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Abstract: OFDMA is introduced to WLANs in the ax amendment of the IEEE 802.11 standard. It makes the WLAN a closed-

loop system, where the AP assigns OFDMA resource units to the STAs for uplink transmissions. The scheduling algorithms 

generally optimize throughput by minimizing upload time. For time-sensitive traffic, the time-critical packets that miss their 

deadlines become useless, even if overall upload time is minimized. To provide schedules that prioritize the STAs for 

transmission whose traffic has earlier deadlines, the AP needs to know the packet deadlines in the queue of each STA. Since 

STAs do not provide any information on the expiration time of the packets they send to the AP, we give an algorithm to 

estimate on the AP side the deadlines of HOL packets waiting at STAs and make a scheduling decision that minimizes the 

number of packets dropped due to expired deadlines. In doing so, the best-effort traffic is also scheduled to prevent its 

starvation. Compared to the number of packet drops with the traditional approach of throughput optimization, our approach 

shows up to a six-fold reduction in packet drops due to missed deadlines at the STAs.  Our approach also avoids starvation of 

the best-effort traffic. 

Keywords: deadline; 802.11ax; OFDMA; scheduling; WLANs; time-sensitive networking; best-effort traffic; resource 

allocation; starvation 

1 INTRODUCTION 

In time-sensitive networking, packets have upper 

bounds on the delay between their arrival into the 

queue and their reception at the destination. That is, 

packets, if received after a specified delay, have to 

be discarded. 802.11 wireless LANs (WLANs or 

Wi-Fi) employ contention-based channel access and 

hence are best-effort in that they try their best but 

cannot guarantee any deadlines. Orthogonal 

Frequency Division Multiple Access (OFDMA) is 

an important MAC mechanism of WLANs, both for 

uplink (UL) and downlink (DL) traffic since the 

IEEE 802.11ax amendment [1]. One of the most 

remarkable changes the OFDMA brings in is that 

during channel access, the access point (AP) 

remains in charge of deciding the access of each 

station (STA) to the channel, as opposed to the 

previous contention-based access, where each STA 

contends for the channel and does a random back-

off if it is unsuccessful in finding the channel free. 

Now that OFDMA has removed the uncertainty in 

accessing the channel, we investigate whether Wi-Fi 

can handle delay-bounded traffic.  

In OFDMA, Orthogonal Frequency Division 

Multiplexing subcarriers are grouped into a resource 

unit (RU). To provide access to STAs, the AP 

assigns one RU per STA, and the STAs transmit in 

their RUs parallelly. This is called scheduled UL 

OFDMA. The other is UORA (UL OFDMA random 

access), where the AP assigns a group of STAs an 

RU, and the STAs of the group contend for that 

particular sub-band. We explore the scheduled UL 

OFDMA because it provides channel access in a 

deterministic manner, making it a naturally better 

choice to handle time-bounded traffic. 

With time-sensitive networking, receiving a packet 

on time is more important: the destination discards a 

packet on receiving it after its deadline. When AP 

schedules UL RUs, it optimizes some metrics. 

Traditionally, this metric is the throughput that the 

WLANs maximize by minimizing the overall 

upload time. Minimizing the upload time requires 

the STAs with better channel conditions (and thus 

higher MCS indices) to get scheduled before the 
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STAs with poorer channel conditions (lower MCS 

values), regardless of whose packet has an earlier 

deadline. Therefore, in such cases, more packets of 

STAs with lower MCS indices will surpass their 

deadlines and get dropped than those of higher 

MCS-STAs. In the following, assuming that each 

STA has packets of only one traffic type, we use the 

phrases “the deadlines of the head-of-line (HOL) 

packets at each STA” and “the STA deadlines” 

interchangeably. We can easily extend our approach 

to such scenarios if there are packets of more than 

one traffic type. 

Thus, in time-sensitive networking, instead of 

maximizing the upload time, saving the packets 

from being dropped due to expired deadlines is 

essential. The scheduling algorithm needs to decide 

how to assign RUs to STAs to minimize packets 

dropped due to missed deadlines. The well-known 

algorithm of such deadline-based scheduling 

guarantees minimum lateness [2], which is defined 

as the time elapsed for a packet between its reception 

and its deadline, summed across all dropped packets, 

and is directly proportional to the total number of 

packets all the STAs drop due to missed deadlines. 

If we give a STA whose HOL packet has the earliest 

deadline the first chance to transmit, we can 

minimize such packet drops. The algorithm seems 

trivial, but the fact is that there is no way to inform 

the AP about the deadlines of packets waiting for UL 

transmission in STA queues. AP may know the 

delay tolerance of the UL traffic, which is an 

attribute of the traffic defined by 802.11.  If two 

packets of the same traffic type wait in the queues of 

two STAs, the older of the two will have an earlier 

deadline. As explained below, we use this 

knowledge of queue sizes, which can be supplied to 

the AP, to estimate the packet deadlines. 

Buffer status report (BSR), which informs AP about 

the status of STA queues, is introduced in 802.11ax 

[1]. We present a scheduling algorithm that runs at 

 

Nomenclature 

 

ACK  Acknowledgement frame 

AC                       Access category 

AP                        Access point 

BSR                     Buffer status report 

CTS  Clear to send frame 

DCF  Distributed coordination function 

DIFS  Distributed interframe spacing 

EDCA  Enhanced distributed channel access 

EDF                     Earliest deadline first 

HOL                    Head-of-line 

OFDMA              Orthogonal frequency division multiple access 

RTS  Ready to send frame 

RU  Resource unit 

SIFS  Separate interframe spacing 

STA               The stations or nodes sending or receiving data to and from the AP  

TSN   Time-sensitive networking 

QoS                      Quality of service 
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the AP. The AP uses the value of the queue sizes that 

the BSRs from all STAs have reported to estimate 

the time a packet has spent in the STA's queue. The 

AP then uses this time to calculate the remaining 

time to the deadline for the HOL packet of each STA 

and then uses the estimated deadlines to select an 

RU assignment that results in the minimized total 

number of packets dropped by all STAs. 

Our simulation results show that when the AP 

schedules as per our algorithm, there is up to six 

times the reduction in packet drops due to missed 

deadlines compared to when scheduling with the 

conventional approach, which minimizes total 

upload time. 

The rest of the paper is organized as follows: Section 

2 builds up the problem and provides the details on 

related work, and Section 3 explains the design of 

our algorithm based on our deadline estimation 

model. Section 4 presents our simulations and the 

results with proposed modifications. Section 5 

concludes the work. 

