

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 329

Providing Delay Guarantees to Time-Sensitive Traffic by

Scheduling using OFDMA with Deadline Estimation While

Avoiding Best-Effort Traffic Starvation

Muhammad Inamullah1*

Submitted: 25/11/2020 Revised: 10/12/2020 Accepted: 15/12/2020

Abstract: OFDMA is introduced to WLANs in the ax amendment of the IEEE 802.11 standard. It makes the WLAN a closed-

loop system, where the AP assigns OFDMA resource units to the STAs for uplink transmissions. The scheduling algorithms

generally optimize throughput by minimizing upload time. For time-sensitive traffic, the time-critical packets that miss their

deadlines become useless, even if overall upload time is minimized. To provide schedules that prioritize the STAs for

transmission whose traffic has earlier deadlines, the AP needs to know the packet deadlines in the queue of each STA. Since

STAs do not provide any information on the expiration time of the packets they send to the AP, we give an algorithm to

estimate on the AP side the deadlines of HOL packets waiting at STAs and make a scheduling decision that minimizes the

number of packets dropped due to expired deadlines. In doing so, the best-effort traffic is also scheduled to prevent its

starvation. Compared to the number of packet drops with the traditional approach of throughput optimization, our approach

shows up to a six-fold reduction in packet drops due to missed deadlines at the STAs. Our approach also avoids starvation of

the best-effort traffic.

Keywords: deadline; 802.11ax; OFDMA; scheduling; WLANs; time-sensitive networking; best-effort traffic; resource

allocation; starvation

1 INTRODUCTION

In time-sensitive networking, packets have upper

bounds on the delay between their arrival into the

queue and their reception at the destination. That is,

packets, if received after a specified delay, have to

be discarded. 802.11 wireless LANs (WLANs or

Wi-Fi) employ contention-based channel access and

hence are best-effort in that they try their best but

cannot guarantee any deadlines. Orthogonal

Frequency Division Multiple Access (OFDMA) is

an important MAC mechanism of WLANs, both for

uplink (UL) and downlink (DL) traffic since the

IEEE 802.11ax amendment [1]. One of the most

remarkable changes the OFDMA brings in is that

during channel access, the access point (AP)

remains in charge of deciding the access of each

station (STA) to the channel, as opposed to the

previous contention-based access, where each STA

contends for the channel and does a random back-

off if it is unsuccessful in finding the channel free.

Now that OFDMA has removed the uncertainty in

accessing the channel, we investigate whether Wi-Fi

can handle delay-bounded traffic.

In OFDMA, Orthogonal Frequency Division

Multiplexing subcarriers are grouped into a resource

unit (RU). To provide access to STAs, the AP

assigns one RU per STA, and the STAs transmit in

their RUs parallelly. This is called scheduled UL

OFDMA. The other is UORA (UL OFDMA random

access), where the AP assigns a group of STAs an

RU, and the STAs of the group contend for that

particular sub-band. We explore the scheduled UL

OFDMA because it provides channel access in a

deterministic manner, making it a naturally better

choice to handle time-bounded traffic.

With time-sensitive networking, receiving a packet

on time is more important: the destination discards a

packet on receiving it after its deadline. When AP

schedules UL RUs, it optimizes some metrics.

Traditionally, this metric is the throughput that the

WLANs maximize by minimizing the overall

upload time. Minimizing the upload time requires

the STAs with better channel conditions (and thus

higher MCS indices) to get scheduled before the

1 Department of Computer Engineering, Aligarh Muslim

University, Aligarh 202002, INDIA

* Corresponding Author Email: inamullah.m@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 330

STAs with poorer channel conditions (lower MCS

values), regardless of whose packet has an earlier

deadline. Therefore, in such cases, more packets of

STAs with lower MCS indices will surpass their

deadlines and get dropped than those of higher

MCS-STAs. In the following, assuming that each

STA has packets of only one traffic type, we use the

phrases “the deadlines of the head-of-line (HOL)

packets at each STA” and “the STA deadlines”

interchangeably. We can easily extend our approach

to such scenarios if there are packets of more than

one traffic type.

Thus, in time-sensitive networking, instead of

maximizing the upload time, saving the packets

from being dropped due to expired deadlines is

essential. The scheduling algorithm needs to decide

how to assign RUs to STAs to minimize packets

dropped due to missed deadlines. The well-known

algorithm of such deadline-based scheduling

guarantees minimum lateness [2], which is defined

as the time elapsed for a packet between its reception

and its deadline, summed across all dropped packets,

and is directly proportional to the total number of

packets all the STAs drop due to missed deadlines.

If we give a STA whose HOL packet has the earliest

deadline the first chance to transmit, we can

minimize such packet drops. The algorithm seems

trivial, but the fact is that there is no way to inform

the AP about the deadlines of packets waiting for UL

transmission in STA queues. AP may know the

delay tolerance of the UL traffic, which is an

attribute of the traffic defined by 802.11. If two

packets of the same traffic type wait in the queues of

two STAs, the older of the two will have an earlier

deadline. As explained below, we use this

knowledge of queue sizes, which can be supplied to

the AP, to estimate the packet deadlines.

Buffer status report (BSR), which informs AP about

the status of STA queues, is introduced in 802.11ax

[1]. We present a scheduling algorithm that runs at

Nomenclature

ACK Acknowledgement frame

AC Access category

AP Access point

BSR Buffer status report

CTS Clear to send frame

DCF Distributed coordination function

DIFS Distributed interframe spacing

EDCA Enhanced distributed channel access

EDF Earliest deadline first

HOL Head-of-line

OFDMA Orthogonal frequency division multiple access

RTS Ready to send frame

RU Resource unit

SIFS Separate interframe spacing

STA The stations or nodes sending or receiving data to and from the AP

TSN Time-sensitive networking

QoS Quality of service

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 331

the AP. The AP uses the value of the queue sizes that

the BSRs from all STAs have reported to estimate

the time a packet has spent in the STA's queue. The

AP then uses this time to calculate the remaining

time to the deadline for the HOL packet of each STA

and then uses the estimated deadlines to select an

RU assignment that results in the minimized total

number of packets dropped by all STAs.

Our simulation results show that when the AP

schedules as per our algorithm, there is up to six

times the reduction in packet drops due to missed

deadlines compared to when scheduling with the

conventional approach, which minimizes total

upload time.

The rest of the paper is organized as follows: Section

2 builds up the problem and provides the details on

related work, and Section 3 explains the design of

our algorithm based on our deadline estimation

model. Section 4 presents our simulations and the

results with proposed modifications. Section 5

concludes the work.

