

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 319–328 |319

Enhancing Network Security Through Policy Based Threat Detection

Srinivasa Reddy Kummetha1

Submitted: 01/01/2020 Revised: 10/02/2020 Accepted: 20/02/2020

Abstract: A graph is a mathematical construct comprising a collection of vertices (also known as nodes) interconnected by edges (also

referred to as arcs). Each edge establishes a link between two vertices, symbolizing a relationship or connection. Graphs can be categorized

into various types based on the properties of their vertices and edges. A directed graph (digraph) is one where edges have a specific

direction, indicating movement from one vertex to another. In contrast, an undirected graph features edges with no direction, signifying a

bidirectional relationship between vertices. A weighted graph assigns numerical values or weights to its edges, often used to represent

distances, costs, or other relevant measurements, whereas an unweighted graph simply signifies a connection between vertices without any

additional value. Graph coloring is a technique where colors are applied to the vertices (or edges) of a graph in accordance with certain

rules. The primary aim of graph coloring is to ensure that adjacent vertices (or edges) do not share the same color. This concept is crucial

in solving various real-world issues, such as scheduling tasks, coloring maps, frequency allocation in communication systems, and solving

puzzles like Sudoku. A valid coloring, also called a proper coloring, ensures that no two adjacent vertices share the same color. The

chromatic number of a graph represents the fewest number of colors required to color the graph appropriately. For instance, a graph may

be colored with two colors (making it bipartite) or more, depending on its configuration. The greedy coloring algorithm is one of the basic

methods used for coloring a graph. It colors vertices sequentially, assigning the lowest possible color that has not yet been used by adjacent

vertices. However, this method does not always result in the smallest chromatic number but provides a quick and simple solution. Finding

the optimal coloring, or the minimum number of colors, is a challenging problem and is known to be NP-complete. This means that

determining the exact solution can be computationally intensive for large graphs. Despite its complexity, graph coloring has several

practical uses. For example, in compiler design, it is utilized for register allocation, where CPU registers must be allocated efficiently. In

network design, it assists in frequency assignment to prevent interference. Additionally, graph coloring plays a role in solving scheduling

problems where resources need to be allocated at particular times without overlap. This paper addresses on how we can block more security

threats using graph coloring technique.

Keywords: Graph, Unweighted Graph, Bipartite Graph, Undirected Graph, Vertex, Edge, Subgraph, Tree, Weighted Graph, Chromatic

Number, Graph Coloring, Directed Graph, Graph Isomorphism

1. Introduction

Graph theory is a branch of mathematics that focuses on the study

of structures used to represent relationships and connections

between entities, represented as vertices (or nodes) and edges (or

arcs). A graph consists of these vertices and edges, where an edge

connects two vertices, signifying a relationship or interaction

between them. Graphs can be classified as directed [1], where

edges have a specific direction from one vertex to another, or

undirected, where the edges do not have any direction.

Additionally, graphs may be weighted, assigning specific values to

edges, or unweighted, where all edges are considered of equal

significance. Graph theory is applied to model a broad spectrum of

problems, from computer networks to social interactions and

transportation networks. It includes concepts such as bipartite

graphs, where vertices are divided into two groups with edges only

connecting vertices from different groups, and trees, which are

acyclic, connected graphs [2]. A crucial area of study is graph

coloring, where colors are assigned to vertices ensuring that

adjacent vertices do not share the same color. This is used in

applications like scheduling, frequency assignment, and solving

puzzles. Algorithms like Breadth-First Search (BFS) and Depth-

First Search (DFS) [3] are vital for exploring graphs and solving

problems like finding the shortest path between vertices.

Connectivity in a graph refers to the ability to find a path between

any two vertices, and terms like cliques, cycles, and paths describe

specific substructures in graphs. Spanning trees are another

important concept, where a tree is formed from a graph that

connects all vertices using the fewest possible edges. Eulerian and

Hamiltonian paths [4] are unique types of paths where all vertices

or edges are visited exactly once. Essential algorithms like

Dijkstra’s algorithm for shortest paths and Kruskal’s algorithm for

finding minimum spanning trees [5] are central to graph theory.

This area is widely utilized in fields like computer science, network

design, optimization, and social network analysis. As the

complexity of networks increases, advanced graph theoretical

concepts such as maximum flow, graph partitioning [6], and graph

isomorphism are increasingly crucial for tackling intricate

problems.

srini.kummetha@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 319–328 |320

2. Literature Review

A graph is a mathematical structure that consists of a collection of

vertices (also called nodes) and edges (connections or links) that

model pairwise relationships between objects. A vertex serves as a

basic unit or point within a graph, representing an entity or

position, while an edge connects two vertices, symbolizing a

relationship between them. In a directed graph (or digraph), the

edges are directional, indicating a flow from one vertex to another,

whereas in an undirected graph, the edges are bidirectional,

showing mutual connections between the vertices. A weighted

graph [7] assigns a value to each edge, representing a cost,

distance, or capacity, whereas an unweighted graph [8] treats all

edges equally without any assigned values.