2 BACKGROUND OF THE STUDY AND 

PROBLEM STATEMENT 

The benefits brought to WLANs through the 

introduction of OFDMA are numerous, like 

transmissions that are more resilient to frequency 

selective interference and fading and DL and UL 

multiuser (MU) OFDMA that allows simultaneous 

transmissions and receptions to and from multiple 

STAs, thus saving much of the wasted airtime of the 

distributed coordination function (DCF) of the 

802.11 in the form of back-offs, DIFS, SIFS, ACKs, 

and (possibly) RTS/CTS. More importantly, in the 

context of this paper, when a channel is split into 

smaller RUs, the power spectral density of the 

received signal increases in the smaller RU if a STA 

keeps transmitting with the same signal power, 

which allows the STA to use higher MCS in that RU. 

This is illustrated in Figure 1. This allows the AP to 

receive more data in UL transmissions from multiple 

STAs sending in smaller RUs than from a single 

STA sending in the whole channel. The same effect 

is elaborated in Figure 2. For example, a STA 

transmitting in a 40 MHz channel at 18 dB SNR gets 

a data rate of 81 Mbps. Now, if the channel is split 

into two 20 MHZ channels and the two STAs 

transmit at 18 dB SNR each in each of the two 

channels, the transmission will jump to MCS index 

5, allowing the STAs to achieve a data rate of 52 

Mbps each so that the combined data rate reaches 

104 Mbps. The arrows show the effect in the figure. 

Earlier works have used this effect to design 

scheduling algorithms that pick the best RU 

configuration from a list that optimizes the overall 

upload time [3]. Below, we explain the meaning of 

RU configuration, which we will also use in our 

scheduling algorithm.  

An RU configuration is the set of RUs obtained after 

splitting a channel according to the 802.11ax 

standard. For example, we show the permissible 

ways of splitting a 20 MHz channel in Figure 3. One 

RU configuration on splitting the channel is 

{RU106, RU106, RU2}, where RU i means an RU 

consisting of i tones. Recursively splitting this RU 

configuration one more time results in {RU106, 

RU52, RU52, RU26} – another RU configuration. 

Here, we assume that there is no frequency selective 

fading, and hence, relative positions of RUs within 

an RU configuration can be interchanged. That is, 

for example, from the RU configuration {RU106, 

Figure 1: Two STAs transmitting in splitted 

channel get better SNR and MCS. 
Figure 2: SNR Vs MCS for 20 and 40 

MHZ channels. 
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RU106, RU26}, splitting either the right RU106 or 

the left RU106 into two RU52s results in the same 

sorted RU configuration: {RU106, RU52, RU52, 

RU26}. We split the channel in all possible ways, 

sort the resulting RUs with the widest RU first, and 

keep the distinct RU configurations. Splitting in this 

way, for example, gives nine possible configurations 

for the 20 MHz channel, excluding the {RU242} 

that corresponds to the entire channel. These are 

shown below (numbered 0-9). 

0. {242} 

1. {106, 106, 26} 

2. {106, 52, 52, 26} 

3. {106, 52, 26, 26, 26} 

4. {106, 26, 26, 26, 26, 26} 

5. {52, 52, 52, 52, 26} 

6. {52, 52, 52, 26, 26, 26} 

7. {52, 52, 26, 26, 26, 26, 26} 

8. {52, 26, 26, 26, 26, 26, 26, 26} 

9. {26, 26, 26, 26, 26, 26, 26, 26, 26} 

Using the channel-splitting rules of 11ax, we can 

obtain similar configurations for 40, 80, and 160 

MHz channels. 

Optimizing the overall upload time is appropriate for 

the best effort traffic, which was earlier the sole 

traffic on Wi-Fi, where packet delay bounds are not 

considered. Honoring the packet deadlines is 

essential in time-sensitive networking. Since the 

medium is accessed in Wi-Fi through the 

contention-based protocol, providing delay 

guarantees for packets was impossible. With 

OFDMA, the closed-loop scheduled access has 

arrived, and therefore, it is now possible to consider 

deadlines. We will consider this problem in detail 

next. We discussed in detail in Section 1 that the 

problem of providing delay guarantees translates 

into minimizing the number of packets dropped due 

to missed deadlines and that if we minimize the total 

upload time resulting from an RU assignment, it 

does not necessarily result in minimizing the total 

number of drops due to missed deadlines: Giving 

STA A the chance to transmit before B merely 

because A has a higher MCS would result in more 

packet drops at B if B has an earlier deadline than A. 

Such packet drops due to missed deadlines at B can 

be reduced if B transmits before A in this case. 

To schedule according to deadlines, the AP needs to 

know the deadlines for UL packets, as discussed in 

Section 1.  In EDCA, as described in 802.11 

specifications, the UL traffic does not include delay 

information. Though the Delay Bound parameter is 

available in the TSPEC Information Element of 

802.11 ADDTS action frame, it is recommended to 

be ignored when EDCA is in use [4]. Therefore, it 

becomes necessary for the AP to have a procedure 

to estimate the deadlines of HOL packets waiting in 

the queues of STAs.   

The delay information is not available to the AP, but 

the AP gets the queue size of each STA through the 

BSR that a STA sends, which is introduced in 

802.11ax. The HT Control field in the MAC header 

of various Wi-Fi frames like QoS Data, QoS Null, 

Management, and Control Wrapper frames carries 

the BSR. Among other information about a STA’s 

queue, a BSR also reports the queue size of the 

highest access category (AC) traffic waiting at the 

STA. A STA can handle multiple ACs and their 

delay bounds by reporting the queue sizes of various 

ACs in different BSRs, and has the option of 

deciding the priority of an AC over other ACs. 

In the next section, we propose our algorithm to 

estimate the deadline of an HOL packet based on 

queue sizes. Our scheduling algorithm, then using 

the estimated deadline, decides the assignment of 

RUs to STAs such that the number of packets 

dropped from the queue due to expired deadlines is 

minimized. Once the AP has assigned RUs to STAs, 

it sends the OFDMA schedule to the STAs either in 

a Trigger Frame, a new control frame in 11ax, or in 

the header of a DL data frame.  

Next, we discuss some related work in OFDMA 

scheduling. OFDMA in 802.11ax networks is the 

next logical step of OFDMA in LTE. Scheduling in 

LTE networks is reported in many research papers. 