2 BACKGROUND OF THE STUDY AND

PROBLEM STATEMENT

The benefits brought to WLANs through the

introduction of OFDMA are numerous, like

transmissions that are more resilient to frequency

selective interference and fading and DL and UL

multiuser (MU) OFDMA that allows simultaneous

transmissions and receptions to and from multiple

STAs, thus saving much of the wasted airtime of the

distributed coordination function (DCF) of the

802.11 in the form of back-offs, DIFS, SIFS, ACKs,

and (possibly) RTS/CTS. More importantly, in the

context of this paper, when a channel is split into

smaller RUs, the power spectral density of the

received signal increases in the smaller RU if a STA

keeps transmitting with the same signal power,

which allows the STA to use higher MCS in that RU.

This is illustrated in Figure 1. This allows the AP to

receive more data in UL transmissions from multiple

STAs sending in smaller RUs than from a single

STA sending in the whole channel. The same effect

is elaborated in Figure 2. For example, a STA

transmitting in a 40 MHz channel at 18 dB SNR gets

a data rate of 81 Mbps. Now, if the channel is split

into two 20 MHZ channels and the two STAs

transmit at 18 dB SNR each in each of the two

channels, the transmission will jump to MCS index

5, allowing the STAs to achieve a data rate of 52

Mbps each so that the combined data rate reaches

104 Mbps. The arrows show the effect in the figure.

Earlier works have used this effect to design

scheduling algorithms that pick the best RU

configuration from a list that optimizes the overall

upload time [3]. Below, we explain the meaning of

RU configuration, which we will also use in our

scheduling algorithm.

An RU configuration is the set of RUs obtained after

splitting a channel according to the 802.11ax

standard. For example, we show the permissible

ways of splitting a 20 MHz channel in Figure 3. One

RU configuration on splitting the channel is

{RU106, RU106, RU2}, where RU i means an RU

consisting of i tones. Recursively splitting this RU

configuration one more time results in {RU106,

RU52, RU52, RU26} – another RU configuration.

Here, we assume that there is no frequency selective

fading, and hence, relative positions of RUs within

an RU configuration can be interchanged. That is,

for example, from the RU configuration {RU106,

Figure 1: Two STAs transmitting in splitted

channel get better SNR and MCS.
Figure 2: SNR Vs MCS for 20 and 40

MHZ channels.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 332

RU106, RU26}, splitting either the right RU106 or

the left RU106 into two RU52s results in the same

sorted RU configuration: {RU106, RU52, RU52,

RU26}. We split the channel in all possible ways,

sort the resulting RUs with the widest RU first, and

keep the distinct RU configurations. Splitting in this

way, for example, gives nine possible configurations

for the 20 MHz channel, excluding the {RU242}

that corresponds to the entire channel. These are

shown below (numbered 0-9).

0. {242}

1. {106, 106, 26}

2. {106, 52, 52, 26}

3. {106, 52, 26, 26, 26}

4. {106, 26, 26, 26, 26, 26}

5. {52, 52, 52, 52, 26}

6. {52, 52, 52, 26, 26, 26}

7. {52, 52, 26, 26, 26, 26, 26}

8. {52, 26, 26, 26, 26, 26, 26, 26}

9. {26, 26, 26, 26, 26, 26, 26, 26, 26}

Using the channel-splitting rules of 11ax, we can

obtain similar configurations for 40, 80, and 160

MHz channels.

Optimizing the overall upload time is appropriate for

the best effort traffic, which was earlier the sole

traffic on Wi-Fi, where packet delay bounds are not

considered. Honoring the packet deadlines is

essential in time-sensitive networking. Since the

medium is accessed in Wi-Fi through the

contention-based protocol, providing delay

guarantees for packets was impossible. With

OFDMA, the closed-loop scheduled access has

arrived, and therefore, it is now possible to consider

deadlines. We will consider this problem in detail

next. We discussed in detail in Section 1 that the

problem of providing delay guarantees translates

into minimizing the number of packets dropped due

to missed deadlines and that if we minimize the total

upload time resulting from an RU assignment, it

does not necessarily result in minimizing the total

number of drops due to missed deadlines: Giving

STA A the chance to transmit before B merely

because A has a higher MCS would result in more

packet drops at B if B has an earlier deadline than A.

Such packet drops due to missed deadlines at B can

be reduced if B transmits before A in this case.

To schedule according to deadlines, the AP needs to

know the deadlines for UL packets, as discussed in

Section 1. In EDCA, as described in 802.11

specifications, the UL traffic does not include delay

information. Though the Delay Bound parameter is

available in the TSPEC Information Element of

802.11 ADDTS action frame, it is recommended to

be ignored when EDCA is in use [4]. Therefore, it

becomes necessary for the AP to have a procedure

to estimate the deadlines of HOL packets waiting in

the queues of STAs.

The delay information is not available to the AP, but

the AP gets the queue size of each STA through the

BSR that a STA sends, which is introduced in

802.11ax. The HT Control field in the MAC header

of various Wi-Fi frames like QoS Data, QoS Null,

Management, and Control Wrapper frames carries

the BSR. Among other information about a STA’s

queue, a BSR also reports the queue size of the

highest access category (AC) traffic waiting at the

STA. A STA can handle multiple ACs and their

delay bounds by reporting the queue sizes of various

ACs in different BSRs, and has the option of

deciding the priority of an AC over other ACs.

In the next section, we propose our algorithm to

estimate the deadline of an HOL packet based on

queue sizes. Our scheduling algorithm, then using

the estimated deadline, decides the assignment of

RUs to STAs such that the number of packets

dropped from the queue due to expired deadlines is

minimized. Once the AP has assigned RUs to STAs,

it sends the OFDMA schedule to the STAs either in

a Trigger Frame, a new control frame in 11ax, or in

the header of a DL data frame.

Next, we discuss some related work in OFDMA

scheduling. OFDMA in 802.11ax networks is the

next logical step of OFDMA in LTE. Scheduling in

LTE networks is reported in many research papers.

Figure 3: Proper way of splitting 20 MHz

channel according to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 333

Resource blocks are assigned to the UE with the best

CQI such that the highest throughput is achieved by

BestCQI [5]. As many groups of RBs are made as

there are UEs, and are assigned to the UEs by RR

[6]. Throughput or delay guarantees are not

provided as there is no optimization. UE with the

maximum value of the metrics (generally the

throughput) among the unassigned RBs is searched,

and multiple contiguous RBs are allocated to the UE

in FME and RME [7]. An RB allocation is searched

that takes care of the long-term service rate of the

UE, in addition to the channel condition, so that

throughput, as well as fairness, are maintained in PF

[8] and ODM [9] is somewhat in between PF and

BestCQI in that a choice is made between

throughput and achievable rate for a UE and RBs are

allocated to UEs with good channel conditions while

starvation of the poor channel condition UEs is

averted. Scheduling based on the packet reception

deadline is not considered in any of the discussed

works.

A metric called Degree of Urgency is devised for

urgency-based fair scheduling (UFS) [10], which is

based on HOL packet delay. RBs are allocated to

UEs in the order of highest HOL delay first,

assuming that the eNodeB knows the delay of HOL

packets. The number of RBs previously allocated to

a UE is also considered, and the packet loss and

fairness are improved.

