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Abstract: The increasing reliance on cloud computing has escalated energy consumption and environmental 

concerns, necessitating innovative solutions for energy efficiency in data centers. This paper presents a novel 

framework, CFWS (Cloud Framework for Workload Scheduling), designed to optimize energy costs while 

promoting the use of renewable energy sources (RES) across multiple cloud data centers. By integrating Green 

computing GC) CFWS employs an adaptive threshold adjustment method, TCN-MAD, which evaluates the 

likelihood of physical machine (PM) overload. This proactive approach minimizes unnecessary virtual machine 

(VM) migrations and reduces the risk of service level agreement (SLA) violations stemming from workload 

imbalances. Additionally, CFWS innovatively represents VM migrations among geo-distributed data centers as 

flattened indices within its GC action space, significantly enhancing execution efficiency. Simulation results 

indicate that CFWS outperforms existing algorithms, achieving a 5.67% to 13.22% reduction in brown energy 

consumption while maximizing RES utilization. Furthermore, the framework reduces VM migrations by up to 

86.53% and maintains the lowest SLA violations, demonstrating its effectiveness in optimizing energy 

efficiency in cloud computing environments. This research contributes valuable insights into green computing 

practices, promoting sustainable energy management in the cloud industry. 

Keywords: cloud data centers, energy cost, renewable energy, resource allocation, workload shifting. Green 

computing. 

INTRODUCTION 

The extensive use of cloud computing 

technology is accelerating the growth and quantity 

of data centers (DCs), leading to an increasingly 

pressing energy consumption dilemma. The Energy 

Information Administrator (EIA) report [1] 

forecasts that by 2040, global data centers will 

consume a staggering 95 TWh of energy, doubling 

the amount seen in 2020. The repercussions of such 

substantial energy usage are twofold. On one side, 

data center operators face soaring costs, with 

millions more spent annually due to soaring energy 

demands. Conversely, the excessive energy 

consumption poses significant threats to the 

environment. A McKinsey report [2] underscores 

that cloud data centers were responsible for a 

notable portion of the world’s CO2 emissions in 

2018, with estimates suggesting this could escalate 

by 2040. Hence, optimizing carbon emissions 

deserves urgent focus. 

Current research suggests that enhancing 

resource utilization through workload shifting is a 

promising strategy to alleviate the exorbitant 

energy expenses and carbon footprints associated 

with data centers. One effective technique involves 

adaptive overload detection, which employs multi-

thresholds or regression-based adjustments to better 

align with fluctuating workload patterns, thereby 

averting service level agreement (SLA) breaches 

[3] through preemptive virtual machine (VM) 

consolidation from overloaded physical machines 

(PMs). To achieve this, over-utilized resources can 

be transitioned to a select few active PMs, while 

the others can be shifted into low-energy standby 

mode [4]. Despite its potential, erratic workloads 

and imprecise threshold settings may still result in 

energy waste or increased SLA violations. 
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Figure 1: Energy Efficiency and Carbon Reduction in Cloud Data Centers through CFWS Framework 

Another viable strategy to counteract the 

energy crisis and mitigate environmental 

repercussions is the scheduling of resources based 

on renewable energy sources (RES). Major tech 

companies like Apple and Facebook have 

successfully reached carbon neutrality through their 

solar-powered data centers [5]. This can be 

executed by reallocating workloads to more 

affordable or eco-friendly data centers; however, 

the variability in electricity prices and carbon 

footprint rates across time and location complicates 

the decision-making process. While current 

heuristic algorithms aimed at reducing costs and 

carbon emissions strive to maximize RES usage 

[6], they often involve numerous computationally 

complex and dynamic hyperparameters. Deep 

reinforcement learning (DRL) is increasingly seen 

as vital for crafting self-sustaining resource 

management algorithms in these fluctuating cloud 

landscapes [7], as it can adaptively modify agent 

behaviors in response to environmental changes 

and optimize resource distribution. Nonetheless, 

migrating VMs across geographically distributed 

centers typically requires traversing all data centers 

and PMs to formulate a consolidation strategy, 

which complicates the learning and precise 

representation of value functions or policies in 

high-dimensional spaces, leading to issues of 

scalability and responsiveness. 

In this manuscript, we introduce an 

innovative framework called CFWS, grounded in 

Deep Reinforcement Learning (DRL), aimed at 

striking a balance between energy expenditure and 

carbon emissions via workload redistribution. 