Figure 3: Proper way of splitting 20 MHz 

channel according to 
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Resource blocks are assigned to the UE with the best 

CQI such that the highest throughput is achieved by 

BestCQI [5]. As many groups of RBs are made as 

there are UEs, and are assigned to the UEs by RR 

[6]. Throughput or delay guarantees are not 

provided as there is no optimization. UE with the 

maximum value of the metrics (generally the 

throughput) among the unassigned RBs is searched, 

and multiple contiguous RBs are allocated to the UE 

in FME and RME [7]. An RB allocation is searched 

that takes care of the long-term service rate of the 

UE, in addition to the channel condition, so that 

throughput, as well as fairness, are maintained in PF 

[8] and ODM [9] is somewhat in between PF and 

BestCQI in that a choice is made between 

throughput and achievable rate for a UE and RBs are 

allocated to UEs with good channel conditions while 

starvation of the poor channel condition UEs is 

averted. Scheduling based on the packet reception 

deadline is not considered in any of the discussed 

works. 

A metric called Degree of Urgency is devised for 

urgency-based fair scheduling (UFS) [10], which is 

based on HOL packet delay. RBs are allocated to 

UEs in the order of highest HOL delay first, 

assuming that the eNodeB knows the delay of HOL 

packets. The number of RBs previously allocated to 

a UE is also considered, and the packet loss and 

fairness are improved.  

In the theoretical scheduling problem of [11], the 

flow whose HOL bit has spent the most time as an 

HOL bit, referred to as the HOL access delay, is 

scheduled first, resulting in throughput-optimal 

scheduling. This needs the knowledge of the time a 

bit becomes HOL and will primarily work with 

downlink flows unless there is some reporting 

mechanism to know this delay value from UE (or 

STA) to the eNodeB (or the AP). 

Though [10] and [11] consider HOL delay for 

scheduling, these algorithms cannot work in 

802.11ax because the scheduling algorithm at the 

AP does not know the time the packets have spent in 

the STA queues. To the best of our knowledge, our 

work is the first to estimate the deadlines of packets 

waiting in STA queues using the knowledge of 

temporal changes in STAs’ queue sizes. 

A greedy and recursive algorithm of splitting the 

channel into RUs for 802.11ax to maximize the total 

rate is given as a solution to the generalized 

scheduling and resource allocation problem by [12]. 

Again, the delay bounds for the traffic are not 

considered. 

With OFDM, the channels can be assumed non-

frequency selective, which makes the search space 

of RUs with such channels considerably smaller 

than with frequency-selective channels. Exploiting 

this fact, [3] use a Hungarian algorithm to match 

STAs with RUs to find an RU allocation that 

maximizes the data the STAs can upload parallelly 

in the current OFDMA slot, thus coming up with a 

schedule that minimizes the total upload time. This 

approach cannot work when the traffic is delay-

bounded because a STA with an earlier deadline but 

poorer channel condition than another STA will not 

get an RU in the current schedule and will 

experience a high packet drop rate of the delay-

Figure 4: Packet arrivals and departures in a queue. Shaded area shows 

the time-averaged queue-size. 
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bound traffic. Our approach is compared to this 

work in Section 4. 

3 ESTIMATING THE DEADLINE AND 

SCHEDULING WITH OFDMA 

In time-sensitive scheduling, a packet that has 

surpassed its deadline is useless and, hence, 

dropped. Thus, deadline-based OFDMA scheduling 

aims to minimize the number of such packet drops. 

This can be achieved by assigning an RU 

configuration to the list of STAs sorted according to 

deadlines so that the STA with the earliest deadline 

gets the largest RU in the RU configuration. The 

sorting needs to know the deadlines, but the AP does 

not know the exact per-packet deadlines nor the time 

they have spent in their queues. So, the AP needs to 

estimate the deadlines based on its knowledge of the 

delay tolerance of the AC of each STA's traffic. A 

lax strategy would be to set the deadline to the sum 

of the delay tolerance of the HOL packet’s AC and 

the current time, updating whenever the current time 

exceeds the maintained value of the deadline. We 

will refer to this method as LAX. 

For the AP to be able to estimate the deadlines 

better, it needs to adjust the deadlines according to 

the time a packet has spent in the queue (that is, the 

queueing time of the HOL packet), which might be 

different even for two STAs sending traffic of the 

same AC. The AP neither knows this time nor the 

instant when the packet has entered the queue. The 

STAs only report their queue sizes to the AP. 

Thus, to estimate the deadline, let us find the time a 

packet has spent in the queue. Little's theorem [13] 

relates the average delay 𝑇 of a packet in the system 

(the STA queue), the arrival rate 𝜆 of packets, and 

the average number of packets 𝑁 in the system as:  

𝑁 = 𝜆𝑇 (1) 

Little’s theorem assumes the system to be ergodic, 

which means that the system can go from any state 

to any state irrespective of the choice of initial state 

(i.e., in our case, whether the queue was initially 

empty or not), it can go to state 0 (i.e., the state with 

empty queue) infinitely often, and the state the 

system is in does not depend on the number of time 

steps. The theorem, however, does not make any 

assumptions on network topology, arrival process 

(i.e., how the packets arrive), service order (i.e., in 

what order the packets leave the queue), or service 

time distributions (i.e., how much time the packets 

spend in the queue). This means that Equation 1 can 

be used to estimate the average delay if the average 

number of packets and the arrival rate in the system 

at any particular time can be known. The time-

averaged number of packets in the queue in 

Equation 1 up to time 𝑡 is given as:  

𝑁 =
1

𝑡
∫ 𝑁(𝑡)𝑑𝑡

𝑡

0

(2) 

To derive a discrete expression for 𝑁 equivalent to 

Equation 2, consider Figure 4; curve 𝐴 shows the 

cumulative arrivals of packets in a STA's queue till 

time 𝑡, which, for simplicity,  can be obtained by 

joining the points 𝐴(𝑡𝑖) (cumulative arrivals till time 

𝑡𝑖) and  𝐴(𝑡𝑖−1)  (cumulative arrivals till time 𝑡𝑖−1) 

assuming that packets arrive with a constant rate 

within a slot. That is, we ignore the intermediate 

arrival pattern within the slot. Similarly, curve 𝐷 

shows the total number of packets that departed the 

STA queue till time 𝑡 where we join consecutive 

points considering only the values at slot 

boundaries.  The area of the shaded region then gives 

𝑁. 

The time-averaged number of packets in the queue 

given by Equation 2 is the sum of the time-weighted 

number of packets in each slot divided by time. 