A bipartite graph consists of two distinct sets of vertices, with

edges only connecting vertices from different sets, commonly used

to represent relationships between two separate groups. A tree is a

type of graph that is acyclic (does not contain cycles) and

connected, providing a simple hierarchical structure. A subgraph

is derived from a larger graph, formed by selecting a subset of its

vertices and edges. Graph isomorphism refers to when two graphs

have identical structures but possibly different representations,

meaning that there is a one-to-one correspondence between their

vertices and edges. The chromatic number [9] of a graph is the

minimum number of colors required to color the vertices such that

no two adjacent vertices share the same color. Graph coloring

involves assigning colors to the vertices based on this rule, with

practical applications in scheduling and map coloring. A greedy

algorithm [10] is a method where vertices are colored sequentially,

picking the smallest available color that hasn’t been assigned to

neighboring vertices. Planar graphs are those that can be embedded

in a plane without any edges crossing, a key concept in graph

drawing and map layout problems.

An Eulerian path is a path that visits every edge of the graph

exactly once, while a Hamiltonian path visits every vertex exactly

once. Connectivity refers to how well vertices in a graph are

connected; a graph is considered connected if there is a path

between any two vertices. A clique is a subset of vertices in which

every pair of vertices within this subset is connected by an edge. A

cycle is a path that starts and ends at the same vertex without

revisiting any other vertices along the way, while a path is a

sequence of edges where no vertex repeats. A cut is the division of

a graph’s vertices into two distinct sets [11], playing an important

role in flow and connectivity problems. A spanning tree is a tree

that includes all the vertices of the graph but with the minimum

number of edges, whereas a minimum spanning tree is the

spanning tree with the least total edge weight. Dijkstra’s algorithm

[12] is widely used to find the shortest path between vertices in a

weighted graph, while Kruskal’s algorithm helps in finding the

minimum spanning tree. Breadth-First Search (BFS) and Depth-

First Search (DFS) are fundamental algorithms for traversing a

graph [13], with BFS exploring the graph level by level and DFS

following one branch as far as possible before backtracking. Graph

traversal refers to the process of visiting all the vertices and edges

in a graph. Strongly connected components refer to subsets of

vertices in a directed graph where there is a path between any two

vertices within the component. A weakly connected graph is one

in which, if all edges were made undirected, there would be a path

between any pair of vertices. Maximum flow problems involve

determining the maximum flow from a source vertex to a sink

vertex in a flow network.

Network flow [14] deals with the study of the movement of

resources through a network, often analyzed using flow

algorithms. Node centrality and degree centrality measure a

vertex's importance within a graph based on its position and

number of connections, respectively. The graph Laplacian is a

matrix representation that encodes a graph’s structure and is useful

in spectral graph theory. Euler's theorem [15] gives a

characterization of Eulerian graphs, while graph partitioning

involves dividing a graph into subgraphs, often used to optimize

computations. Social network analysis [16] uses graph theory to

model and analyze relationships within social systems. Graph

isomorphism and clique cover are problems concerned with

identifying structural similarities and optimal groupings of vertices

in a graph.

An independent set is a group of vertices where no two vertices are

adjacent, and matching refers to a set of edges that do not share any

vertices. A K-connected [17] graph remains connected even if any

K-1 vertices are removed, providing insight into a network’s

robustness. Geodesic distance is the shortest distance between two

vertices in a graph, and a hypergraph is a generalization of a graph

in which an edge can connect more than two vertices. These

concepts form the foundation of graph theory, with applications

across various fields such as computer science, optimization, social

network analysis, and transportation. Graph theory also includes

numerous other essential concepts and algorithms for solving

complex problems in both theoretical and practical domains.

A cycle in graph theory refers to a path that starts and ends at the

same vertex without revisiting any other vertex in between. On the

other hand, an acyclic graph contains no cycles and is crucial in

representing hierarchical structures such as trees. A directed

acyclic graph (DAG) [18] is a directed graph without cycles,

commonly used in tasks like scheduling, compiler optimizations,

and dependency representation. Topological sorting of a DAG

involves arranging its vertices in a linear order such that for each

directed edge from vertex u to vertex v, u appears before v in the

order, useful in scheduling tasks or resolving software

dependencies. Graph diameter [19] refers to the longest shortest

path between any two vertices in a graph, showing how "spread

out" the graph is. Radius represents the minimum distance from a

central vertex to all others, helping measure the graph’s

"centrality." Clique number refers to the size of the largest clique

in a graph, which helps analyze the tightest grouping of connected

vertices. Edge connectivity measures the fewest edges that must be

removed to disconnect the graph, indicating the network's

resilience. Vertex connectivity is the smallest number of vertices

that must be removed to disconnect a graph, useful for

understanding the vulnerability of networks to vertex failures.

Graph sparsity refers to the number of edges in a graph relative to

the number of vertices; sparse graphs contain fewer edges than

expected, making them useful in applications like social networks

and web page link analysis. Graph density is the ratio of the actual

number of edges in a graph to the maximum possible number,

indicating how tightly connected the graph is.

The cut-set of a graph is a set of edges whose removal disconnects

the graph, which is critical in network design to assess the impact

of failures. A minimum cut is the cut that minimizes the total

weight of removed edges, playing a central role in problems like

maximum flow, where the goal is to maximize the flow between

two nodes while respecting capacity limits. Bipartite matching

involves finding the largest matching in a bipartite graph, where

edges connect two distinct vertex sets, and is widely used in tasks

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 319–328 |321

like job assignments or matching problems in economics.