In the theoretical scheduling problem of [11], the

flow whose HOL bit has spent the most time as an

HOL bit, referred to as the HOL access delay, is

scheduled first, resulting in throughput-optimal

scheduling. This needs the knowledge of the time a

bit becomes HOL and will primarily work with

downlink flows unless there is some reporting

mechanism to know this delay value from UE (or

STA) to the eNodeB (or the AP).

Though [10] and [11] consider HOL delay for

scheduling, these algorithms cannot work in

802.11ax because the scheduling algorithm at the

AP does not know the time the packets have spent in

the STA queues. To the best of our knowledge, our

work is the first to estimate the deadlines of packets

waiting in STA queues using the knowledge of

temporal changes in STAs’ queue sizes.

A greedy and recursive algorithm of splitting the

channel into RUs for 802.11ax to maximize the total

rate is given as a solution to the generalized

scheduling and resource allocation problem by [12].

Again, the delay bounds for the traffic are not

considered.

With OFDM, the channels can be assumed non-

frequency selective, which makes the search space

of RUs with such channels considerably smaller

than with frequency-selective channels. Exploiting

this fact, [3] use a Hungarian algorithm to match

STAs with RUs to find an RU allocation that

maximizes the data the STAs can upload parallelly

in the current OFDMA slot, thus coming up with a

schedule that minimizes the total upload time. This

approach cannot work when the traffic is delay-

bounded because a STA with an earlier deadline but

poorer channel condition than another STA will not

get an RU in the current schedule and will

experience a high packet drop rate of the delay-

Figure 4: Packet arrivals and departures in a queue. Shaded area shows

the time-averaged queue-size.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 334

bound traffic. Our approach is compared to this

work in Section 4.

3 ESTIMATING THE DEADLINE AND

SCHEDULING WITH OFDMA

In time-sensitive scheduling, a packet that has

surpassed its deadline is useless and, hence,

dropped. Thus, deadline-based OFDMA scheduling

aims to minimize the number of such packet drops.

This can be achieved by assigning an RU

configuration to the list of STAs sorted according to

deadlines so that the STA with the earliest deadline

gets the largest RU in the RU configuration. The

sorting needs to know the deadlines, but the AP does

not know the exact per-packet deadlines nor the time

they have spent in their queues. So, the AP needs to

estimate the deadlines based on its knowledge of the

delay tolerance of the AC of each STA's traffic. A

lax strategy would be to set the deadline to the sum

of the delay tolerance of the HOL packet’s AC and

the current time, updating whenever the current time

exceeds the maintained value of the deadline. We

will refer to this method as LAX.

For the AP to be able to estimate the deadlines

better, it needs to adjust the deadlines according to

the time a packet has spent in the queue (that is, the

queueing time of the HOL packet), which might be

different even for two STAs sending traffic of the

same AC. The AP neither knows this time nor the

instant when the packet has entered the queue. The

STAs only report their queue sizes to the AP.

Thus, to estimate the deadline, let us find the time a

packet has spent in the queue. Little's theorem [13]

relates the average delay 𝑇 of a packet in the system

(the STA queue), the arrival rate 𝜆 of packets, and

the average number of packets 𝑁 in the system as:

𝑁 = 𝜆𝑇 (1)

Little’s theorem assumes the system to be ergodic,

which means that the system can go from any state

to any state irrespective of the choice of initial state

(i.e., in our case, whether the queue was initially

empty or not), it can go to state 0 (i.e., the state with

empty queue) infinitely often, and the state the

system is in does not depend on the number of time

steps. The theorem, however, does not make any

assumptions on network topology, arrival process

(i.e., how the packets arrive), service order (i.e., in

what order the packets leave the queue), or service

time distributions (i.e., how much time the packets

spend in the queue). This means that Equation 1 can

be used to estimate the average delay if the average

number of packets and the arrival rate in the system

at any particular time can be known. The time-

averaged number of packets in the queue in

Equation 1 up to time 𝑡 is given as:

𝑁 =
1

𝑡
∫ 𝑁(𝑡)𝑑𝑡

𝑡

0

(2)

To derive a discrete expression for 𝑁 equivalent to

Equation 2, consider Figure 4; curve 𝐴 shows the

cumulative arrivals of packets in a STA's queue till

time 𝑡, which, for simplicity, can be obtained by

joining the points 𝐴(𝑡𝑖) (cumulative arrivals till time

𝑡𝑖) and 𝐴(𝑡𝑖−1) (cumulative arrivals till time 𝑡𝑖−1)

assuming that packets arrive with a constant rate

within a slot. That is, we ignore the intermediate

arrival pattern within the slot. Similarly, curve 𝐷

shows the total number of packets that departed the

STA queue till time 𝑡 where we join consecutive

points considering only the values at slot

boundaries. The area of the shaded region then gives

𝑁.

The time-averaged number of packets in the queue

given by Equation 2 is the sum of the time-weighted

number of packets in each slot divided by time.

Weights here are the variable lengths of the

OFDMA slot. The area of the trapezoid in the slot

[𝑖, 𝑖 − 1], bounded on left and right by the queue

sizes reported in BSR by the STA at 𝑡𝑖 and 𝑡𝑖−1 and

by the segments of curves 𝐴 and 𝐷 on top and

bottom gives the time-weighted number of packets

in any slot. Hence, the time-weighted average

number of packets in the queue up to OFDMA slot 𝑖

is:

𝑁𝑎𝑣𝑔(𝑖) =
1

𝑡𝑖

∑
1

2
(𝑄(𝑡𝑠) + 𝑄(𝑡𝑠−1))(𝑡𝑠 − 𝑡𝑠−1)

𝑖

𝑠=1

(3)

where 𝑄(𝑡𝑖) is the queue size reported by the STA

at 𝑡𝑖. The average arrival rate at 𝑡𝑖 is the cumulative

arrivals till time 𝑡𝑖 divided by 𝑡𝑖, and is given as:

𝜆 =
𝐴(𝑡𝑖)

𝑡𝑖

(4)

Using Equations 3 and 4 in Equation 1, the average

packet delay in the system at slot 𝑖 is given as:

𝑇𝑎𝑣𝑔(𝑖) = (
1

2𝐴(𝑡𝑖)
) ∑(𝑄(𝑡𝑠) + 𝑄(𝑡𝑠−1))(𝑡𝑠 − 𝑡𝑠−1)

𝑖

𝑠=1

(5)

The AP deduces the instantaneous value of

cumulative arrivals at a STA (𝐴(𝑡𝑖)) from the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 335

current queue size reported by the STA to the AP in

BSR (𝑄(𝑡𝑖)) and the number of packets received by

the AP so far (𝐷(𝑡𝑖)). It then calculates the average

delay experienced by the packets in the STA's queue

using Equation 5. The AP subtracts the delay from

the deadline value it maintains for the STA and gets

an estimate of the remaining time until the deadline.