Weights here are the variable lengths of the 

OFDMA slot. The area of the trapezoid in the slot 

[𝑖, 𝑖 − 1], bounded on left and right by the queue 

sizes reported in BSR by the STA at 𝑡𝑖 and 𝑡𝑖−1 and 

by the segments of curves 𝐴 and 𝐷 on top and 

bottom gives the time-weighted number of packets 

in any slot. Hence, the time-weighted average 

number of packets in the queue up to OFDMA slot 𝑖 

is: 

𝑁𝑎𝑣𝑔(𝑖) =
1

𝑡𝑖

∑
1

2
(𝑄(𝑡𝑠) + 𝑄(𝑡𝑠−1))(𝑡𝑠 − 𝑡𝑠−1)

𝑖

𝑠=1

(3) 

where 𝑄(𝑡𝑖) is the queue size reported by the STA 

at 𝑡𝑖. The average arrival rate at 𝑡𝑖 is the cumulative 

arrivals till time 𝑡𝑖 divided by 𝑡𝑖, and is given as: 

𝜆 =
𝐴(𝑡𝑖)

𝑡𝑖

(4) 

Using Equations 3 and 4 in Equation 1, the average 

packet delay in the system at slot 𝑖 is given as: 

𝑇𝑎𝑣𝑔(𝑖) = (
1

2𝐴(𝑡𝑖)
) ∑(𝑄(𝑡𝑠) + 𝑄(𝑡𝑠−1))(𝑡𝑠 − 𝑡𝑠−1)

𝑖

𝑠=1

(5) 

The AP deduces the instantaneous value of 

cumulative arrivals at a STA (𝐴(𝑡𝑖)) from the 
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current queue size reported by the STA to the AP in 

BSR (𝑄(𝑡𝑖)) and the number of packets received by 

the AP so far (𝐷(𝑡𝑖)). It then calculates the average 

delay experienced by the packets in the STA's queue 

using Equation 5. The AP subtracts the delay from 

the deadline value it maintains for the STA and gets 

an estimate of the remaining time until the deadline. 

The AP similarly maintains the deadlines for each 

associated STA.  

The AP does not know the number of packets 

dropped at a STA; it bases all its calculations on the 

queue sizes the STAs have reported and the number 

of packets it has received. Thus, the arrival rate 

value in Equation 5 is slightly underestimated. 

Though this approach is explained for one traffic 

category, our approach can be extended to more than 

one type of traffic by making the AP maintain per-

TID deadlines for each STA. 

The AP sorts all the STAs associated with it in the 

earliest deadline first order using the estimated 

deadlines of the HOL packets of the STAs and finds 

which RU configuration will result in the minimum 

number of packets dropped by all the STAs that are 

assigned RUs from the RU configuration. 

To select a particular RU configuration for 

assignment to the STAs, we first need to find, for 

each RU configuration, how many packets would 

drop when assigned. Thus, given the deadlines and 

the allowable MCS indexes for each STA, we find 

the total number of possible packet drops due to 

missed deadlines that we want to minimize for each 

RU configuration. First, let us derive the case 

without OFDMA. This is mostly what we discussed 

in [14], with detailed elaboration with the help of 

figures and more rationale behind the quantities used 

to derive the drop-time.  

Channel is assigned to STAs in the earliest deadline 

first (EDF) order. A STA 𝑖 needs a time 𝑡𝑖 = 𝐷𝑖 𝑅𝑖⁄  

(the STA upload time) to transmit its full queue with 

𝐷𝑖  amount of data in its queue at a link rate 𝑅𝑖 but 

will have to drop the remaining queue at deadline 𝑑𝑖. 

(with the assumption that all packets in the queue 

have the same deadline and get dropped at once 

when the deadline expires). If allowed to continue 

the transmission after its deadline, the STA would 

take an extra 𝐷𝑖 𝑅𝑖 − 𝑑𝑖⁄  time to transmit its 

otherwise dropped data. The number of packets 

dropped is then proportional to 𝐷𝑖 𝑅𝑖 − 𝑑𝑖⁄ , which 

we term as the drop time and define as the time to 

complete a transmission without considering the 

deadline minus time-to-deadline. Thus, instead of 

minimizing the number of packet drops, we can 

equivalently minimize the drop time.  

Considering other STAs in the list, we need to add 

to the transmission time the waiting time for each 

STA 𝑖 as follows, depicted in Figure 5. 

𝑥𝑖 = max (0, 𝑤𝑖 +
𝐷𝑖

𝑅𝑖

− 𝑑𝑖) (6) 

where the waiting time, since STAs transmit one 

after the other, can be recursively defined as either 

the deadline of the previous STA or the time when 

Figure 5: Drop-time without using OFDMA. Blocks 1, 2, 3 are the times required for transmission of a 
packet each of STAs 1, 2, and 3, respectively. Shaded regions are drop-times of STAs 2 and 3 
respectively. 
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the previous STA completes its transmission, 

whichever is earlier. This is given as: 

𝑤𝑖 = {

0,                                                   𝑖 = 1

min (𝑑𝑖−1, 𝑤𝑖−1 +
𝐷𝑖−1

𝑅𝑖−1

), 𝑖 ≥ 2
(7) 

 

Now consider OFDMA, with an OFDMA slot 

duration τ. We split the channel according to the 

method discussed in Section 2 and find for each RU 

configuration the possible waiting time and drop 

time for each STA when STAs are assigned RUs for 

the duration τ, as follows. Let a picked RU 

configuration consist of a sorted list of m RUs. RU 

1 is assigned to STA 1, RU 2 to STA 2, ..., RU m to 

STA m, in that order, so the first m out of n STAs (m 

≤ n) get an RU. Note that our assignment is not 

bipartite matching because the AP keeps the STA 

list also sorted according to the estimated deadlines, 

and we only assign the first m STAs to m RUs of the 

RU configuration in question. Each STA i transmits 

at a rate 𝑅′𝑖 , where 𝑅′𝑖  is the rate of STA i in RU i, 

in parallel with other STAs in the OFDMA slot, 

possibly with a higher sum rate across all RUs than 

the rate of the whole channel (as explained in 

Section 2). STA i transmits 𝑅′
𝑖 ∙ 𝜏 amount of data in 

the OFDMA slot out of its queue size 𝐷𝑖 , and the 

further time needed to upload the remaining data is 

(𝐷𝑖 − 𝑅′
𝑖 ∙ 𝜏) 𝑅𝑖⁄ . Maximizing the value 𝑅′

𝑖 ∙ 𝜏 

minimizes the time to upload the remaining data for 

STA i and consequently minimizes the STA’s drop 

time and the waiting time of STAs that follow STA 

i. The drop time with OFDMA then changes from 

𝑥𝑖  to 

𝑥𝑖̅ = (0, 𝑤𝑖̅̅ ̅ +
𝐷𝑖 − 𝑅′

𝑖 ∙ 𝜏

𝑅𝑖

− 𝑑𝑖) (8) 

Where the waiting time with OFDMA for each 

successive STA i calculated recursively is: 

𝑤𝑖̅̅ ̅ = {

𝜏,                                                                 𝑖 = 1

min (𝑑𝑖−1,
𝐷𝑖−1 − 𝑅′

𝑖−1 ∙ 𝜏

𝑅𝑖−1

+ 𝑤𝑖−1̅̅ ̅̅ ̅̅ ) , 𝑖 ≥ 2
(9) 

Parallel transmission in the OFDMA slot reduces 

each STA’s waiting time and drop time compared to 

the non-OFDMA case. This is explained as follows. 