CFWS is capable of dynamically adjusting the 

upper limit to identify overloaded Physical 

Machines (PMs), thereby reducing performance 

degradation, and subsequently devising a DRL 

strategy to facilitate Virtual Machine (VM) 

migration, enhancing energy efficiency. The key 

contributions of this paper are as follows: 

We propose a multi-faceted workload 

shifting system, CFWS, where a smart DRL-driven 

VM migration is applied, taking into account the 

fluctuating electricity rates and the varying carbon 

footprint rates (CFRs) across geographically 

dispersed cloud data centers to alleviate energy 

expenses and carbon emissions while maximizing 

the use of renewable energy sources (RES). We 

introduce an adaptive PM overload detection 

algorithm named TCN-MAD, which synergizes the 

capabilities of a temporal convolutional network 

(TCN) and median absolute deviation (MAD) to 

refine the threshold adjustment by incorporating 

both temporal dynamics and workload distribution, 

thus preventing unnecessary migrations and 

significant SLA breaches. We present a DRL-

oriented VM migration technique that incorporates 

a streamlined index within the action space of 
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DRL, simplifying the depiction of potential 

migration actions by designating a distinct index to 

each possible destination, enabling cost- and 

carbon-conscious VM migration strategies while 

reducing complexity and computational demands 

compared to existing methodologies. We assess the 

CFWS against realistic data center configurations, 

benchmarking it against four cutting-edge 

algorithms. Performance evaluations indicate that 

our proposed algorithm can significantly lessen 

reliance on brown energy by optimizing RES 

utilization. Additionally, CFWS effectively 

navigates the trade-off between energy costs and 

carbon emissions, while simultaneously 

minimizing VM migrations and achieving a lower 

likelihood of SLA violations within an efficient 

execution timeframe. 

The remainder of this paper is structured as 

follows. Section 2 examines related literature and 

identifies their shortcomings. Section 3 presents the 

system model. Section 4 elaborates on the proposed 

workload shifting framework CFWS. Section 5 

encapsulates the simulation results and contrasts 

them with leading-edge approaches. Finally, 

Section 6 wraps up the paper and outlines future 

research directions. 

RELATED WORK 

Shifting workloads via the consolidation of 

virtual machines is regarded as a hopeful strategy 

for reducing energy expenses and minimizing 

carbsaon footprints. This segment divides earlier 

studies into three categories: adaptive overload 

identification, renewable energy source-based 

resource allocation, and deep reinforcement 

learning-driven workload redistribuaction. 

Adaptive Overloaded Detection 

Numerous studies have concentrated on 

various threshold-based methods for overloaded 

detection to accommodate fluctuating workload 

patterns with the aim of energy conservation. [6] 

introduced a dual-threshold strategy that 

categorizes hosts into three main groups using 

interquartile range analysis, proficiently capturing 

and examining diverse levels of host utilization for 

enhanced energy management. [8] proposed a 

refined adaptive threshold classification approach 

utilizing the least median square regression 

technique, facilitating resource migration among 

four separate groups to achieve optimal SLA 

adherence and energy efficiency. However, these 

reactive strategies overlook the latest workload 

trends. As a result, PMs with inconsistent requests 

must allocate a significant amount of resources for 

prolonged periods, which hinders the advancement 

of energy-efficient management techniques. 

In this context, regression-based strategies 

utilize statistical analysis methods to modify 

utilization thresholds as needed. [9] Presented the 

stochastic gradient descent technique for 

proficiently identifying overloaded hosts, while 

also crafting an energy-conscious VM selection 

policy grounded in anticipated minimal utilization. 

[10] offered a proactive mechanism for adjusting 

upper CPU utilization, employing a statistical 

dispersion measure that attributes greater weights 

to values with more substantial deviations from the 

median. [11] introduced a location-conscious VM 

consolidation method (LECC) for geo-distributed 

cloud data centers, which assesses various 

overloaded detection techniques beforehand and 

subsequently selects the data center with the least 

carbon output and cost for VM migrations. 

Nevertheless, the previously mentioned methods 

may encounter difficulties in accurately forecasting 

requests with significant fluctuations that display 

considerable noise within the data, resulting in 

unwanted VM migrations and SLA infractions. 

