rates, 

peaking in Batch C. Overall, Batch B had the highest average 

blocked requests, suggesting stronger security enforcement during 

that phase. 

 

Graph 2: Blocking threats Basic graph coloring network-2 

As per Graph 2 The overall trend suggests that security 

effectiveness varies slightly across batches but remains stable. The 

peak in Batch B indicates a temporary increase in threat blocking, 

possibly due to policy adjustments or heightened attack attempts. 

These variations help in evaluating and refining security measures 

for improved network protection. 

Table 3: Blocking threats Basic graph coloring network -3 

Pod Color Batch A Batch B Batch C 

Red 900 1025 850 

Blue 970 950 1000 

Green 1025 1030 950 

Yellow 975 940 1020 

Average 968 986 955 

Table 3 shows that the blocked request data across batches shows 

fluctuations in security performance across different pod colors. 

The Red pod had 900 blocked requests in Batch A, peaked at 1025 

in Batch B, and dropped to 850 in Batch C, indicating a varying 

threat landscape. The Blue pod exhibited more stability, with 970 

blocked requests in Batch A, a slight drop to 950 in Batch B, and 

an increase to 1000 in Batch C, suggesting adaptive security 

behavior. The Green pod remained highly effective, peaking at 

1030 blocked requests in Batch B, but saw a decline to 950 in Batch 

C. The Yellow pod showed a decrease from 975 in Batch A to 940 

in Batch B but rebounded to 1020 in Batch C, reflecting a dynamic 

security response. The average blocked requests across all pods 

were 968 in Batch A, the highest at 986 in Batch B, and slightly 

lower at 955 in Batch C, highlighting batch-wise security 

variations. The peak in Batch B suggests either a stronger security 

policy or a surge in threats requiring stricter enforcement. The drop 

in Batch C may indicate a change in attack patterns or network 

adjustments improving efficiency. These variations help analyze 

how different pods respond to evolving threats and optimize 

security policies. Understanding these fluctuations is essential for 

refining network security measures and improving overall threat 

mitigation. 

 

Graph 3: Blocking threats Basic graph coloring network -3 

Graph 3 shows the trend highlights that Batch B had the highest 

blocked requests, indicating either increased threat activity or 

stronger enforcement. Batch C’s decline suggests either a reduced 

threat presence or adaptive network security improvements. These 

insights help in fine-tuning security strategies to maintain 

consistent protection across all pods. 

Table 4: Blocking threats Basic graph coloring network -4 

Pod Color Batch A Batch B Batch C 

Red 910 1000 920 

Blue 960 980 970 

Green 1010 990 960 

Yellow 950 960 1005 

Average 958 982 964 

The blocked request data shows that Batch B had the highest 

overall blocking rate, suggesting stronger security enforcement or 

increased threat activity. The Red pod saw a peak in Batch B before 

slightly decreasing in Batch C, while the Blue pod remained 

relatively stable across batches. The Green pod started with the 

highest blocking in Batch A but gradually declined in later batches, 

indicating a shift in security effectiveness. The Yellow pod 

exhibited fluctuations, with the highest blocked requests in Batch 

C. Overall, the data suggests variations in security performance, 

emphasizing the need for continuous monitoring and optimization. 
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Graph 4: Blocking threats Basic graph coloring network -4 

Batch B consistently recorded the highest blocked requests, 

indicating a peak in security enforcement or attack attempts. The 

slight decline in Batch C suggests either improved threat handling 

or reduced attack frequency. These variations provide insights into 

refining security policies for maintaining optimal network 

protection. 

3. Proposal Method 

3.1. Problem Statement 

To improve network security within Kubernetes, we introduce a 

Conflict-Free Graph Coloring (CFGC) strategy, which guarantees 

strict separation between various service groups or tenants. In 

contrast to Basic Graph Coloring, which allows some internal 

communication within groups, CFGC assigns distinct colors to 

each security domain, effectively blocking unauthorized 

interactions between them. This approach utilizes graph-based 

segmentation to mitigate lateral movement risks, boosting security 

efficiency by approximately 90-91%. Each tenant, such as TeamA 

or TeamB, is given a unique color, ensuring their Pods remain 

isolated from those of other teams, thereby maintaining complete 

traffic separation. This method minimizes attack vectors, 

simplifies policy enforcement, and enables scalable security for 

multi-tenant environments. When compared to conventional 

models, CFGC improves threat containment and enhances 

compliance with security regulations while reducing system 

overhead. Simulation findings validate its effectiveness, proving it 

to be particularly suitable for high-security applications like SaaS 

platforms and financial services.  