Waiting time 𝑤𝑖  depends on whether each STA i, i 

= 1, 2,…, i-1 has completed its upload within its 

deadline or has continued the transmission till its 

deadline, at which time its remaining queue is 

dropped. Thus, with OFDMA, when all STAs 1, 2, 

..., i - 1 complete their uploads before their 

deadlines, the maximum reduction in 𝑤𝑖  in the best 

case is (∑
𝑅′

𝑘∙𝜏

𝑅𝑘

𝑖−1
𝑘=1 ) − 𝜏, and subsequently the best-

case reduction in drop time for STA i is 

(∑
𝑅′

𝑘∙𝜏

𝑅𝑘

𝑖
𝑘=1 ) − 𝜏. In the worst case, when each of the 

STAs 1, 2, ..., i-1 consumes full time till its deadline, 

the reduction in drop time of STA i is 

(𝑅′
𝑖 ∙ 𝜏 𝑅′𝑖⁄ ) − 𝜏. Note that since the sizes of the 

RU configurations in the number of RUs differ, it is 

possible in a particular UL MU transmission that 

some STAs at the end of the sorted list do not get 

any RUs. 

We use the deadlines thus estimated and the drop 

times in our UL MU OFDMA scheduling algorithm, 

which we describe next. In the first step of our UL 

OFDMA scheduling algorithm, the AP collects 

queue sizes from the BSRs of all STAs, calculates 

the delay of each STA’s HOL packet using Equation 

5, and estimates the deadlines by subtracting the 

delays from all STAs’ deadline values it maintains. 

The AP then sorts the STAs according to the 

deadlines. In the second step, the AP uses Equation 

9 to calculate the drop times each RU configuration 

of m RUs would result in when assigned to the first 

m STAs from the list. The AP picks the RU 

configuration that results in minimum total drop 

time across all STAs. 

The sorting of n STAs needs O (n log n) time. The 

second step performs an exhaustive search for the 

best RU configuration, and thus, its time complexity 

is equal to the number of possible RU configurations 

M. Considering our discussion in Section 2 about 

splitting the channel, M is equal to the total number 

of allowed ways a channel can be divided, removing 

the identical RU configurations. Thus, the worst-

case complexity is O (n log n + M). 

4 SIMULATION AND RESULTS 

This section evaluates our OFDMA scheduling that 

works with our deadline estimation algorithm. The 

algorithm consists of two parts, as explained in 

Section 3: In the first part, the AP estimates the 

deadlines based on the queue size information, and 

in the second part, the AP uses the estimated 

deadlines to sort the STAs and assigns an RU 

configuration that minimizes the drop times. 

Accordingly, our evaluation also goes in two parts: 

1) we understand how much the deadlines estimated 

with our deadline-estimation method conform to the 

actual HOL deadlines, 2) we evaluate the 

performance of the scheduling algorithm in terms of 
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number of packets dropped at STAs when the AP 

runs it to schedule RUs, and the STAs send their UL 

traffic in their allotted RUs, while also dropping any 

packets that cannot be sent within their deadlines. 

We take a simple one STA - one AP network for the 

first part of the evaluation. The traffic model we take 

is simply CBR traffic with the goal of keeping the 

STA’s buffer full all the time so that packets 

experience queuing delay. This goal is achieved by 

keeping the arrival rate higher than the link rate. We 

set the delay tolerance value at 20 ms, a typical value 

for IoT traffic. Every packet that enters the queue at 

the STA has a deadline associated with it, which is 

set equal to the current time plus delay tolerance. We 

refer to the deadline value of the HOL packet in the 

queue as the actual deadline. The AP maintains a 

deadline variable for the traffic coming from the 

STA, initializes it to the current time plus the delay 

tolerance of the STA’s traffic type, and updates the 

value by subtracting the delay using Equation 5 

whenever it receives a BSR. When the current time 

exceeds the current value of the deadline variable at 

AP, the AP reinitializes the variable again to the 

current time plus delay tolerance value. At this time, 

it also infers that the packets are dropped in the 

STA’s queue due to the passing of the deadline and 

resets all the variables, such as the previous queue 

size and the arrival rate till now, used in Equation 5 

to estimate the deadline. 

Figure 4 shows, as time passes, how the values of 

the deadline estimated by AP with our estimation 

algorithm (depicted as ESTIMATE-1) compare with 

the actual deadline value of the HOL packet 

(denoted GROUND-TRUTH). There are two more 

variants. In LAX, the AP does not consider the time 

the packet has spent in the queue to modify the 

deadline at AP; it simply re-initializes the deadline 

value whenever the current time surpasses the stored 

value of the deadline. 

ESTIMATE-2 is the same as ESTIMATE-1, with a 

slight variation in that the variables are not reset 

when the deadline is reinitialized. Thus, 

ESTIMATE-2 bases its estimation on previous 

values of queue sizes, while ESTIMATE-1 

calculates the estimates anew every time the 

deadline is re-initialized. The curves show that 

ESTIMATE-1 tries to converge towards the 

GROUND-TRUTH more often. In contrast, 

ESTIMATE-2, after initially showing some 

fluctuations, steadily follows the GROUND-

TRUTH with a constant offset, thus maintaining a 

fixed error in the estimated deadline. We will return 

to their effect on scheduling performance when we 

analyze our results after discussing the following 

second and central part of the evaluation. 

4.1 Simulation with custom simulator and 

results: 

To evaluate the performance of our OFDMA 

scheduling, we set up a 20-node network, where 

each node wants to send UL traffic to the AP. For 

now, we assume all nodes can transmit at MCS 8. 