RES-based Resource Scheduling 

In light of the escalating energy expenses 

and the growing carbon footprints associated with 

enhanced computational capabilities, data centers 

spread across various locations and powered by 

renewable energy sources have gained significant 

traction. [12] introduced a geographical load 

balancing algorithm named GreenPacker, which is 

attuned to renewable energy source availability and 

fluctuating electricity rates for resource scheduling 

that is conscious of costs. 13] crafted a pioneering 

workload management approach that tackles the 

issue of carbon emissions by favoring cloud data 

centers with ample renewable energy sources or 

minimal carbon footprints in multi-cloud settings. 

Nevertheless, it is crucial to acknowledge that 

striving to optimize both objectives simultaneously 

frequently results in a clash, as data centers with 

lower electricity costs may experience elevated 

carbon footprints, thus undermining cost-sensitive 

algorithms. 
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Table 1 Optimization Objectives Of Workload Shifting Algorithms 

Study 

Reference 

Efficiency Operational 

Cost 

Emissions 

Reduction 

Dynamic 

Control 

Predictive 

Control 

Renewable 

Integration 

Machine 

Learning 

Approach 

[6] ✓ 
  

✓ 
   

[8] ✓ 
  

✓ 
   

[9] ✓ 
 

✓ 
    

[10] ✓ 
  

✓ ✓ 
  

[11] ✓ ✓ ✓ ✓ ✓ ✓ 
 

[12] ✓ ✓ 
   

✓ 
 

[13] ✓ 
 

✓ 
   

✓ 

[15] ✓ ✓ ✓ 
   

✓ 

[16] ✓ ✓ ✓ 
  

✓ ✓ 

[17] ✓ 
    

✓ 
 

[18] ✓ ✓ 
   

✓ ✓ 

This 

Paper 
✓ ✓ ✓ 

  
✓ ✓ 

 

On the other hand, various studies are 

focusing on crafting strategies to align these dual 

objectives. [14] introduced an optimization 

function that takes into account both electricity and 

carbon expenses while adhering to task deadline 

limitations, integrating the idea of application 

brownout and batch task delays to enhance the 

utilization of renewable energy sources (RES). [15] 

proposed a two-phase approach to tackle the energy 

fluctuations arising from geographically distributed 

RES generators, assessing the environmental 

impact of each energy source through the average 

carbon emission rate and creating a distribution 

power model aimed at reducing overall energy 

expenditures. However, the previously mentioned 

approaches may struggle to adapt to fluctuating 

workload patterns, resource availability, and 

system dynamics, which could result in 

unwarranted migrations. 

DRL-based Workload Shifting 

The technology of workload shifting driven 

by Deep Reinforcement Learning (DRL) has 

captured considerable interest in recent years for 

enhancing energy efficiency, as it empowers an 

agent to learn and refine its actions without any 

prior insight in ever-changing environments. [16] 

crafted a DRL-driven method for virtual machine 

(VM) consolidation, introducing an Influence 

Coefficient to assess the effects of each VM on 

overloaded hosts, while integrating a Long Short-

Term Memory (LSTM) based state prediction 

model to pinpoint optimal hosts for energy-

efficient VM migration. [17] put forth a hybrid 

variable action space that takes into account both 

physical machine (PM) usage and VM dimensions 

to avoid exhaustive searches for VM consolidation, 

guided by a reward shaping technique to expedite 

the renowned SARSA and Q-Learning processes 

for enhanced energy savings. Nonetheless, these 

methodologies are focused exclusively on single 

cloud data center scenarios and overlook the effects 

of renewable energy sources (RES), leading to 

unpredictable expenses and unavoidable carbon 

emissions. 

On the other hand, the utilization of DRL in 

data centers powered by RES has been 

comparatively scarce. [18] introduced a 

reinforcement learning-based job scheduling 

algorithm that fused two techniques into the neural 

network to enhance learning efficiency. Their 

method also factored in the characteristics of RES 

generation to substantially lower electricity 

expenses linked to brown energy. [19] devised an 

energy quota allocation scheme for instances of 

RES scarcity. They streamlined the cost assessment 

process by employing a multi-agent based DRL 

reward function to depict the financial costs and 

carbon emissions of each RES generator. 

Consequently, this strategy effectively minimized 

service level agreement (SLA) violations and 

showcased exceptional performance. However, 

[20] the previously mentioned methods are likely to 

encounter challenges with exhaustive searching, 

leading to restricted scalability of action spaces. 
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Table 1 encapsulates a summary of pertinent 

studies. The proposed method stands out in its 

anticipatory modification of the upper threshold 

(THR) for energy-conscious VM consolidation, 

[21] while leveraging DRL technology to optimize 

carbon emissions in multi-electricity RES-powered 

geographically distributed data centers. This 

innovative fusion of adaptive threshold adjustment 

and DRL represents a significant advancement in 

the field [22]. 