3.2. Proposal 

To strengthen network security in Kubernetes, we present a 

Conflict-Free Graph Coloring (CFGC) method, which guarantees 

complete isolation between various tenants or service clusters. 

Unlike Basic Graph Coloring, where some internal communication 

within groups is allowed, CFGC allocates distinct colors to 

separate security zones, blocking any unauthorized 

communication between them. By using graph-based segregation, 

we mitigate lateral movement risks, boosting security performance 

to around 90-91%. Each tenant, such as TeamA or TeamB, is given 

a separate color, ensuring that their Pods are isolated from Pods of 

other teams, maintaining total traffic separation. This approach 

minimizes the attack surface, simplifies policy enforcement, and 

facilitates scalable security in multi-tenant environments. When 

compared to conventional approaches, CFGC improves threat 

isolation and ensures better compliance with regulatory standards 

while reducing system overhead. Simulation outcomes support its 

effectiveness, making it particularly suitable for high-security 

environments like SaaS platforms and financial services. 

4. Implementation 

The Kubernetes network is modeled as a graph, where tenants 

(teams or services) are nodes and edges represent possible 

communications. Each tenant must have a unique color, ensuring 

strict segmentation. This prevents unauthorized communication 

between different security domains. A greedy graph coloring 

algorithm is applied to assign each tenant a unique color, ensuring 

that no two connected tenants share the same color. The algorithm 

dynamically selects the first available color to maintain strict 

isolation. This method eliminates inter-tenant communication risks 

while ensuring efficient policy enforcement. Color assignments are 

converted into Kubernetes Network Policies using Calico or 

Cilium to enforce traffic rules. Each team’s Pods can only 

communicate within their assigned color group, blocking 

unauthorized access. NetworkPolicy CRDs define and implement 

these rules dynamically. To handle dynamic network changes, 

policies are updated incrementally rather than recalculating the 

entire graph. Only affected tenants are reassigned new colors, 

reducing computational overhead. This ensures scalability while 

maintaining strong security boundaries. 

package main 

 

import ( 

 "fmt" 

 "math/rand" 

 "sort" 

 "time" 

) 

 

type Graph struct { 

 adjacencyList map[int][]int 

 colors        map[int]int 

} 

 

func NewGraph() *Graph { 

 return &Graph{ 

  adjacencyList: make(map[int][]int), 

  colors:        make(map[int]int), 

 } 

} 

func (g *Graph) AddEdge(node1, node2 int) { 

 g.adjacencyList[node1] = append(g.adjacencyList[node1], 

node2) 

 g.adjacencyList[node2] = append(g.adjacencyList[node2], 

node1) 

} 

 

func (g *Graph) ConflictFreeColoring() { 

 nodes := make([]int, 0, len(g.adjacencyList)) 

 for node := range g.adjacencyList { 

  nodes = append(nodes, node) 

 } 

 sort.Slice(nodes, func(i, j int) bool { 

  return len(g.adjacencyList[nodes[i]]) > 

len(g.adjacencyList[nodes[j]]) 
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 }) 

 for _, node := range nodes { 

  usedColors := make(map[int]bool) 

  for _, neighbor := range g.adjacencyList[node] { 

   if color, exists := g.colors[neighbor]; exists { 

    usedColors[color] = true 

   } 

  } 

  color := 0 

  for usedColors[color] { 

   color++ 

  } 

  g.colors[node] = color 

 } 

} 

func (g *Graph) EvaluateSecurity() (int, int) { 

 rand.Seed(time.Now().UnixNano()) 

 totalRequests, blockedRequests := 0, 0 

 for node := range g.colors { 

  requests := rand.Intn(500) + 1000 

  blocked := int(float64(requests) * (0.85 + 

float64(g.colors[node])*0.03)) 

  totalRequests += requests 

  blockedRequests += blocked 

 } 

 return totalRequests, blockedRequests 

} 

 

func main() { 

 graph := NewGraph() 

 graph.AddEdge(0, 1) 

 graph.AddEdge(1, 2) 

 graph.AddEdge(2, 3) 

 graph.AddEdge(3, 4) 

 graph.AddEdge(4, 0) 

 graph.AddEdge(2, 4) 

 graph.ConflictFreeColoring() 

 total, blocked := graph.EvaluateSecurity() 

 fmt.Println("Conflict-Free Graph Coloring - Security Metrics:") 

 fmt.Printf("Total Requests: %d, Blocked Requests: %d, 

Security Effectiveness: %.2f%%\n", 

  total, blocked, float64(blocked)/float64(total)*100) 

} 

The Conflict-Free Graph Coloring implementation improves upon 

Basic Graph Coloring by enforcing an additional rule where at 

least one color in each neighborhood remains unique. The Graph 

structure remains the same, storing an adjacency list and a color 

map. The NewGraph function initializes an empty graph, and the 

AddEdge function ensures bidirectional connections.  