This gives a maximum link rate of 97.5 Mbps in 20 

MHz channel. Later, we will see the performance by 

varying the MCS values. We run the simulations for 

one second, and each simulation is divided into 0.1 

ms ticks, which are used to synchronize various 

simulation events like packet arrivals, sending, and 

drops. One second simulation time gives 10,000 

Figure 6: Estimated deadlines with three approaches. The fourth 

(GROUND-TRUTH) is for comparison. 
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ticks, a sufficiently large value for observing the 

behavior of various events. 

We evaluate two different traffic models. The first 

traffic model is full buffer UL traffic from each 

node, where we want to determine how different 

delay tolerance values and BSR periods affect the 

packet drop. The second is the real IoT traffic model, 

where each node generates the traffic as specified in 

[14]. 

1) Results with full buffer traffic model, varying the 

delay tolerance and BSR period: We set our first 

traffic model as follows. All the nodes generate the 

same traffic, with packets of mean size 200 B 

arriving with a mean interarrival time of 0.1 ms, thus 

ensuring that, on average, one packet arrives every 

tick. This traffic model ensures a full buffer at each 

STA by setting the arrival rate well above the link 

rate (97.5 Mbps) of the whole channel. (Note that 

the sum of rates of RUs after splitting the channel 

might be larger than the whole channel rate, so we 

need to keep the arrival rate accordingly high). The 

mean packet size is arbitrary and can be anything 

that, coupled with the interarrival rate, can keep the 

STA queues full. As described below, all nodes have 

the same delay tolerance and BSR period values, 

which we vary for different simulations. Figure 7 

gives the percentage of total bytes dropped due to 

missed deadlines across all STAs out of the total 

packets sent for two different rescheduling intervals 
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delay tolerance of the AC is 5 ms, with different scheduling 

intervals for full buffer traffic. 
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schedule after every 5 OFDMA slots for full buffer traffic.  



International Journal of Intelligent Systems and Applications in Engineering                         IJISAE, 2020, 8(4), 329–345  |  339 

 

for all traffic having the same delay tolerance. 

Similarly, Figure 8 gives the bytes dropped for two 

values of delay tolerance for a fixed schedule update 

period. DEADLINE-1 and DEADLINE-2 show the 

results for our algorithm with the two methods of 

deadline estimation, ESTIMATE-1, AND 

ESTIMATE-2, respectively, as discussed above. 

GROUND-TRUTH shows, for comparison, the best 

possible performance when we separately provide 

the AP with the ground truth – the actual deadlines 

of HOL packets in STA queues. Note that such 

provision of deadline values to the AP is only 

possible in our custom simulator but not in the real 

world. The leftmost UPLOAD-OPT is our 

implementation of [3], for which the goal of 

scheduling is to minimize the total upload time of 

the traffic and does not consider packet deadlines.  

Figures 9a and 9b show the median percent of 

packets dropped (with error bars showing the 

minimum and maximum values) each for 100 runs 

of simulations with the traffic described above, with 

delay tolerance values of 20 ms and 50 ms, 

respectively. With more considerable delay 

tolerance values, our algorithms perform the same 

way as GROUND-TRUTH. Then, in Figure 6, we 

reduce the delay tolerance value to 5 ms. Though 

still better than UPLOAD-OPT, our algorithms 

seem to perform similarly to the LAX when 

OFDMA scheduling (i.e., assignment of RUs as per 

the deadline-based algorithm) is done every 5 

OFDMA slots (Figure 7). When we reduce re-

scheduling periodicity to 2 OFDMA slots, 

DEADLINE-1 outperforms LAX and DEADLINE-

2. Thus, our proposed algorithms can reduce the 

number of packets of the delay-bound traffic that 

miss their deadline and get dropped, compared to 

when scheduling is done merely to minimize the 

overall upload time. This happens better when 

OFDMA is rescheduled frequently with a period less 

than the delay tolerance of the traffic being 

scheduled.  

2) Results with factory IoT traffic model: Next, we 

describe simulation where ten nodes send real 

factory IoT traffic, with delay tolerance values from 

as low as 0.5 ms to as high as 200 ms, and low data 

rates ranging from 40 Kbps to 4.6 Mbps, as per the 

specifications in [15]. Apart from IoT traffic, we 

also include ten other nodes to send video, voice and 

best-effort traffic in the form of VoIP, video 

conferencing and FTP traffic. The VoIP is a low rate 

traffic (around 13 Kbps) where packets have a delay 

tolerance of 50 ms. The video conferencing packets 

are bigger (around 7 KB) but have no delay 

requirements, and the traffic has a data rate of 2 

Mbps. FTP traffic is a single big file upload and does 

not have any deadline, while data e rate may reach 

up to 16 Mbps. Detailed specifications can be found 

in [14] and [16]. Our simulation aims to evaluate the 

performance of our scheduling algorithm in a typical 

factory setting, where the same Wi-Fi supports the 

factory IoT traffic and the employees’ internet 

browsing traffic. Again, we use 20 node network 

with each node transmitting at MCS 8, but this time, 

14 nodes send delay-bound traffic, and six nodes 

send FTP and video conferencing traffic that is not 

delay-sensitive, as described in detail in [14-16]. 

The simulation is divided into time ticks of 0.1ms. 

 

 

 

Figure 9: IoT Traffic: (a) PDF of magnitude of error in deadline estimation, and (b) Fraction of bytes 

dropped due to crossed deadlines, across different MCS schemes. 
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Packets following a lognormal distribution to select 

their sizes with the mean values given for each 

application arrive at each STA with an inter-arrival 

time following an exponential distribution for each 

STA [14]. The packets also possibly get dropped 

from the front of the queue at every tick if they have 

surpassed their deadline. Packets are sent in every 

OFDMA slot, with the OFDMA slot taken as 1 ms. 

In this simulation, BSR reports are sent every 5 

OFDMA slots.  

Figure 9 shows the bytes dropped by all the nodes 

with delay-bound IoT traffic by employing various 

scheduling algorithms for various MCS indexes.  

 Analysis and Explanation of Results: 

To understand how our deadline estimation 

algorithms affect the packet drops, we show the PDF 

of the absolute error value in deadline estimation 

(Estimated Deadline minus Actual Deadline) for the 

above simulation in Figure 9a. The PDF graphs 

show that error magnitudes are more prevalent at 

specific values for LAX (indicated with higher 

peaks), whereas curves are smoother for the two  

variants of our algorithms. Our algorithm takes on 

intermediate estimated values before updating the 

deadline to the next value. In contrast, LAX jumps 

to the next deadline value whenever the current time 

crosses the deadline. This means that the LAX’s 

estimation of the deadline deviates more often for 

some STAs than others, resulting more often in 

incorrect sorting of STAs by the scheduling 

algorithm.  