 

Figure. 2. Architecture of the data center powered by both RES and traditional energy 

System Model 

In this section, a typical Infrastructure as a 

Service (IaaS) cloud system is considered where 

wind and traditional energy are used to supply 𝑛 

geo-distributed DCs, as shown in Figure 2. The 

incoming workload is formed as VMs and 

delivered to servers among geographically 

distributed DCs. In the practical implementation, 

the proposed CFWS architecture follows the 

principle of MAPE-K, which is the abbreviation of 

monitor, analyze, plan, execute, and knowledge. 

The resource monitoring system of the cloud data 

center can be viewed as a monitor that collects 

users' requests and continuously evaluates the 

status of various servers according to the workload 

predictor in real-time. Once resource utilization of 

DCs is collected, the analyzemodule will identify 

patterns and trends to understand the current DCs' 

states through four mathematical models. The 

energy consumption model calculates the power 

consumption of each DC and conveys them to the 

carbon emission model. The renewable energy 

generation model calculates the wind power of 

each DC and conveys them to the carbon emission 

model. Then, the output of the carbon emission 

model, together with the output of the energy 

consumption model and renewable energy 

generation model, will be used to calculate the 

energy cost. Based on the analysis results, the plan 

module will generate VM migration strategies, 

which involves forecasting future resource 

demands and identifying potential overload by the 

proposed TCNMAD workload predictor, and 

developing a DRL-based VM consolidator to 

address these challenges proactively. After that, the 

execution module migrates VMs according to the 

identified optimal strategies. At last, the pre-

defined objectives (such as energy cost, carbon 

footprint) and the aforementioned models will be 

recorded in the knowledge module to improve the 

efficiency of VM migration across cloud data 

centers. In this section, details of the monitor 

module and analyze module will be introduced. 

Workload Model 

For cloud service providers, establishing 

cloud data centers in various regions is feasible to 

offer services to users. 

Defination 1 : Let 𝐷 be the set of 𝑛 geo-

distributed cloud data centers, which can be 

expressed as: 

𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑘 , …𝐷𝑛} (1) 
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where each cloud data center is considered 

to be powered by traditional energy and renewable 

energy. 

These data centers run multiple PMs, which 

are interconnected through high-speed network to 

collectively provide resources to cloud users. 

Defination 2 : Let 𝑆𝑘 be the set of 𝑚 

heterogeneous physical servers running in the 𝑘 th 

data center, which can be defined as: 

𝑆𝑘 = {𝑆1𝑘 , 𝑆2𝑘 , … , 𝑆𝑗𝑘 , … 𝑆𝑚𝑘} (2) 

where 𝑆𝑗𝑘 is the 𝑗 th PM in DC 𝑘, and its 

CPU utilization at time 𝑡 can be depicted as 

𝑈𝑗𝑘
𝑃𝑀(𝑡). 

In each time slot 𝑡𝜖{1,2,… 𝑇}, the incoming 

user requests are viewed as instances and executed 

by ℎ VMs. 

Defination3: Let 𝑉𝑀𝑗𝑘  be the set of ℎVMs 

hosted on the 𝑗 th PM of the 𝑘 th data center, which 

can be formulated as: 

𝑉𝑀𝑗𝑘 = {𝑉𝑀1𝑗𝑘 , 𝑉𝑀2𝑗𝑘 , … , 𝑉𝑀𝑖𝑗𝑘 , … , 𝑉𝑀ℎ𝑗𝑘} (3) 

where 𝑉𝑀𝑖𝑗𝑘 is the 𝑖 th VM of the 𝑗 th PM 

in DC 𝑘, and its CPU utilization at time 𝑡 can be 

depicted as 𝑈𝑖𝑗𝑘
𝑉𝑀(𝑡). 