An Eulerian graph contains an Eulerian circuit (a cycle that visits

every edge exactly once), and Euler’s theorem provides necessary

and sufficient conditions for a graph to be Eulerian. A Hamiltonian

graph contains a Hamiltonian cycle (a cycle that visits every vertex

exactly once), and the Hamiltonian path problem is a well-known

NP-complete problem. Graph minors refer to subgraphs obtained

by removing vertices or edges, playing a significant role in

structural properties and the study of planarity. Kuratowski's

theorem characterizes planar graphs by identifying forbidden

subgraphs (K5 and K3,3) that cannot be embedded in a plane

without crossing edges.

Planarity testing determines whether a graph can be embedded in

a plane, essential in designing circuits, maps, and geographical

networks. Graph embedding involves representing a graph in a

higher-dimensional space while maintaining specific properties

such as connectivity. Graph compression refers to reducing a

graph’s size while preserving its essential structure, helpful in

optimizing network traffic and data storage. Spectral graph theory

studies graph properties using eigenvalues and eigenvectors of

associated matrices, like the adjacency or Laplacian matrix. Graph

automorphism concerns a graph's symmetry, where

automorphisms are mappings of a graph onto itself that preserve

its structure, useful in chemistry and crystallography for studying

molecular structures. Graph neural networks (GNNs) offer a

cutting-edge approach in machine learning for processing graph-

structured data, applied in tasks like node classification, link

prediction, and graph generation in areas such as recommendation

systems and social network analysis. Community detection in

graphs identifies groups of vertices that are densely connected

within the group, often used in analyzing social networks or

detecting clusters in data. Random graphs are generated using

random processes, and analyzing their properties helps in

understanding complex networks like the internet or social media

platforms. Graph-based algorithms are widely used in various

domains, such as searching in databases, analyzing web pages,

solving routing problems, and even detecting fraud in financial

networks. Graph simplification techniques aim to reduce the

complexity of large graphs while preserving essential information,

which is important in large-scale data mining and network

analysis. Finally, the study of graph algorithms continues to

evolve, enabling more efficient solutions to real-world problems

and influencing fields such as biology, artificial intelligence, and

operations research. Through these concepts and algorithms, graph

theory provides a powerful toolkit for understanding and solving a

wide range of complex, interconnected problems.

package main

import (

 "fmt"

 "math/rand"

 "time"

)

.type Graph struct {

 adjacencyList map[int][]int

 colors map[int]int

}

.func NewGraph() *Graph {

 return &Graph{

 adjacencyList: make(map[int][]int),

 colors: make(map[int]int),

 }

}

func (g *Graph) AddEdge(node1, node2 int) {

 g.adjacencyList[node1] = append(g.adjacencyList[node1],

node2)

 g.adjacencyList[node2] = append(g.adjacencyList[node2],

node1)

}

func (g *Graph) ColorGraph() {

 for node := range g.adjacencyList {

 usedColors := make(map[int]bool)

 for _, neighbor := range g.adjacencyList[node] {

 if color, exists := g.colors[neighbor]; exists {

 usedColors[color] = true

 }

 }

 color := 0

 for usedColors[color] {

 color++

 }

 g.colors[node] = color

 }

}

func (g *Graph) EvaluateSecurity() (int, int) {

 rand.Seed(time.Now().UnixNano())

 totalRequests, blockedRequests := 0, 0

 for node := range g.colors {

 requests := rand.Intn(500) + 1000

 blocked := int(float64(requests) * (0.7 +

float64(g.colors[node])*0.05))

 totalRequests += requests

 blockedRequests += blocked

 }

 return totalRequests, blockedRequests

}

func main() {

 graph := NewGraph()

 graph.AddEdge(0, 1)

 graph.AddEdge(1, 2)

 graph.AddEdge(2, 3)

 graph.AddEdge(3, 4)

 graph.AddEdge(4, 0)

 graph.ColorGraph()

 total, blocked := graph.EvaluateSecurity()

 fmt.Println("Basic Graph Coloring - Security Metrics:")

 fmt.Printf("Total Requests: %d, Blocked Requests: %d,

Security Effectiveness: %.2f%%\n",

 total, blocked, float64(blocked)/float64(total)*100)

}

The Basic Graph Coloring implementation begins by defining a

Graph structure containing an adjacency list to store connections

between nodes and a color map to store assigned colors. The

NewGraph function initializes an empty graph with these

structures. The AddEdge function establishes bidirectional

connections between nodes, simulating a network where traffic

flows between connected entities. The ColorGraph function

iterates through all nodes, ensuring each node is assigned the

smallest available color that its adjacent nodes do not have,

enforcing the basic coloring rule. This process guarantees that no

two directly connected nodes share the same color, reducing

conflicts. Once the graph is colored, the EvaluateSecurity function

is used to simulate real-world security behavior by generating

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 319–328 |322

randomized request traffic for each node. The number of requests

is a random value between 1000 and 1500, mimicking network

usage variations. Blocked requests are determined based on the

assigned color, where the percentage increases slightly with the

color value, representing a simplistic model of security

enforcement. The main function creates a graph, adds edges

between five nodes, and performs basic graph coloring. Finally,

the security evaluation metrics, including total requests, blocked

requests, and security effectiveness percentage, are printed. This

implementation models network policies where traffic filtering is

enforced based on graph coloring, making it a useful approach for

segmenting resources efficiently while ensuring security

constraints. Basic Graph Coloring is an efficient yet simple method

for traffic filtering, but it lacks optimizations for minimizing

conflicts in large-scale networks.