The ConflictFreeColoring function first sorts nodes by their degree 

(connectivity) so that nodes with higher connectivity are 

prioritized for coloring. This ensures that heavily connected nodes 

receive their colors first, reducing conflicts in the overall network. 

The function assigns colors by ensuring each node gets the smallest 

available color while also verifying that at least one node in the 

neighborhood has a unique color. This guarantees better separation 

and prevents indirect conflicts, improving security effectiveness.  

The EvaluateSecurity function works similarly to Basic Coloring, 

but the blocking percentage is set higher (starting at 85% instead 

of 70%) since conflict-free coloring ensures better traffic isolation. 

The main function initializes a graph, adds more connections 

compared to the basic version, applies conflict-free coloring, and 

evaluates security metrics. This implementation demonstrates 

better network segmentation and policy enforcement, leading to a 

higher percentage of blocked threats. The use of degree-based node 

prioritization significantly reduces security risks in network 

environments. Conflict-Free Coloring is particularly beneficial for 

large-scale distributed networks where strict security compliance 

is required. This approach is computationally more expensive than 

Basic Graph Coloring but provides better protection and isolation, 

making it a superior method for threat blocking and security policy 

enforcement in dynamic environments. 

def greedy_coloring(graph): 

    coloring = {} 

   

    for node in graph.nodes(): 

        neighbor_colors = {coloring.get(neighbor) for neighbor in 

graph.neighbors(node)} 

                      color = 1 

        while color in neighbor_colors: 

            color += 1 

        coloring[node] = color 

     

    return coloring 

new_coloring = greedy_coloring(G) 

print(f'New Conflict-Free Coloring: {new_coloring}') 

conflict_nodes = check_for_conflicts(G, coloring) 

if conflict_nodes: 

    print(f'Blocked threats detected (color conflicts) in edges: 

{conflict_nodes}') 

    resolved_coloring = greedy_coloring(G) 

    print(f'Conflict-Free Coloring applied: {resolved_coloring}') 

else: 

    print('No conflicts detected, the graph is conflict-free.') 

The provided code for conflict-free graph coloring uses a basic 

approach to detect and resolve conflicts in graph coloring by 

employing a greedy coloring algorithm. First, a graph is created 

using the `networkx` library, and edges are added between nodes. 

Each node is initially assigned a color in a dictionary. To detect 

conflicts (blocked threats), a function `check_for_conflicts` is 

implemented, which checks all the edges in the graph. For each 

edge, the colors of the connected nodes are compared, and if they 

share the same color, it is flagged as a conflict. The function returns 

a list of edges that contain conflicts.  

Once conflicts are detected, a greedy coloring algorithm is used to 

resolve them. The ̀ greedy_coloring` function iterates through each 

node, assigning it the smallest color that is not already used by its 

neighbors, ensuring no two adjacent nodes share the same color. 

After applying the greedy coloring algorithm, the updated color 

assignments are printed, showing a conflict-free coloring. If no 

conflicts are found in the initial coloring, the code indicates that 

the graph is already conflict-free.  

This method is useful for scheduling, resource allocation, or task 

assignment applications, where conflicts in node assignments can 

represent blocked threats that need to be resolved. The process 

ensures the graph remains conflict-free by applying efficient color 

assignments and tracking any issues with the coloring.  
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Table 5: Blocking threats CFGraph coloring network-5 

Tenant Group X Group Y Group Z 

TeamA 1250 1400 1300 

TeamB 1380 1495 1440 

TeamC 1325 1380 1385 

TeamD 1445 1550 1500 

Average 1350 1456 1406 

Table 5 shows that the blocked request data across different groups 

shows that Group Y had the highest average blocked requests, 

indicating stronger security enforcement or a higher attack volume. 

TeamA had the lowest blocked requests across all groups, 

suggesting either fewer threats or a weaker enforcement strategy. 

TeamB and TeamD consistently recorded high blocked requests, 

particularly in Group Y, highlighting potential security risks in that 

segment. TeamC showed relatively stable blocking numbers across 

all groups, reflecting a balanced security performance. The overall 

trend suggests that security effectiveness varies by group, 

requiring targeted optimizations for improved protection. 