The AP similarly maintains the deadlines for each

associated STA.

The AP does not know the number of packets

dropped at a STA; it bases all its calculations on the

queue sizes the STAs have reported and the number

of packets it has received. Thus, the arrival rate

value in Equation 5 is slightly underestimated.

Though this approach is explained for one traffic

category, our approach can be extended to more than

one type of traffic by making the AP maintain per-

TID deadlines for each STA.

The AP sorts all the STAs associated with it in the

earliest deadline first order using the estimated

deadlines of the HOL packets of the STAs and finds

which RU configuration will result in the minimum

number of packets dropped by all the STAs that are

assigned RUs from the RU configuration.

To select a particular RU configuration for

assignment to the STAs, we first need to find, for

each RU configuration, how many packets would

drop when assigned. Thus, given the deadlines and

the allowable MCS indexes for each STA, we find

the total number of possible packet drops due to

missed deadlines that we want to minimize for each

RU configuration. First, let us derive the case

without OFDMA. This is mostly what we discussed

in [14], with detailed elaboration with the help of

figures and more rationale behind the quantities used

to derive the drop-time.

Channel is assigned to STAs in the earliest deadline

first (EDF) order. A STA 𝑖 needs a time 𝑡𝑖 = 𝐷𝑖 𝑅𝑖⁄

(the STA upload time) to transmit its full queue with

𝐷𝑖 amount of data in its queue at a link rate 𝑅𝑖 but

will have to drop the remaining queue at deadline 𝑑𝑖.

(with the assumption that all packets in the queue

have the same deadline and get dropped at once

when the deadline expires). If allowed to continue

the transmission after its deadline, the STA would

take an extra 𝐷𝑖 𝑅𝑖 − 𝑑𝑖⁄ time to transmit its

otherwise dropped data. The number of packets

dropped is then proportional to 𝐷𝑖 𝑅𝑖 − 𝑑𝑖⁄ , which

we term as the drop time and define as the time to

complete a transmission without considering the

deadline minus time-to-deadline. Thus, instead of

minimizing the number of packet drops, we can

equivalently minimize the drop time.

Considering other STAs in the list, we need to add

to the transmission time the waiting time for each

STA 𝑖 as follows, depicted in Figure 5.

𝑥𝑖 = max (0, 𝑤𝑖 +
𝐷𝑖

𝑅𝑖

− 𝑑𝑖) (6)

where the waiting time, since STAs transmit one

after the other, can be recursively defined as either

the deadline of the previous STA or the time when

Figure 5: Drop-time without using OFDMA. Blocks 1, 2, 3 are the times required for transmission of a
packet each of STAs 1, 2, and 3, respectively. Shaded regions are drop-times of STAs 2 and 3
respectively.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 336

the previous STA completes its transmission,

whichever is earlier. This is given as:

𝑤𝑖 = {

0, 𝑖 = 1

min (𝑑𝑖−1, 𝑤𝑖−1 +
𝐷𝑖−1

𝑅𝑖−1

), 𝑖 ≥ 2
(7)

Now consider OFDMA, with an OFDMA slot

duration τ. We split the channel according to the

method discussed in Section 2 and find for each RU

configuration the possible waiting time and drop

time for each STA when STAs are assigned RUs for

the duration τ, as follows. Let a picked RU

configuration consist of a sorted list of m RUs. RU

1 is assigned to STA 1, RU 2 to STA 2, ..., RU m to

STA m, in that order, so the first m out of n STAs (m

≤ n) get an RU. Note that our assignment is not

bipartite matching because the AP keeps the STA

list also sorted according to the estimated deadlines,

and we only assign the first m STAs to m RUs of the

RU configuration in question. Each STA i transmits

at a rate 𝑅′𝑖 , where 𝑅′𝑖 is the rate of STA i in RU i,

in parallel with other STAs in the OFDMA slot,

possibly with a higher sum rate across all RUs than

the rate of the whole channel (as explained in

Section 2). STA i transmits 𝑅′
𝑖 ∙ 𝜏 amount of data in

the OFDMA slot out of its queue size 𝐷𝑖 , and the

further time needed to upload the remaining data is

(𝐷𝑖 − 𝑅′
𝑖 ∙ 𝜏) 𝑅𝑖⁄ . Maximizing the value 𝑅′

𝑖 ∙ 𝜏

minimizes the time to upload the remaining data for

STA i and consequently minimizes the STA’s drop

time and the waiting time of STAs that follow STA

i. The drop time with OFDMA then changes from

𝑥𝑖 to

𝑥𝑖̅ = (0, 𝑤𝑖̅̅ ̅ +
𝐷𝑖 − 𝑅′

𝑖 ∙ 𝜏

𝑅𝑖

− 𝑑𝑖) (8)

Where the waiting time with OFDMA for each

successive STA i calculated recursively is:

𝑤𝑖̅̅ ̅ = {

𝜏, 𝑖 = 1

min (𝑑𝑖−1,
𝐷𝑖−1 − 𝑅′

𝑖−1 ∙ 𝜏

𝑅𝑖−1

+ 𝑤𝑖−1̅̅ ̅̅ ̅̅) , 𝑖 ≥ 2
(9)

Parallel transmission in the OFDMA slot reduces

each STA’s waiting time and drop time compared to

the non-OFDMA case. This is explained as follows.

Waiting time 𝑤𝑖 depends on whether each STA i, i

= 1, 2,…, i-1 has completed its upload within its

deadline or has continued the transmission till its

deadline, at which time its remaining queue is

dropped. Thus, with OFDMA, when all STAs 1, 2,

..., i - 1 complete their uploads before their

deadlines, the maximum reduction in 𝑤𝑖 in the best

case is (∑
𝑅′

𝑘∙𝜏

𝑅𝑘

𝑖−1
𝑘=1) − 𝜏, and subsequently the best-

case reduction in drop time for STA i is

(∑
𝑅′

𝑘∙𝜏

𝑅𝑘

𝑖
𝑘=1) − 𝜏. In the worst case, when each of the

STAs 1, 2, ..., i-1 consumes full time till its deadline,

the reduction in drop time of STA i is

(𝑅′
𝑖 ∙ 𝜏 𝑅′𝑖⁄) − 𝜏. Note that since the sizes of the

RU configurations in the number of RUs differ, it is

possible in a particular UL MU transmission that

some STAs at the end of the sorted list do not get

any RUs.

We use the deadlines thus estimated and the drop

times in our UL MU OFDMA scheduling algorithm,

which we describe next. In the first step of our UL

OFDMA scheduling algorithm, the AP collects

queue sizes from the BSRs of all STAs, calculates

the delay of each STA’s HOL packet using Equation

5, and estimates the deadlines by subtracting the

delays from all STAs’ deadline values it maintains.

The AP then sorts the STAs according to the

deadlines. In the second step, the AP uses Equation

9 to calculate the drop times each RU configuration

of m RUs would result in when assigned to the first

m STAs from the list. The AP picks the RU

configuration that results in minimum total drop

time across all STAs.