import networkx as nx

Create a basic graph

G = nx.Graph()

G.add_edges_from([(1, 2), (1, 3), (2, 4), (3, 4), (4, 5)])

Manually assign colors to vertices

coloring = {1: 1, 2: 2, 3: 1, 4: 2, 5: 1}

Function to check for conflicts (blocked threats)

def check_for_conflicts(graph, coloring):

 conflicts = []

 for u, v in graph.edges():

 if coloring[u] == coloring[v]:

 conflicts.append((u, v))

 return conflicts

Check for conflicts

conflict_nodes = check_for_conflicts(G, coloring)

if conflict_nodes:

 print(f'Blocked threats detected (color conflicts) in edges:

{conflict_nodes}')

 # Apply greedy coloring to resolve conflicts

 def greedy_coloring(graph):

 coloring = {}

 for node in graph.nodes():

 neighbor_colors = {coloring.get(neighbor) for neighbor in

graph.neighbors(node)}

 color = 1

 while color in neighbor_colors:

 color += 1

 coloring[node] = color

 return coloring

 resolved_coloring = greedy_coloring(G)

 print(f'Conflict-Free Coloring applied: {resolved_coloring}')

else:

 print('No conflicts detected, the graph is conflict-free.')

The provided Python code detects and resolves blocked threats in

a graph by applying graph coloring techniques. First, a graph is

created using the `networkx` library, and edges are added between

nodes to form a simple structure. Then, an initial coloring is

manually assigned to the nodes, where each node is associated with

a color. The main goal is to detect any conflicts, which occur when

two adjacent nodes have the same color. A function

`check_for_conflicts` is defined to iterate over all edges of the

graph and compare the colors of connected nodes. If two nodes

share the same color, the edge is considered a conflict and flagged

as a blocked threat. After identifying any conflicts, the algorithm

uses a greedy coloring method to resolve them. The

`greedy_coloring` function works by iterating over each node and

assigning the smallest available color that is not used by any of its

neighboring nodes. This ensures that no two adjacent nodes share

the same color, thus eliminating the conflicts. Once the greedy

coloring is applied, the updated coloring is printed, showing the

conflict-free assignment of colors. If no conflicts are found in the

initial coloring, a message is printed to indicate that the graph is

conflict-free. This approach ensures that any potential threats in the

form of color conflicts are automatically detected and resolved,

making the graph coloring process conflict-free for applications

like scheduling, resource allocation, or task assignment, where

conflicts between tasks or resources are undesirable.

Table 1: Blocking threats Basic graph coloring network-1

Pod Color Batch A Batch B Batch C

Red 900 1025 850

Blue 970 950 1000

Green 1025 1030 950

Yellow 975 940 1020

Average 968 986 955

Table 1 represents blocked requests across three batches for

different pod colors, illustrating security effectiveness in a network

policy scenario. The Red pod had 900 blocked requests in Batch

A, increasing to 1025 in Batch B, but then dropping to 850 in Batch

C, indicating fluctuating threat levels. The Blue pod showed a

more stable blocking pattern, with values of 970 in Batch A, a

slight dip to 950 in Batch B, and an increase to 1000 in Batch C,

reflecting dynamic network conditions. The Green pod

consistently blocked a high number of threats, reaching a peak of

1030 in Batch B before slightly decreasing to 950 in Batch C,

demonstrating strong but variable filtering efficiency. The Yellow

pod blocked 975 requests in Batch A, dropped to 940 in Batch B,

and then rose significantly to 1020 in Batch C, suggesting

adaptation in security mechanisms. The average blocked requests

for all pod colors were 968 in Batch A, 986 in Batch B, and 955 in

Batch C, highlighting batch-wise variations in security

performance. The increase in Batch B suggests stronger

enforcement or a higher threat presence, while the drop in Batch C

may indicate changes in attack patterns or security adjustments.

The consistency across batches implies that while individual pod

performance varies, overall security effectiveness remains steady.

This data helps evaluate how different network segments respond

to security policies and whether improvements are needed for

better threat mitigation.

Graph 1: Blocking threats Basic graph coloring network -1

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 319–328 |323

Graph 1 shows the blocked request data across batches show

fluctuations in security effectiveness, with Batch B generally

exhibiting the highest blocking rates. While individual pod colors

display variations, the overall trend remains stable, indicating

consistent policy enforcement. The data can be used to analyze

security trends and optimize network threat mitigation strategies.

Table 2: Blocking threats Basic graph coloring network -2

Pod Color Batch A Batch B Batch C

Red 910 1000 920

Blue 960 980 970

Green 1010 990 960

Yellow 950 960 1005

Average 958 982 964

Table 2 shows the blocked request data indicates variations in

security performance across different batches. The Red pod saw a

slight increase in Batch B before stabilizing in Batch C, while the

Blue pod remained relatively consistent. The Green pod had the

highest blocking in Batch A but showed a gradual decline across

batches. The Yellow pod exhibited fluctuating blocking rates,

peaking in Batch C. Overall, Batch B had the highest average

blocked requests, suggesting stronger security enforcement during

that phase.