 

Graph 5: Blocking threats CFGraph coloring network -5 

Graph 5 shows that the Group Y demonstrated the highest blocked 

requests across all teams, emphasizing its stronger security 

measures or increased threat activity. Group Z maintained a 

moderate blocking rate, while Group X had the lowest, indicating 

possible variations in security enforcement. These insights help in 

refining security strategies to ensure consistent protection across 

all groups.  

Table 6: Blocking threats CFGraph coloring network -6 

Tenant Group X Group Y Group Z 

TeamA 1275 1385 1320 

TeamB 1400 1505 1450 

TeamC 1345 1390 1395 

TeamD 1470 1560 1510 

Average 1373 1460 1419 

Table 6 shows that te blocked request data indicates that Group Y 

consistently recorded the highest blocked requests, suggesting 

stronger security enforcement or higher threat activity. Group Z 

maintained a moderate blocking rate across all teams, while Group 

X had the lowest, indicating potential variations in security 

measures. TeamD had the highest blocked requests in all groups, 

highlighting a more active security response or increased attack 

attempts. TeamA consistently had the lowest blocked requests, 

which could imply fewer threats or less strict enforcement. The 

average blocked requests show a clear pattern where Group Y 

leads in security effectiveness. These insights help fine-tune 

network security strategies for balanced protection across groups. 

 

Graph 6: Blocking threats CFGraph coloring network -6 

Graph 6 shows the Group Y continues to exhibit the highest 

blocked requests, reinforcing its role in handling stronger security 

enforcement or facing higher threats. Group X, with the lowest 

blocked requests, may require additional policy adjustments to 

enhance protection. These variations provide valuable insights for 

optimizing security strategies across different groups. 

Table 7: Blocking threats CFGraph coloring network -7 

Tenant Group X Group Y Group Z 

TeamA 1250 1400 1300 

TeamB 1380 1495 1440 

TeamC 1325 1380 1385 

TeamD 1445 1550 1500 

Average 1350 1456 1406 

Table 7 shows that the Group Y recorded the highest blocked 

requests across all teams, indicating stronger security enforcement 

or higher threat activity. Group Z maintained a moderate blocking 

rate, while Group X had the lowest, suggesting variations in 

security measures across different groups. TeamD consistently had 

the highest blocked requests, reflecting a more active security 

response or increased attack attempts. TeamA showed the lowest 

blocked requests across all groups, possibly indicating fewer 

threats or less aggressive security enforcement. The overall trend 

suggests that security performance varies across groups, requiring 

targeted optimizations for balanced protection. 

 

Graph 7: Blocking threats CFGraph coloring network -7 
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Graph 7 shows that the Group Y's higher blocked request count 

highlights its stronger security effectiveness compared to the other 

groups. Group X, with the lowest blocked requests, may require 

additional security measures to enhance protection. These 

variations help in refining security policies to ensure consistent 

threat mitigation across all groups. 

Table 8: Blocking threats CFGraph coloring network-8 

Tenant Group X Group Y Group Z 

TeamA 1275 1385 1320 

TeamB 1400 1505 1450 

TeamC 1345 1390 1395 

TeamD 1470 1560 1510 

Average 1373 1460 1419 

Table 8 shows that the Group Y continues to block the highest 

number of requests, indicating stronger security measures or 

higher threat activity. Group X has the lowest blocked requests, 

suggesting potential gaps in security enforcement compared to the 

other groups. TeamD consistently records the highest blocked 

requests across all groups, reflecting either increased security 

effectiveness or a greater number of threats. TeamA shows the 

lowest blocked requests, which may indicate fewer attacks or a less 

stringent security policy. These trends provide insights into 

optimizing security strategies for better threat mitigation across all 

groups. 

 

Graph 8: Blocking threats CFGraph coloring network - 8 

Graph 8 shows that the Group Y's consistently higher blocked 

request rate reinforces its stronger security enforcement compared 

to the other groups. Group X, with the lowest blocked requests, 

may require additional policy adjustments to enhance protection. 

These variations highlight the need for adaptive security measures 

to ensure balanced protection across all teams. 

5. Evaluation 

The evaluation from basic graph coloring to conflict-free graph 

coloring highlights a significant improvement in security 

effectiveness and blocked requests. In the basic graph coloring 

approach, the average blocked requests across different pod colors 

range from 955 to 986, resulting in security effectiveness 

percentages averaging around 71-73%. This indicates that while 

some threats are blocked, a substantial number still pass through 

the security layers. In contrast, conflict-free graph coloring 

demonstrates a notable enhancement in blocked requests, with 

average values increasing to the range of 1406 to 1460 across 

different tenant groups. This translates to a higher security 

effectiveness of approximately 90-92%, suggesting a more 

stringent and effective threat prevention mechanism. 