The sorting of n STAs needs O (n log n) time. The

second step performs an exhaustive search for the

best RU configuration, and thus, its time complexity

is equal to the number of possible RU configurations

M. Considering our discussion in Section 2 about

splitting the channel, M is equal to the total number

of allowed ways a channel can be divided, removing

the identical RU configurations. Thus, the worst-

case complexity is O (n log n + M).

4 SIMULATION AND RESULTS

This section evaluates our OFDMA scheduling that

works with our deadline estimation algorithm. The

algorithm consists of two parts, as explained in

Section 3: In the first part, the AP estimates the

deadlines based on the queue size information, and

in the second part, the AP uses the estimated

deadlines to sort the STAs and assigns an RU

configuration that minimizes the drop times.

Accordingly, our evaluation also goes in two parts:

1) we understand how much the deadlines estimated

with our deadline-estimation method conform to the

actual HOL deadlines, 2) we evaluate the

performance of the scheduling algorithm in terms of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 337

number of packets dropped at STAs when the AP

runs it to schedule RUs, and the STAs send their UL

traffic in their allotted RUs, while also dropping any

packets that cannot be sent within their deadlines.

We take a simple one STA - one AP network for the

first part of the evaluation. The traffic model we take

is simply CBR traffic with the goal of keeping the

STA’s buffer full all the time so that packets

experience queuing delay. This goal is achieved by

keeping the arrival rate higher than the link rate. We

set the delay tolerance value at 20 ms, a typical value

for IoT traffic. Every packet that enters the queue at

the STA has a deadline associated with it, which is

set equal to the current time plus delay tolerance. We

refer to the deadline value of the HOL packet in the

queue as the actual deadline. The AP maintains a

deadline variable for the traffic coming from the

STA, initializes it to the current time plus the delay

tolerance of the STA’s traffic type, and updates the

value by subtracting the delay using Equation 5

whenever it receives a BSR. When the current time

exceeds the current value of the deadline variable at

AP, the AP reinitializes the variable again to the

current time plus delay tolerance value. At this time,

it also infers that the packets are dropped in the

STA’s queue due to the passing of the deadline and

resets all the variables, such as the previous queue

size and the arrival rate till now, used in Equation 5

to estimate the deadline.

Figure 4 shows, as time passes, how the values of

the deadline estimated by AP with our estimation

algorithm (depicted as ESTIMATE-1) compare with

the actual deadline value of the HOL packet

(denoted GROUND-TRUTH). There are two more

variants. In LAX, the AP does not consider the time

the packet has spent in the queue to modify the

deadline at AP; it simply re-initializes the deadline

value whenever the current time surpasses the stored

value of the deadline.

ESTIMATE-2 is the same as ESTIMATE-1, with a

slight variation in that the variables are not reset

when the deadline is reinitialized. Thus,

ESTIMATE-2 bases its estimation on previous

values of queue sizes, while ESTIMATE-1

calculates the estimates anew every time the

deadline is re-initialized. The curves show that

ESTIMATE-1 tries to converge towards the

GROUND-TRUTH more often. In contrast,

ESTIMATE-2, after initially showing some

fluctuations, steadily follows the GROUND-

TRUTH with a constant offset, thus maintaining a

fixed error in the estimated deadline. We will return

to their effect on scheduling performance when we

analyze our results after discussing the following

second and central part of the evaluation.

4.1 Simulation with custom simulator and

results:

To evaluate the performance of our OFDMA

scheduling, we set up a 20-node network, where

each node wants to send UL traffic to the AP. For

now, we assume all nodes can transmit at MCS 8.

This gives a maximum link rate of 97.5 Mbps in 20

MHz channel. Later, we will see the performance by

varying the MCS values. We run the simulations for

one second, and each simulation is divided into 0.1

ms ticks, which are used to synchronize various

simulation events like packet arrivals, sending, and

drops. One second simulation time gives 10,000

Figure 6: Estimated deadlines with three approaches. The fourth

(GROUND-TRUTH) is for comparison.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 338

ticks, a sufficiently large value for observing the

behavior of various events.

We evaluate two different traffic models. The first

traffic model is full buffer UL traffic from each

node, where we want to determine how different

delay tolerance values and BSR periods affect the

packet drop. The second is the real IoT traffic model,

where each node generates the traffic as specified in

[14].

1) Results with full buffer traffic model, varying the

delay tolerance and BSR period: We set our first

traffic model as follows. All the nodes generate the

same traffic, with packets of mean size 200 B

arriving with a mean interarrival time of 0.1 ms, thus

ensuring that, on average, one packet arrives every

tick. This traffic model ensures a full buffer at each

STA by setting the arrival rate well above the link

rate (97.5 Mbps) of the whole channel. (Note that

the sum of rates of RUs after splitting the channel

might be larger than the whole channel rate, so we

need to keep the arrival rate accordingly high). The

mean packet size is arbitrary and can be anything

that, coupled with the interarrival rate, can keep the

STA queues full. As described below, all nodes have

the same delay tolerance and BSR period values,

which we vary for different simulations. Figure 7

gives the percentage of total bytes dropped due to

missed deadlines across all STAs out of the total

packets sent for two different rescheduling intervals

0

20

40

60

80

U
P

LO
A

D
-O

P
T

LA
X

D
EA

D
LI

N
E-

1

D
EA

D
LI

N
E-

2

G
R

O
U

N
D

-
TR

U
TH

B
yt

es
 d

ro
p

p
ed

 (
%

)

Rescheduling evey 2 slots
Rescheduling every 5 slots

Figure 7: Fraction of bytes dropped due to missed deadlines when

delay tolerance of the AC is 5 ms, with different scheduling

intervals for full buffer traffic.

0

20

40

60

80

U
P

LO
A

D
-O

P
T

LA
X

D
EA

D
LI

N
E-

1

D
EA

D
LI

N
E-

2

G
R

O
U

N
D

-
TR

U
THB

yt
es

 d
ro

p
p

ed
 (

%
)

20 ms

50 ms

Figure 8: Percentage of bytes dropped due to missed deadlines, for

20 ms and 50 ms as AC’s delay tolerance, when the AP sends a new

schedule after every 5 OFDMA slots for full buffer traffic.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 339

for all traffic having the same delay tolerance.

Similarly, Figure 8 gives the bytes dropped for two

values of delay tolerance for a fixed schedule update

period. DEADLINE-1 and DEADLINE-2 show the

results for our algorithm with the two methods of

deadline estimation, ESTIMATE-1, AND

ESTIMATE-2, respectively, as discussed above.

GROUND-TRUTH shows, for comparison, the best

possible performance when we separately provide

the AP with the ground truth – the actual deadlines

of HOL packets in STA queues. Note that such

provision of deadline values to the AP is only

possible in our custom simulator but not in the real

world. The leftmost UPLOAD-OPT is our

implementation of [3], for which the goal of

scheduling is to minimize the total upload time of

the traffic and does not consider packet deadlines.