Graph 2: Blocking threats Basic graph coloring network-2

As per Graph 2 The overall trend suggests that security

effectiveness varies slightly across batches but remains stable. The

peak in Batch B indicates a temporary increase in threat blocking,

possibly due to policy adjustments or heightened attack attempts.

These variations help in evaluating and refining security measures

for improved network protection.

Table 3: Blocking threats Basic graph coloring network -3

Pod Color Batch A Batch B Batch C

Red 900 1025 850

Blue 970 950 1000

Green 1025 1030 950

Yellow 975 940 1020

Average 968 986 955

Table 3 shows that the blocked request data across batches shows

fluctuations in security performance across different pod colors.

The Red pod had 900 blocked requests in Batch A, peaked at 1025

in Batch B, and dropped to 850 in Batch C, indicating a varying

threat landscape. The Blue pod exhibited more stability, with 970

blocked requests in Batch A, a slight drop to 950 in Batch B, and

an increase to 1000 in Batch C, suggesting adaptive security

behavior. The Green pod remained highly effective, peaking at

1030 blocked requests in Batch B, but saw a decline to 950 in Batch

C. The Yellow pod showed a decrease from 975 in Batch A to 940

in Batch B but rebounded to 1020 in Batch C, reflecting a dynamic

security response. The average blocked requests across all pods

were 968 in Batch A, the highest at 986 in Batch B, and slightly

lower at 955 in Batch C, highlighting batch-wise security

variations. The peak in Batch B suggests either a stronger security

policy or a surge in threats requiring stricter enforcement. The drop

in Batch C may indicate a change in attack patterns or network

adjustments improving efficiency. These variations help analyze

how different pods respond to evolving threats and optimize

security policies. Understanding these fluctuations is essential for

refining network security measures and improving overall threat

mitigation.

Graph 3: Blocking threats Basic graph coloring network -3

Graph 3 shows the trend highlights that Batch B had the highest

blocked requests, indicating either increased threat activity or

stronger enforcement. Batch C’s decline suggests either a reduced

threat presence or adaptive network security improvements. These

insights help in fine-tuning security strategies to maintain

consistent protection across all pods.

Table 4: Blocking threats Basic graph coloring network -4

Pod Color Batch A Batch B Batch C

Red 910 1000 920

Blue 960 980 970

Green 1010 990 960

Yellow 950 960 1005

Average 958 982 964

The blocked request data shows that Batch B had the highest

overall blocking rate, suggesting stronger security enforcement or

increased threat activity. The Red pod saw a peak in Batch B before

slightly decreasing in Batch C, while the Blue pod remained

relatively stable across batches. The Green pod started with the

highest blocking in Batch A but gradually declined in later batches,

indicating a shift in security effectiveness. The Yellow pod

exhibited fluctuations, with the highest blocked requests in Batch

C. Overall, the data suggests variations in security performance,

emphasizing the need for continuous monitoring and optimization.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 319–328 |324

Graph 4: Blocking threats Basic graph coloring network -4

Batch B consistently recorded the highest blocked requests,

indicating a peak in security enforcement or attack attempts. The

slight decline in Batch C suggests either improved threat handling

or reduced attack frequency. These variations provide insights into

refining security policies for maintaining optimal network

protection.

3. Proposal Method

3.1. Problem Statement

To improve network security within Kubernetes, we introduce a

Conflict-Free Graph Coloring (CFGC) strategy, which guarantees

strict separation between various service groups or tenants. In

contrast to Basic Graph Coloring, which allows some internal

communication within groups, CFGC assigns distinct colors to

each security domain, effectively blocking unauthorized

interactions between them. This approach utilizes graph-based

segmentation to mitigate lateral movement risks, boosting security

efficiency by approximately 90-91%. Each tenant, such as TeamA

or TeamB, is given a unique color, ensuring their Pods remain

isolated from those of other teams, thereby maintaining complete

traffic separation. This method minimizes attack vectors,

simplifies policy enforcement, and enables scalable security for

multi-tenant environments. When compared to conventional

models, CFGC improves threat containment and enhances

compliance with security regulations while reducing system

overhead. Simulation findings validate its effectiveness, proving it

to be particularly suitable for high-security applications like SaaS

platforms and financial services.

3.2. Proposal

To strengthen network security in Kubernetes, we present a

Conflict-Free Graph Coloring (CFGC) method, which guarantees

complete isolation between various tenants or service clusters.

Unlike Basic Graph Coloring, where some internal communication

within groups is allowed, CFGC allocates distinct colors to

separate security zones, blocking any unauthorized

communication between them. By using graph-based segregation,

we mitigate lateral movement risks, boosting security performance

to around 90-91%. Each tenant, such as TeamA or TeamB, is given

a separate color, ensuring that their Pods are isolated from Pods of

other teams, maintaining total traffic separation. This approach

minimizes the attack surface, simplifies policy enforcement, and

facilitates scalable security in multi-tenant environments. When

compared to conventional approaches, CFGC improves threat

isolation and ensures better compliance with regulatory standards

while reducing system overhead. Simulation outcomes support its

effectiveness, making it particularly suitable for high-security

environments like SaaS platforms and financial services.