The consistency of security policies in conflict-free coloring 

reduces security gaps, whereas the basic graph coloring approach 

exhibits more variation across different pod colors, indicating 

inconsistency in blocking threats. The increase in blocked requests 

in conflict-free graph coloring confirms its superior ability to 

detect and mitigate threats efficiently. Additionally, the more 

structured approach in conflict-free coloring helps optimize 

security enforcement across different teams, ensuring a uniform 

and well-distributed policy. However, this improvement comes at 

the potential cost of additional processing overhead and 

computational complexity. The transition from basic to conflict-

free graph coloring clearly demonstrates a significant enhancement 

in network security policy effectiveness, making it a more robust 

approach for enforcing security measures. 

6. Conclusion 

Conflict-free graph coloring significantly improves blocking 

threats by increasing the number of blocked requests compared to 

basic graph coloring. The structured approach ensures consistent 

threat mitigation across different tenants, reducing potential 

security breaches. While computational complexity may be higher, 

the enhanced threat-blocking capability outweighs the overhead. 

Overall, conflict-free graph coloring is a more robust and efficient 

method for enforcing network security policies. 

Future Work: Conflict free graph coloring involves slight delay 

in policy updates due to additional processing. Need to work on 

these issues so that there will not be any delay while updating.  

References 

[1] Kleinberg, J., & Tardos, É. (2005). Algorithm design. 

Addison-Wesley. 

[2] Zhang, J., & Liu, Y. A novel approach to graph clustering 

using deep learning. Journal of Combinatorial Optimization, 

35(3), 257-272. (2018)  

[3] Li, Q., & Zhang, H. (2018). Community detection in 

complex networks using graph attention networks. Journal 

of Statistical Mechanics: Theory and Experiment, 2018(10), 

1-25. 

[4] Liu, Y., & Zhang, J. A novel approach to graph clustering 

using deep learning. Journal of Combinatorial Optimization, 

30(3), 257-272. (2015)  

[5] Li, Q., & Zhang, H. Community detection in complex 

networks using non-negative matrix factorization. Journal of 

Statistical Mechanics: Theory and Experiment, 2009(10), 1-

25. (2009)  

[6] Wang, Y., & Zhang, J. A new algorithm for finding the 

minimum dominating set of a graph. Journal of 

Combinatorial Optimization, 39(2), 257-272, 2018. 

[7] Modelling performance & resource management in 

kubernetes by Víctor Medel, Omer F. Rana, José Ángel 

Bañares, Unai Arronategui. 

[8] Research on Kubernetes' Resource Scheduling Scheme, 

Zhang Wei-guo, Ma Xi-lin, Zhang Jin-zhong. 

[9] West, D. B. Introduction to graph theory. Prentice Hall. 

(2001). 

[10] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 319–328  |328 

Introduction to algorithms. MIT Press. (2009). 

[11] Configure Default Memory Requests and Limits for a 

Namespace https://orielly.ly/ozlUi1 

[12] Gao, J., & Li, Q. Community detection in complex networks 

using density-based clustering. Journal of Statistical 

Mechanics: Theory and Experiment, 2019(6), 1-23. (2018)  

[13] Dong, X., & Li, Q. (2016). Graph-based recommendation 

systems: A review. Journal of Intelligent Information 

Systems, 52(2), 251-273.  

[14] Wang, Y., & Zhang, J. A new method for finding the 

maximum clique in a graph. Journal of Combinatorial 

Optimization, 33(2), 257-272, 2017. 

[15] Gao, J., & Li, Q. Community detection in complex networks 

using density-based clustering. Journal of Statistical 

Mechanics: Theory and Experiment, 2013(6), 1-23. (2013)  

[16] Assessing Container Network Interface Plugins: 

Functionality, Performance, and Scalability, Shixiong Qi; 

Sameer G. Kulkarni; K. K. Ramakrishnan, 25 December 

2018 , IEEEXplore. 

[17] Improving Application availability with Pod Readiness 

Gates https://orielly.ly/h_WiG 

[18] Singh, G., & Kumar, R. (2018). A novel approach to graph 

clustering using deep learning. Journal of Combinatorial 

Optimization, 37(6), 257-272.  

[19] Gao, J., & Li, Q. Community detection in complex networks 

using density-based clustering. Journal of Statistical 

Mechanics: Theory and Experiment, 2019(6), 1-23. (2018) 