Figures 9a and 9b show the median percent of

packets dropped (with error bars showing the

minimum and maximum values) each for 100 runs

of simulations with the traffic described above, with

delay tolerance values of 20 ms and 50 ms,

respectively. With more considerable delay

tolerance values, our algorithms perform the same

way as GROUND-TRUTH. Then, in Figure 6, we

reduce the delay tolerance value to 5 ms. Though

still better than UPLOAD-OPT, our algorithms

seem to perform similarly to the LAX when

OFDMA scheduling (i.e., assignment of RUs as per

the deadline-based algorithm) is done every 5

OFDMA slots (Figure 7). When we reduce re-

scheduling periodicity to 2 OFDMA slots,

DEADLINE-1 outperforms LAX and DEADLINE-

2. Thus, our proposed algorithms can reduce the

number of packets of the delay-bound traffic that

miss their deadline and get dropped, compared to

when scheduling is done merely to minimize the

overall upload time. This happens better when

OFDMA is rescheduled frequently with a period less

than the delay tolerance of the traffic being

scheduled.

2) Results with factory IoT traffic model: Next, we

describe simulation where ten nodes send real

factory IoT traffic, with delay tolerance values from

as low as 0.5 ms to as high as 200 ms, and low data

rates ranging from 40 Kbps to 4.6 Mbps, as per the

specifications in [15]. Apart from IoT traffic, we

also include ten other nodes to send video, voice and

best-effort traffic in the form of VoIP, video

conferencing and FTP traffic. The VoIP is a low rate

traffic (around 13 Kbps) where packets have a delay

tolerance of 50 ms. The video conferencing packets

are bigger (around 7 KB) but have no delay

requirements, and the traffic has a data rate of 2

Mbps. FTP traffic is a single big file upload and does

not have any deadline, while data e rate may reach

up to 16 Mbps. Detailed specifications can be found

in [14] and [16]. Our simulation aims to evaluate the

performance of our scheduling algorithm in a typical

factory setting, where the same Wi-Fi supports the

factory IoT traffic and the employees’ internet

browsing traffic. Again, we use 20 node network

with each node transmitting at MCS 8, but this time,

14 nodes send delay-bound traffic, and six nodes

send FTP and video conferencing traffic that is not

delay-sensitive, as described in detail in [14-16].

The simulation is divided into time ticks of 0.1ms.

Figure 9: IoT Traffic: (a) PDF of magnitude of error in deadline estimation, and (b) Fraction of bytes

dropped due to crossed deadlines, across different MCS schemes.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 340

Packets following a lognormal distribution to select

their sizes with the mean values given for each

application arrive at each STA with an inter-arrival

time following an exponential distribution for each

STA [14]. The packets also possibly get dropped

from the front of the queue at every tick if they have

surpassed their deadline. Packets are sent in every

OFDMA slot, with the OFDMA slot taken as 1 ms.

In this simulation, BSR reports are sent every 5

OFDMA slots.

Figure 9 shows the bytes dropped by all the nodes

with delay-bound IoT traffic by employing various

scheduling algorithms for various MCS indexes.

 Analysis and Explanation of Results:

To understand how our deadline estimation

algorithms affect the packet drops, we show the PDF

of the absolute error value in deadline estimation

(Estimated Deadline minus Actual Deadline) for the

above simulation in Figure 9a. The PDF graphs

show that error magnitudes are more prevalent at

specific values for LAX (indicated with higher

peaks), whereas curves are smoother for the two

variants of our algorithms. Our algorithm takes on

intermediate estimated values before updating the

deadline to the next value. In contrast, LAX jumps

to the next deadline value whenever the current time

crosses the deadline. This means that the LAX’s

estimation of the deadline deviates more often for

some STAs than others, resulting more often in

incorrect sorting of STAs by the scheduling

algorithm.

We also want to see how our proposed algorithm

performs with different channel conditions. We

investigate 5 MCS schemes: 1) MCS-Increasing:

STAs use MCS values from 2 to 9, some with the

same MCS value. The STAs with most stringent

delay constraints have the lowest MCS, 2) MCS-

Decreasing: STAs are assigned MCS in decreasing

order. Those STAs with the earliest deadlines have

the best channel conditions, 3) MCS-2, 4) MCS-5,

and 5) MCS-8, where all STAs transmit at MCS 2,

5, and 8, respectively. Figure 9b shows these results,

consistent with our previous finding, that our

algorithm performs very close to the GROUND-

TRUTH. In each case, the number of packet drops

due to the deadline with our algorithms is less than

that with the UPLOAD-OPT algorithm.

For MCS-Decreasing, the STAs with the earliest

deadline have the best MCS (9). This renders the

minimization of drop time to the minimization of

upload time; hence, the results are the same for our

algorithms and the UPLOAD-OPT algorithm. The

reason lies with the selection of RU configuration

that, the algorithm decides, would give the smallest

drop-time, as discussed in Section 3. With this MCS

scheme, and also for scheme MCS-5, the RU

configuration our algorithm picks is {RU106,

RU106, RU26}. The algorithm splits and moves to

a higher RU configuration only if the resulting RUs

while transmitting at the same transmit power in

each RU, allow for higher MCS, which is not always

the case, as can be seen by examining the 802.11ax

SNR-MCS table [17]. Thus, the selected RU

configuration, which our simulation selects most of

the time, allows only the first three STAs in the

sorted list, therefore making all other STAs miss

deadlines and drop data.

A similar observation is made with MCS-5. The

scheduling algorithm chooses the same RU

configuration as above more frequently. Still, it

occasionally chooses other RU configurations with

more RUs this time. Therefore, the packet drop rate

remains higher than other MCS schemes, as shown

in Figure 9b.

Simulations with our implementations of deadline

estimation perform better than UPLOAD-OPT. But

the performance is always worse than GROUND-

TRUTH across all MCSs. This is because our

estimation sometimes deviates from the actual value

due to the AP’s dependence for estimation solely on

the queue size the STA reports in BSR. The final

value of the queue size visible to the AP is the

number of packets arrived minus the sum of the

packets dropped and sent by the STA, but the AP

separately does not know how many packets the

STA has dropped. Thus, based on the queue size it

sees, the AP underestimates the number of arrivals

and, hence, the arrival rate at STAs, which

subsequently results in an error in the estimation of

the average delay of packets in the STA queue.