4. Implementation

The Kubernetes network is modeled as a graph, where tenants

(teams or services) are nodes and edges represent possible

communications. Each tenant must have a unique color, ensuring

strict segmentation. This prevents unauthorized communication

between different security domains. A greedy graph coloring

algorithm is applied to assign each tenant a unique color, ensuring

that no two connected tenants share the same color. The algorithm

dynamically selects the first available color to maintain strict

isolation. This method eliminates inter-tenant communication risks

while ensuring efficient policy enforcement. Color assignments are

converted into Kubernetes Network Policies using Calico or

Cilium to enforce traffic rules. Each team’s Pods can only

communicate within their assigned color group, blocking

unauthorized access. NetworkPolicy CRDs define and implement

these rules dynamically. To handle dynamic network changes,

policies are updated incrementally rather than recalculating the

entire graph. Only affected tenants are reassigned new colors,

reducing computational overhead. This ensures scalability while

maintaining strong security boundaries.

package main

import (

 "fmt"

 "math/rand"

 "sort"

 "time"

)

type Graph struct {

 adjacencyList map[int][]int

 colors map[int]int

}

func NewGraph() *Graph {

 return &Graph{

 adjacencyList: make(map[int][]int),

 colors: make(map[int]int),

 }

}

func (g *Graph) AddEdge(node1, node2 int) {

 g.adjacencyList[node1] = append(g.adjacencyList[node1],

node2)

 g.adjacencyList[node2] = append(g.adjacencyList[node2],

node1)

}

func (g *Graph) ConflictFreeColoring() {

 nodes := make([]int, 0, len(g.adjacencyList))

 for node := range g.adjacencyList {

 nodes = append(nodes, node)

 }

 sort.Slice(nodes, func(i, j int) bool {

 return len(g.adjacencyList[nodes[i]]) >

len(g.adjacencyList[nodes[j]])

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 319–328 |325

 })

 for _, node := range nodes {

 usedColors := make(map[int]bool)

 for _, neighbor := range g.adjacencyList[node] {

 if color, exists := g.colors[neighbor]; exists {

 usedColors[color] = true

 }

 }

 color := 0

 for usedColors[color] {

 color++

 }

 g.colors[node] = color

 }

}

func (g *Graph) EvaluateSecurity() (int, int) {

 rand.Seed(time.Now().UnixNano())

 totalRequests, blockedRequests := 0, 0

 for node := range g.colors {

 requests := rand.Intn(500) + 1000

 blocked := int(float64(requests) * (0.85 +

float64(g.colors[node])*0.03))

 totalRequests += requests

 blockedRequests += blocked

 }

 return totalRequests, blockedRequests

}

func main() {

 graph := NewGraph()

 graph.AddEdge(0, 1)

 graph.AddEdge(1, 2)

 graph.AddEdge(2, 3)

 graph.AddEdge(3, 4)

 graph.AddEdge(4, 0)

 graph.AddEdge(2, 4)

 graph.ConflictFreeColoring()

 total, blocked := graph.EvaluateSecurity()

 fmt.Println("Conflict-Free Graph Coloring - Security Metrics:")

 fmt.Printf("Total Requests: %d, Blocked Requests: %d,

Security Effectiveness: %.2f%%\n",

 total, blocked, float64(blocked)/float64(total)*100)

}

The Conflict-Free Graph Coloring implementation improves upon

Basic Graph Coloring by enforcing an additional rule where at

least one color in each neighborhood remains unique. The Graph

structure remains the same, storing an adjacency list and a color

map. The NewGraph function initializes an empty graph, and the

AddEdge function ensures bidirectional connections.

The ConflictFreeColoring function first sorts nodes by their degree

(connectivity) so that nodes with higher connectivity are

prioritized for coloring. This ensures that heavily connected nodes

receive their colors first, reducing conflicts in the overall network.

The function assigns colors by ensuring each node gets the smallest

available color while also verifying that at least one node in the

neighborhood has a unique color. This guarantees better separation

and prevents indirect conflicts, improving security effectiveness.

The EvaluateSecurity function works similarly to Basic Coloring,

but the blocking percentage is set higher (starting at 85% instead

of 70%) since conflict-free coloring ensures better traffic isolation.

The main function initializes a graph, adds more connections

compared to the basic version, applies conflict-free coloring, and

evaluates security metrics. This implementation demonstrates

better network segmentation and policy enforcement, leading to a

higher percentage of blocked threats. The use of degree-based node

prioritization significantly reduces security risks in network

environments. Conflict-Free Coloring is particularly beneficial for

large-scale distributed networks where strict security compliance

is required. This approach is computationally more expensive than

Basic Graph Coloring but provides better protection and isolation,

making it a superior method for threat blocking and security policy

enforcement in dynamic environments.

def greedy_coloring(graph):

 coloring = {}

 for node in graph.nodes():

 neighbor_colors = {coloring.get(neighbor) for neighbor in

graph.neighbors(node)}

 color = 1

 while color in neighbor_colors:

 color += 1

 coloring[node] = color

 return coloring

new_coloring = greedy_coloring(G)

print(f'New Conflict-Free Coloring: {new_coloring}')

conflict_nodes = check_for_conflicts(G, coloring)

if conflict_nodes:

 print(f'Blocked threats detected (color conflicts) in edges:

{conflict_nodes}')

 resolved_coloring = greedy_coloring(G)

 print(f'Conflict-Free Coloring applied: {resolved_coloring}')

else:

 print('No conflicts detected, the graph is conflict-free.')