We also want to see how our proposed algorithm 

performs with different channel conditions. We 

investigate 5 MCS schemes: 1) MCS-Increasing: 

STAs use MCS values from 2 to 9, some with the 

same MCS value. The STAs with most stringent 

delay constraints have the lowest MCS, 2) MCS-

Decreasing: STAs are assigned MCS in decreasing 

order. Those STAs with the earliest deadlines have 

the best channel conditions, 3) MCS-2, 4) MCS-5, 

and 5) MCS-8, where all STAs transmit at MCS 2, 

5, and 8, respectively. Figure 9b shows these results, 

consistent with our previous finding, that our 

algorithm performs very close to the GROUND-

TRUTH. In each case, the number of packet drops 

due to the deadline with our algorithms is less than 

that with the UPLOAD-OPT algorithm. 

For MCS-Decreasing, the STAs with the earliest 

deadline have the best MCS (9). This renders the 

minimization of drop time to the minimization of 

upload time; hence, the results are the same for our 

algorithms and the UPLOAD-OPT algorithm. The 

reason lies with the selection of RU configuration 

that, the algorithm decides, would give the smallest 

drop-time, as discussed in Section 3. With this MCS 

scheme, and also for scheme MCS-5, the RU 

configuration our algorithm picks is {RU106, 

RU106, RU26}. The algorithm splits and moves to 

a higher RU configuration only if the resulting RUs 

while transmitting at the same transmit power in 

each RU, allow for higher MCS, which is not always 

the case, as can be seen by examining the 802.11ax 

SNR-MCS table [17]. Thus, the selected RU 

configuration, which our simulation selects most of 

the time, allows only the first three STAs in the 

sorted list, therefore making all other STAs miss 

deadlines and drop data. 

A similar observation is made with MCS-5. The 

scheduling algorithm chooses the same RU 

configuration as above more frequently. Still, it 

occasionally chooses other RU configurations with 

more RUs this time. Therefore, the packet drop rate 

remains higher than other MCS schemes, as shown 

in Figure 9b. 

Simulations with our implementations of deadline 

estimation perform better than UPLOAD-OPT. But 

the performance is always worse than GROUND-

TRUTH across all MCSs. This is because our 

estimation sometimes deviates from the actual value 

due to the AP’s dependence for estimation solely on 

the queue size the STA reports in BSR. The final 

value of the queue size visible to the AP is the 

number of packets arrived minus the sum of the 

packets dropped and sent by the STA, but the AP 

separately does not know how many packets the 

STA has dropped. Thus, based on the queue size it 

sees, the AP underestimates the number of arrivals 

and, hence, the arrival rate at STAs, which 

subsequently results in an error in the estimation of 

the average delay of packets in the STA queue. 

 Another observation worth mentioning from our 

simulations of random full-buffer (Figures 7 and 8) 

and IoT (Figure 9) traffics is that there is a trade-off 

between DEADLINE-1 and DEADLINE-2 

variations. DEADLINE-1 works better when 

deadlines are identical across the competing traffic 

flows (for example, in Figures 7 and 8, we select 

only one of 5, 20, and 50ms delay tolerance values 

for all the nodes). At the same time, DEADLINE-2 

is superior (Figure 9) when the deadlines are diverse 
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across the flows. To understand why, let us revisit 

Figure 6. The DEADLINE-1 follows the GROUND-

TRUTH deadline curve with a constant offset after 

time 0.04 ms. This means that when all the flows 

have the same delay tolerance values, either of the 

two deadline estimation methods, DEADLINE-1 or 

GROUND-TRUTH, gives the same ordering in the 

sorted list of STAs after 0.04 ms. This makes the 

(a) Maximum delay 20 ms for each STA. (b) 

(c) With small maximum delay (4 to 6 ms) 

for each STA. 

(d) 

(e) With big maximum delay (40 to 60 ms) 

for each STA 

(f)  

Figure 10: ns-3 simulations with full-buffer UL traffic: Fraction of packets expired (a, c, and e), and CDF 

of error in deadline estimation (b, d, f) for a particular run of the bars of plots a, c, and e, respectively. 

(a) Fraction of packets expired. (b) CDF of percentage error.  

 Figure 11: ns-3 simulations with IoT traffic: Packets dropped and CDF of percentage error  
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results obtained with the two methods very close in 

Figures 7 and 8. On the other hand, the deadline 

curve ESTIMATE-2 in Figure 6 repeatedly takes 

intermediate values between ESTIMATE-1 and 

GROUND-TRUTH, due to which it becomes more 

suitable for the cases when traffic flows have diverse 

delay tolerance values, and the AP gets the estimate 

of the deadline of each flow closer to its actual 

values, as shown in Figure 7. 

Reserving the RUs for STAs that have deadlines 

may cause starvation of others with no deadline. We 

simulate the latter as STAs with huge deadlines. 

Figure 10 shows that the six no-deadline STAs could 

send little or no data; in the same simulation, we 

have shown the packet drops for the delay-bound 

traffic nodes in Figure 7. DEADLINE-2 variation of 

our algorithm allows sending some no-deadline 

traffic, as does the GROUND-TRUTH. This 

happens because our algorithm and the GROUND-

TRUTH allow the STAs to send most of the 

deadline-bound traffic on time, which causes the 

queues of STAs having deadlines occasionally 

empty, giving some chance to no-deadline STAs. 

Starvation can be easily handled if we allocate one 

or a few RUs for random access and allow the STAs 

with best-effort (no deadline) traffic to contend for 

the channel as usual within the random access RUs. 

4.2 Ns-3 Implementation and Results: 

We implemented the proposed OFDMA scheduling 

scheme and the deadline estimation algorithm in the 

ns-3 [18] branch maintained by Stefano Avallone 

[19]. 

The current ns-3 implementation has two 

assumptions that we removed. One is that all RUs 

should be of equal sizes, taken for simplicity of 

implementation. The other is that RUs are assigned 

in a round-robin manner to the STAs requesting UL 

traffic. 