 Another observation worth mentioning from our

simulations of random full-buffer (Figures 7 and 8)

and IoT (Figure 9) traffics is that there is a trade-off

between DEADLINE-1 and DEADLINE-2

variations. DEADLINE-1 works better when

deadlines are identical across the competing traffic

flows (for example, in Figures 7 and 8, we select

only one of 5, 20, and 50ms delay tolerance values

for all the nodes). At the same time, DEADLINE-2

is superior (Figure 9) when the deadlines are diverse

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 341

across the flows. To understand why, let us revisit

Figure 6. The DEADLINE-1 follows the GROUND-

TRUTH deadline curve with a constant offset after

time 0.04 ms. This means that when all the flows

have the same delay tolerance values, either of the

two deadline estimation methods, DEADLINE-1 or

GROUND-TRUTH, gives the same ordering in the

sorted list of STAs after 0.04 ms. This makes the

(a) Maximum delay 20 ms for each STA. (b)

(c) With small maximum delay (4 to 6 ms)

for each STA.

(d)

(e) With big maximum delay (40 to 60 ms)

for each STA

(f)

Figure 10: ns-3 simulations with full-buffer UL traffic: Fraction of packets expired (a, c, and e), and CDF

of error in deadline estimation (b, d, f) for a particular run of the bars of plots a, c, and e, respectively.

(a) Fraction of packets expired. (b) CDF of percentage error.

 Figure 11: ns-3 simulations with IoT traffic: Packets dropped and CDF of percentage error

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 342

results obtained with the two methods very close in

Figures 7 and 8. On the other hand, the deadline

curve ESTIMATE-2 in Figure 6 repeatedly takes

intermediate values between ESTIMATE-1 and

GROUND-TRUTH, due to which it becomes more

suitable for the cases when traffic flows have diverse

delay tolerance values, and the AP gets the estimate

of the deadline of each flow closer to its actual

values, as shown in Figure 7.

Reserving the RUs for STAs that have deadlines

may cause starvation of others with no deadline. We

simulate the latter as STAs with huge deadlines.

Figure 10 shows that the six no-deadline STAs could

send little or no data; in the same simulation, we

have shown the packet drops for the delay-bound

traffic nodes in Figure 7. DEADLINE-2 variation of

our algorithm allows sending some no-deadline

traffic, as does the GROUND-TRUTH. This

happens because our algorithm and the GROUND-

TRUTH allow the STAs to send most of the

deadline-bound traffic on time, which causes the

queues of STAs having deadlines occasionally

empty, giving some chance to no-deadline STAs.

Starvation can be easily handled if we allocate one

or a few RUs for random access and allow the STAs

with best-effort (no deadline) traffic to contend for

the channel as usual within the random access RUs.

4.2 Ns-3 Implementation and Results:

We implemented the proposed OFDMA scheduling

scheme and the deadline estimation algorithm in the

ns-3 [18] branch maintained by Stefano Avallone

[19].

The current ns-3 implementation has two

assumptions that we removed. One is that all RUs

should be of equal sizes, taken for simplicity of

implementation. The other is that RUs are assigned

in a round-robin manner to the STAs requesting UL

traffic.

Multiple ways of splitting the channel allowed in

802.11ax, as described in Section 2, give rise to

various possible RU configurations where each RU

configuration has RUs of different sizes. We

implement our scheduling by replacing the round-

robin allocation with our allocation, where we pick

the best RU configuration according to our criterion

of lowest drop time, as discussed in Section 3. We

then assign the RUs from the selected RU

configuration to the STAs in the order of the earliest

deadline.

In the following sections, we show the results for

full buffer traffic and IoT traffic.

1) Results with full buffer traffic model. We take

nine nodes and consider three maximum delays that

define the deadline: with maximum delays of 20 ms

for each STA, with small maximum delays (four

nodes with 4 ms max delay, three 5 ms delay, and

three 6 ms delay), and with large maximum delays

(similarly with 40, 50, and 60 ms delay values).

These values are set to the MSDU Life Time

attribute of the Wi-Fi Mac Queue; the queue drops

an MSDU whose MSDU Life Time value has

expired. Each node sends 1472-byte UDP packets to

the AP at a 20 Mbps rate. This makes a full buffer

UL traffic from each STA, assuming each STA uses

VHT MCS 8 that allows for a PHY rate of 86.7

Mbps in a 20 MHz channel at a guard interval (GI)

of 0.4 𝜇s.

Figure 10 shows the fraction of packets that expired

out of the total of expired and received packets due

to passed deadlines in STA queues. Each of the bars

in the figures shows results when each STA

transmits with increasing MCS values, decreasing

MCS values, or with MCS 2, 5, or 8, respectively.

For each MCS scheme, we compare the results for

the simulation with our algorithm of minimization

of drop time with deadline estimation (labeled

DEADLINE ESTIMATION) and the existing

algorithm of minimization of upload time according

to [3] (denoted UPLOAD OPTIMIZATION that

stands for minimum upload time). Results with our

algorithm are, in general, better than UPLOAD

OPTIMIZATION. We also show the error variation

in estimating the deadline for each of the three cases.

2) Results with IoT traffic model. The IoT traffic

model consists of the same traffic model [14] used

above in our custom simulation, which also shows

the per-STA deadlines, which are the same as the

maximum delays after which a packet in the queue

expires. Figure 11 shows the fraction of packets that

expire when IoT traffic is scheduled with deadline

estimation (DEADLINE ESTIMATION) and

without (UPLOAD OPTIMIZATION), both for

different MCS schemes described above.

Analysis and Explanation of ns-3 Results:

Our results with ns-3 simulation (Figures 10 and 11)

conform to our hypothesis that the deadline

estimation algorithm (DEADLINE ESTIMATION)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 343

performs much better than the throughput

optimization (UPLOAD OPTIMIZATION). For

some cases, the deadline estimation shows worse

results than the minimum upload time first

algorithm, for example, at MCS 8 for the IoT traffic

in Figure 11. The reason is that the buffers are full

more often for no-deadline STAs (VoIP and file

transfer) than for IoT STAs with small deadlines,

and the deadline estimation, which heavily depends

on reported queue sizes, could accurately calculate

the deadlines when queues are substantially full. Our

results demonstrate that the highest number of

delay-bound packets can successfully meet their

deadlines when the AP performs two tasks: 1) it

gives priority to the HOL packets with the earliest

deadlines while assigning OFDMA RUs, and 2) it

selects RUs to assign after searching the list of RU

configurations for an RU configuration that gives

the least packet drops (for which we designed the

metric drop time).

The best possible deadline-based OFDMA

scheduling is achieved when AP knows the exact

deadlines of the waiting HOL packets. We

recommend modifying the 802.11 standard to

include the HOL packet’s time of entry into the

queue or HOL delay in MPDU headers. The headers

have reserved fields that can be utilized for this

purpose. Nevertheless, our metric of drop time will

still be relevant, which the AP will need for

searching for the best RU configuration.

A Remark about Starvation:

Reserving the RUs to provide scheduled UL

OFDMA access to STAs that have deadlines may

cause starvation of STAs without deadlines. We

model the latter as STAs with arbitrarily large

deadlines in all our simulations. DEADLINE-2

variation of our algorithm allows sending some no-

deadline traffic, as does the GROUND-TRUTH.