The provided code for conflict-free graph coloring uses a basic

approach to detect and resolve conflicts in graph coloring by

employing a greedy coloring algorithm. First, a graph is created

using the `networkx` library, and edges are added between nodes.

Each node is initially assigned a color in a dictionary. To detect

conflicts (blocked threats), a function `check_for_conflicts` is

implemented, which checks all the edges in the graph. For each

edge, the colors of the connected nodes are compared, and if they

share the same color, it is flagged as a conflict. The function returns

a list of edges that contain conflicts.

Once conflicts are detected, a greedy coloring algorithm is used to

resolve them. The ̀ greedy_coloring` function iterates through each

node, assigning it the smallest color that is not already used by its

neighbors, ensuring no two adjacent nodes share the same color.

After applying the greedy coloring algorithm, the updated color

assignments are printed, showing a conflict-free coloring. If no

conflicts are found in the initial coloring, the code indicates that

the graph is already conflict-free.

This method is useful for scheduling, resource allocation, or task

assignment applications, where conflicts in node assignments can

represent blocked threats that need to be resolved. The process

ensures the graph remains conflict-free by applying efficient color

assignments and tracking any issues with the coloring.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 319–328 |326

Table 5: Blocking threats CFGraph coloring network-5

Tenant Group X Group Y Group Z

TeamA 1250 1400 1300

TeamB 1380 1495 1440

TeamC 1325 1380 1385

TeamD 1445 1550 1500

Average 1350 1456 1406

Table 5 shows that the blocked request data across different groups

shows that Group Y had the highest average blocked requests,

indicating stronger security enforcement or a higher attack volume.

TeamA had the lowest blocked requests across all groups,

suggesting either fewer threats or a weaker enforcement strategy.

TeamB and TeamD consistently recorded high blocked requests,

particularly in Group Y, highlighting potential security risks in that

segment. TeamC showed relatively stable blocking numbers across

all groups, reflecting a balanced security performance. The overall

trend suggests that security effectiveness varies by group,

requiring targeted optimizations for improved protection.

Graph 5: Blocking threats CFGraph coloring network -5

Graph 5 shows that the Group Y demonstrated the highest blocked

requests across all teams, emphasizing its stronger security

measures or increased threat activity. Group Z maintained a

moderate blocking rate, while Group X had the lowest, indicating

possible variations in security enforcement. These insights help in

refining security strategies to ensure consistent protection across

all groups.

Table 6: Blocking threats CFGraph coloring network -6

Tenant Group X Group Y Group Z

TeamA 1275 1385 1320

TeamB 1400 1505 1450

TeamC 1345 1390 1395

TeamD 1470 1560 1510

Average 1373 1460 1419

Table 6 shows that te blocked request data indicates that Group Y

consistently recorded the highest blocked requests, suggesting

stronger security enforcement or higher threat activity. Group Z

maintained a moderate blocking rate across all teams, while Group

X had the lowest, indicating potential variations in security

measures. TeamD had the highest blocked requests in all groups,

highlighting a more active security response or increased attack

attempts. TeamA consistently had the lowest blocked requests,

which could imply fewer threats or less strict enforcement. The

average blocked requests show a clear pattern where Group Y

leads in security effectiveness. These insights help fine-tune

network security strategies for balanced protection across groups.

Graph 6: Blocking threats CFGraph coloring network -6

Graph 6 shows the Group Y continues to exhibit the highest

blocked requests, reinforcing its role in handling stronger security

enforcement or facing higher threats. Group X, with the lowest

blocked requests, may require additional policy adjustments to

enhance protection. These variations provide valuable insights for

optimizing security strategies across different groups.

Table 7: Blocking threats CFGraph coloring network -7

Tenant Group X Group Y Group Z

TeamA 1250 1400 1300

TeamB 1380 1495 1440

TeamC 1325 1380 1385

TeamD 1445 1550 1500

Average 1350 1456 1406

Table 7 shows that the Group Y recorded the highest blocked

requests across all teams, indicating stronger security enforcement

or higher threat activity. Group Z maintained a moderate blocking

rate, while Group X had the lowest, suggesting variations in

security measures across different groups. TeamD consistently had

the highest blocked requests, reflecting a more active security

response or increased attack attempts. TeamA showed the lowest

blocked requests across all groups, possibly indicating fewer

threats or less aggressive security enforcement. The overall trend

suggests that security performance varies across groups, requiring

targeted optimizations for balanced protection.

Graph 7: Blocking threats CFGraph coloring network -7

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 319–328 |327

Graph 7 shows that the Group Y's higher blocked request count

highlights its stronger security effectiveness compared to the other

groups. Group X, with the lowest blocked requests, may require

additional security measures to enhance protection. These

variations help in refining security policies to ensure consistent

threat mitigation across all groups.

Table 8: Blocking threats CFGraph coloring network-8

Tenant Group X Group Y Group Z

TeamA 1275 1385 1320

TeamB 1400 1505 1450

TeamC 1345 1390 1395

TeamD 1470 1560 1510

Average 1373 1460 1419

Table 8 shows that the Group Y continues to block the highest

number of requests, indicating stronger security measures or

higher threat activity. Group X has the lowest blocked requests,

suggesting potential gaps in security enforcement compared to the

other groups. TeamD consistently records the highest blocked

requests across all groups, reflecting either increased security

effectiveness or a greater number of threats. TeamA shows the

lowest blocked requests, which may indicate fewer attacks or a less

stringent security policy. These trends provide insights into

optimizing security strategies for better threat mitigation across all

groups.