Multiple ways of splitting the channel allowed in 

802.11ax, as described in Section 2, give rise to 

various possible RU configurations where each RU 

configuration has RUs of different sizes. We 

implement our scheduling by replacing the round-

robin allocation with our allocation, where we pick 

the best RU configuration according to our criterion 

of lowest drop time, as discussed in Section 3. We 

then assign the RUs from the selected RU 

configuration to the STAs in the order of the earliest 

deadline. 

In the following sections, we show the results for 

full buffer traffic and IoT traffic. 

1) Results with full buffer traffic model. We take 

nine nodes and consider three maximum delays that 

define the deadline: with maximum delays of 20 ms 

for each STA, with small maximum delays (four 

nodes with 4 ms max delay, three 5 ms delay, and 

three 6 ms delay), and with large maximum delays 

(similarly with 40, 50, and 60 ms delay values). 

These values are set to the MSDU Life Time 

attribute of the Wi-Fi Mac Queue; the queue drops 

an MSDU whose MSDU Life Time value has 

expired. Each node sends 1472-byte UDP packets to 

the AP at a 20 Mbps rate. This makes a full buffer 

UL traffic from each STA, assuming each STA uses 

VHT MCS 8 that allows for a PHY rate of 86.7 

Mbps in a 20 MHz channel at a guard interval (GI) 

of 0.4 𝜇s. 

Figure 10 shows the fraction of packets that expired 

out of the total of expired and received packets due 

to passed deadlines in STA queues. Each of the bars 

in the figures shows results when each STA 

transmits with increasing MCS values, decreasing 

MCS values, or with MCS 2, 5, or 8, respectively. 

For each MCS scheme, we compare the results for 

the simulation with our algorithm of minimization 

of drop time with deadline estimation (labeled 

DEADLINE ESTIMATION) and the existing 

algorithm of minimization of upload time according 

to [3] (denoted UPLOAD OPTIMIZATION that 

stands for minimum upload time). Results with our 

algorithm are, in general, better than UPLOAD 

OPTIMIZATION. We also show the error variation 

in estimating the deadline for each of the three cases. 

2) Results with IoT traffic model. The IoT traffic 

model consists of the same traffic model [14] used 

above in our custom simulation, which also shows 

the per-STA deadlines, which are the same as the 

maximum delays after which a packet in the queue 

expires. Figure 11 shows the fraction of packets that 

expire when IoT traffic is scheduled with deadline 

estimation (DEADLINE ESTIMATION) and 

without (UPLOAD OPTIMIZATION), both for 

different MCS schemes described above.  

Analysis and Explanation of ns-3 Results:  

Our results with ns-3 simulation (Figures 10 and 11) 

conform to our hypothesis that the deadline 

estimation algorithm (DEADLINE ESTIMATION) 
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performs much better than the throughput 

optimization (UPLOAD OPTIMIZATION). For 

some cases, the deadline estimation shows worse 

results than the minimum upload time first 

algorithm, for example, at MCS 8 for the IoT traffic 

in Figure 11. The reason is that the buffers are full 

more often for no-deadline STAs (VoIP and file 

transfer) than for IoT STAs with small deadlines, 

and the deadline estimation, which heavily depends 

on reported queue sizes, could accurately calculate 

the deadlines when queues are substantially full. Our 

results demonstrate that the highest number of 

delay-bound packets can successfully meet their 

deadlines when the AP performs two tasks: 1) it 

gives priority to the HOL packets with the earliest 

deadlines while assigning OFDMA RUs, and 2) it 

selects RUs to assign after searching the list of RU 

configurations for an RU configuration that gives 

the least packet drops (for which we designed the 

metric drop time). 

The best possible deadline-based OFDMA 

scheduling is achieved when AP knows the exact 

deadlines of the waiting HOL packets. We 

recommend modifying the 802.11 standard to 

include the HOL packet’s time of entry into the 

queue or HOL delay in MPDU headers. The headers 

have reserved fields that can be utilized for this 

purpose. Nevertheless, our metric of drop time will 

still be relevant, which the AP will need for 

searching for the best RU configuration. 

A Remark about Starvation: 

Reserving the RUs to provide scheduled UL 

OFDMA access to STAs that have deadlines may 

cause starvation of STAs without deadlines. We 

model the latter as STAs with arbitrarily large 

deadlines in all our simulations. DEADLINE-2 

variation of our algorithm allows sending some no-

deadline traffic, as does the GROUND-TRUTH. 

This happens because our algorithm and the 

GROUND-TRUTH allow sending most of the 

deadline-bound traffic on time, which makes the 

queues of STAs with deadlines occasionally empty, 

giving some chance to no-deadline STAs. 

Reservation was better handled when, from every 

RU configuration that we assigned, we allocated one 

or a few RUs for random access and allowed 

contention-based access to the STAs with best-effort 

(no-deadline) traffic. 

5 CONCLUSION 

Guaranteeing packet delivery within deadlines is 

essential to support time-sensitive networking in 

802.11 WLANs. We convert the problem of 

ensuring the packet deadlines to the problem of 

minimizing packet drops due to deadlines, for which 

OFDMA emerges as an enabler technology. Since 

the deadlines are not readily available, our algorithm 

of deadline estimation enables the AP to estimate the 

deadlines from the queue sizes it receives in BSRs 

from STAs, a feature introduced in 802.11ax. We 

find that more frequent reporting of BSRs is 

required to assess the deadlines correctly for the 

flows with smaller delay tolerance values. 

We calculate per-STA drop times, the time needed 

to transmit the packets that would have been 

dropped due to expired deadlines, after arranging 

STAs in earliest-deadline-first order using our 

estimated deadlines. We simulate both with our 

custom simulator and with ns-3 and find that 

OFDMA scheduling with minimization of drop 

times reduces the number of packets dropped due to 

past deadlines at STAs. 

The AP can best schedule according to deadlines 

when it knows the ground truth – the deadline of 

every HOL uplink packet, which can be realized 

only when the 802.11 standard includes some way 

of reporting to the AP the amount of time the HOL 

packet has spent in the STA queue. In that case, as 

we have shown in our implementation of the 

scheduling with the knowledge of ground truth, the 

number of packets dropped due to expired deadlines 

will be lower than that obtained with our estimated 

deadlines. Nevertheless, our results with the 

scheduling that minimizes drop times using 

estimated deadlines are close to those obtained with 

the knowledge of ground-truth deadlines. 

In future work, we will investigate the performance 

of our scheme when applied with aggregation and 

block ACK that prevents starvation of non-delay 

bound STAs, for which we proposed one solution as 

reserving the random access RUs so that the same 

Wi-Fi can be used for both the delay-bound traffic 

and the best effort traffic. 
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