This happens because our algorithm and the

GROUND-TRUTH allow sending most of the

deadline-bound traffic on time, which makes the

queues of STAs with deadlines occasionally empty,

giving some chance to no-deadline STAs.

Reservation was better handled when, from every

RU configuration that we assigned, we allocated one

or a few RUs for random access and allowed

contention-based access to the STAs with best-effort

(no-deadline) traffic.

5 CONCLUSION

Guaranteeing packet delivery within deadlines is

essential to support time-sensitive networking in

802.11 WLANs. We convert the problem of

ensuring the packet deadlines to the problem of

minimizing packet drops due to deadlines, for which

OFDMA emerges as an enabler technology. Since

the deadlines are not readily available, our algorithm

of deadline estimation enables the AP to estimate the

deadlines from the queue sizes it receives in BSRs

from STAs, a feature introduced in 802.11ax. We

find that more frequent reporting of BSRs is

required to assess the deadlines correctly for the

flows with smaller delay tolerance values.

We calculate per-STA drop times, the time needed

to transmit the packets that would have been

dropped due to expired deadlines, after arranging

STAs in earliest-deadline-first order using our

estimated deadlines. We simulate both with our

custom simulator and with ns-3 and find that

OFDMA scheduling with minimization of drop

times reduces the number of packets dropped due to

past deadlines at STAs.

The AP can best schedule according to deadlines

when it knows the ground truth – the deadline of

every HOL uplink packet, which can be realized

only when the 802.11 standard includes some way

of reporting to the AP the amount of time the HOL

packet has spent in the STA queue. In that case, as

we have shown in our implementation of the

scheduling with the knowledge of ground truth, the

number of packets dropped due to expired deadlines

will be lower than that obtained with our estimated

deadlines. Nevertheless, our results with the

scheduling that minimizes drop times using

estimated deadlines are close to those obtained with

the knowledge of ground-truth deadlines.

In future work, we will investigate the performance

of our scheme when applied with aggregation and

block ACK that prevents starvation of non-delay

bound STAs, for which we proposed one solution as

reserving the random access RUs so that the same

Wi-Fi can be used for both the delay-bound traffic

and the best effort traffic.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 344

REFERENCES

[1] IEEE Draft Standard for Information

Technology – Telecommunications and

Information Exchange Between Systems Local

and Metropolitan Area Networks – Specific

Requirements Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer

(PHY) Specifications Amendment

Enhancements for High-Efficiency WLAN.

IEEE P802.11ax/D6.0, November 2019

(2019), 1–780.

[2] Jon Kleinberg and Eva Tardos. 2005.

Algorithm Design. Addison-Wesley Longman

Publishing Co., Inc., USA.

[3] D. Bankov, A. Didenko, E. Khorov, and A.

Lyakhov. 2018. OFDMA Uplink Scheduling

in IEEE 802.11ax Networks. In 2018 IEEE

International Conference on Communications

(ICC). 1–6.

[4] O. S. Aboul-Magd. 2008. IEEE Standard

802.11 Overview.

[5] R. Su and I. Hwang. 2016. Efficient resource

allocation scheme with grey relational analysis

for the uplink scheduling of 3GPP LTE

networks. In 2016 IEEE International

Conference on Industrial Technology (ICIT).

599–603.

[6] K. Arshad. 2015. LTE system level

performance in the presence of CQI feedback

uplink delay and mobility. In 2015

International Conference on Communications,

Signal Processing, and their Applications

(ICCSPA’15). 1–5.

[7] L. A. M. Ruiz de Temino, G. Berardinelli, S.

Frattasi, and P. Mogensen. 2008. Channel-

aware scheduling algorithms for SCFDMA in

LTE uplink. In 2008 IEEE 19th International

Symposium on Personal, Indoor and Mobile

Radio Communications. 1–6.

[8] Harold J Kushner and Philip A Whiting. 2002.

Asymptotic properties of proportional-fair

sharing algorithms. Technical Report.

BROWN UNIV PROVIDENCE RI DIV OF

APPLIED MATHEMATICS.

[9] Aswin Kanagasabai and Amiya Nayak. 2015.

Opportunistic dual metric scheduling

algorithm for LTE uplink. In 2015 IEEE

International Conference on Communication

Workshop (ICCW). IEEE, 1446–1451.

[10] H. Ferng, C. Lee, J. Huang, and Y. Liang.

2019. Urgency Based Fair Scheduling for LTE

to Improve Packet Loss and Fairness: Design

and Evaluation. IEEE Transactions on

Vehicular Technology 68, 3 (2019), 2825–

2836.

[11] Y. Chen, X. Wang, and L. Cai. 2017. Head-of-

Line Access Delay-Based Scheduling

Algorithm for Flow-Level Dynamics. IEEE

Transactions on Vehicular Technology 66, 6

(2017), 5387–5397.

[12] K. Wang and K. Psounis. 2018. Scheduling

and Resource Allocation in 802.11ax. In IEEE

INFOCOM 2018 - IEEE Conference on

Computer Communications. 279–287.

[13] John D. C. Little. 1961. A Proof for the

Queuing Formula: L = λW. Oper. Res. 9, 3

(June 1961), 383–387.

https://doi.org/10.1287/opre.9.3.383

[14] Muhammad Inamullah, Bhaskaran Raman,

and Nadeem Akhtar. 2020. Will My Packet

Reach On Time? Deadline-Based Uplink

OFDMA Scheduling in 802.11ax WLANs. In

Proceedings of the 23rd International ACM

Conference on Modeling, Analysis and

Simulation of Wireless and Mobile Systems

(MSWiM '20). Association for Computing

Machinery, New York, NY, USA, 181–189.

https://doi.org/10.1145/3416010.3423232.

[15] Nader Zein et al. 2020. IEEE 802 Nendica

Report: Flexible Factory IoT: Use Cases and

Communication Requirements for Wired and

Wireless Bridged Networks. IEEE 802

Nendica Report: Flexible Factory IoT: Use

Cases and Communication Requirements for

Wired and Wireless Bridged Networks (2020),

1–48.

[16] S. Merlin R. Porat, M Fischer and et al. 2020.

11ax evaluation methodology. (2020), 1–48.

https://mentor.ieee.org/802.11/dcn/14/11-14-

https://doi.org/10.1287/opre.9.3.383

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 329–345 | 345

0571-12-00ax-evaluationmethodology.docx

[17] François Vergès. Mcs table (updated with

802.11ax data rates).

https://www.semfionetworks.com /blog/mcs-

table-updated-with-80211ax-data-rates, 2020.

Accessed: 2020-11-23.

[18] NS-3 Consortium. ns-3 documentation.

https://www.nsnam.org/, n.d. Accessed: 2020-

11-23.

[19] Stefano Avallone. ns-3-11ax gitlab repository.

https://gitlab.com/stavallo/ ns-3-11ax, n.d.

Accessed: 2020-11-23.

https://www.semfionetworks.com/