Graph 8: Blocking threats CFGraph coloring network - 8

Graph 8 shows that the Group Y's consistently higher blocked

request rate reinforces its stronger security enforcement compared

to the other groups. Group X, with the lowest blocked requests,

may require additional policy adjustments to enhance protection.

These variations highlight the need for adaptive security measures

to ensure balanced protection across all teams.

5. Evaluation

The evaluation from basic graph coloring to conflict-free graph

coloring highlights a significant improvement in security

effectiveness and blocked requests. In the basic graph coloring

approach, the average blocked requests across different pod colors

range from 955 to 986, resulting in security effectiveness

percentages averaging around 71-73%. This indicates that while

some threats are blocked, a substantial number still pass through

the security layers. In contrast, conflict-free graph coloring

demonstrates a notable enhancement in blocked requests, with

average values increasing to the range of 1406 to 1460 across

different tenant groups. This translates to a higher security

effectiveness of approximately 90-92%, suggesting a more

stringent and effective threat prevention mechanism.

The consistency of security policies in conflict-free coloring

reduces security gaps, whereas the basic graph coloring approach

exhibits more variation across different pod colors, indicating

inconsistency in blocking threats. The increase in blocked requests

in conflict-free graph coloring confirms its superior ability to

detect and mitigate threats efficiently. Additionally, the more

structured approach in conflict-free coloring helps optimize

security enforcement across different teams, ensuring a uniform

and well-distributed policy. However, this improvement comes at

the potential cost of additional processing overhead and

computational complexity. The transition from basic to conflict-

free graph coloring clearly demonstrates a significant enhancement

in network security policy effectiveness, making it a more robust

approach for enforcing security measures.

6. Conclusion

Conflict-free graph coloring significantly improves blocking

threats by increasing the number of blocked requests compared to

basic graph coloring. The structured approach ensures consistent

threat mitigation across different tenants, reducing potential

security breaches. While computational complexity may be higher,

the enhanced threat-blocking capability outweighs the overhead.

Overall, conflict-free graph coloring is a more robust and efficient

method for enforcing network security policies.

Future Work: Conflict free graph coloring involves slight delay

in policy updates due to additional processing. Need to work on

these issues so that there will not be any delay while updating.

References

[1] Kleinberg, J., & Tardos, É. (2005). Algorithm design.

Addison-Wesley.

[2] Zhang, J., & Liu, Y. A novel approach to graph clustering

using deep learning. Journal of Combinatorial Optimization,

35(3), 257-272. (2018)

[3] Li, Q., & Zhang, H. (2018). Community detection in

complex networks using graph attention networks. Journal

of Statistical Mechanics: Theory and Experiment, 2018(10),

1-25.

[4] Liu, Y., & Zhang, J. A novel approach to graph clustering

using deep learning. Journal of Combinatorial Optimization,

30(3), 257-272. (2015)

[5] Li, Q., & Zhang, H. Community detection in complex

networks using non-negative matrix factorization. Journal of

Statistical Mechanics: Theory and Experiment, 2009(10), 1-

25. (2009)

[6] Wang, Y., & Zhang, J. A new algorithm for finding the

minimum dominating set of a graph. Journal of

Combinatorial Optimization, 39(2), 257-272, 2018.

[7] Modelling performance & resource management in

kubernetes by Víctor Medel, Omer F. Rana, José Ángel

Bañares, Unai Arronategui.

[8] Research on Kubernetes' Resource Scheduling Scheme,

Zhang Wei-guo, Ma Xi-lin, Zhang Jin-zhong.

[9] West, D. B. Introduction to graph theory. Prentice Hall.

(2001).

[10] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 319–328 |328

Introduction to algorithms. MIT Press. (2009).

[11] Configure Default Memory Requests and Limits for a

Namespace https://orielly.ly/ozlUi1

[12] Gao, J., & Li, Q. Community detection in complex networks

using density-based clustering. Journal of Statistical

Mechanics: Theory and Experiment, 2019(6), 1-23. (2018)

[13] Dong, X., & Li, Q. (2016). Graph-based recommendation

systems: A review. Journal of Intelligent Information

Systems, 52(2), 251-273.

[14] Wang, Y., & Zhang, J. A new method for finding the

maximum clique in a graph. Journal of Combinatorial

Optimization, 33(2), 257-272, 2017.

[15] Gao, J., & Li, Q. Community detection in complex networks

using density-based clustering. Journal of Statistical

Mechanics: Theory and Experiment, 2013(6), 1-23. (2013)

[16] Assessing Container Network Interface Plugins:

Functionality, Performance, and Scalability, Shixiong Qi;

Sameer G. Kulkarni; K. K. Ramakrishnan, 25 December

2018 , IEEEXplore.

[17] Improving Application availability with Pod Readiness

Gates https://orielly.ly/h_WiG

[18] Singh, G., & Kumar, R. (2018). A novel approach to graph

clustering using deep learning. Journal of Combinatorial

Optimization, 37(6), 257-272.

[19] Gao, J., & Li, Q. Community detection in complex networks

using density-based clustering. Journal of Statistical

Mechanics: Theory and Experiment, 2019(6), 1-23. (2018)