Accordingly, for the 𝑗 th PM in DC 𝑘, its 

CPU utilization 𝑈𝑗𝑘
𝑃𝑀(𝑡) can be calculated as: 

𝑈𝑗𝑘
𝑃𝑀(𝑡) = ∑  

𝑖∈𝑉𝑀𝑗𝑘

 𝑈𝑖𝑗𝑘
𝑉𝑀(𝑡) × 𝑥𝑖𝑗𝑘(𝑡) (4) 

where 𝑥𝑖𝑗𝑘(𝑡) is a binary integer that 

represents whether VM 𝑖 is assigned to PM 𝑗 of DC 

𝑘(1) or not (0). 

In this paper, the 𝑘 th DC's CPU utilization at time 

𝑡 is expressed as the average CPU utilization of its 

hosted PMs as: 

𝜇𝑘(𝑡) =
∑  𝑗∈𝑆𝑘

 𝑈𝑗𝑘
𝑃𝑀{𝑡}

𝑚
(5)  

Energy Consumption Model 

Since the energy spent on cooling needs a 

fine-grained model, both supplied cooling 

temperature and inlet temperature will decide 

cooling costs, which is regarded as a separate 

study. Therefore, the simplified energy 

consumption model introduces PUE to incorporate 

cooling energy consumption. 

Definition 4: Let 𝑃𝑘(𝑡) be 𝑘 th DC's power 

consumption at time 𝑡, which is calculated by the 

product of its IT devices power consumption 

𝑃𝑘
𝐼𝑇(𝑡) and PUE value 𝑃𝑈𝐸𝑘 . 𝑃𝑘(𝑡) can be defined 

as: 

𝑃𝑘(𝑡) = 𝑃𝑈𝐸𝑘(𝜇𝑘(𝑡), 𝐻𝑘(𝑡)) × 𝑃𝑘
𝐼𝑇(𝑡) (6) 

where the value of the 𝑘 th DC's PUE 

changes with utilization and the ambient 

temperature 𝐻𝑘(𝑡). The representative research 

[20] calculates the PUE as: 

𝑃𝑈𝐸𝑘(𝜇𝑘(𝑡), 𝐻𝑘(𝑡))

= 1 +
0.2 + 0.1𝜇𝑘(𝑡) + 0.01𝜇𝑘(𝑡)𝐻𝑘(𝑡)

𝜇𝑘(𝑡)
 

Furthermore, the 𝑃𝑘
𝐼𝑇(𝑡) in Eq. (6) can be 

calculated by summing up all servers' power 

consumption in the 𝑘 th DC , which can be 

formalized as: 

𝑃𝑘
𝐼𝑇(𝑡) =∑  

𝑚

𝑗=1

 𝑃𝑗𝑘
𝐼𝑇(𝑈𝑗𝑘

𝑃𝑀(𝑡)) (8) 

Considering that constructing an accurate 

PM energy model is quite complicated, the 

SPECpower benchmark [21] is adopted to evaluate 

𝑃𝑗𝑘
𝐼𝑇 , which is decided by the 𝑗 th server's CPU 

utilization, as shown in Table 2. 

Renewable Energy Generation Model 

For RES-based DCs, the availability of RES 

is critical. Considering a data center is powered by 

wind energy, the feasibility of which depends on 

two general aspects. One is whether the location of 

the DC has sufficient wind speed to drive the wind 

turbine to generate clean energy, and the other is 

whether the DC has built enough on-site wind 

turbines upfront to meet the energy demand. 

Definition5: Let 𝑅𝐸𝑆𝑘(𝑡) be the generated 

renewable energy at time 𝑡, which is decided by the 

actual wind speed 𝑣𝑘(𝑡) of the 𝑘 th data center and 

the number of installed wind turbines 𝑀𝑘. The 

wind power can be defined as: 

𝑅𝐸𝑆𝑘(𝑡) = Wind(𝑣𝑘(𝑡)) × 𝑀𝑘 (9) 

Wind(𝑣𝑘(𝑡))

=

{
 

 
0 𝑣𝑘(𝑡) < 𝑣in , 𝑣𝑘(𝑡) > 𝑣out 

𝑃𝑟 ×
𝑣𝑘(𝑡) − 𝑣in 

𝑣𝑟 − 𝑣in 

𝑣in < 𝑣𝑘(𝑡) < 𝑣𝑟

𝑃𝑟 𝑣𝑟 < 𝑣𝑘(𝑡) < 𝑣out 

 

where Wind(𝑣𝑘(𝑡)) is the generated energy of a 

wind turbine. It can be also found that when 𝑣𝑘(𝑡) 
is lower than the cut-in speed 𝑣𝑖𝑛 or higher than the 

cut-out speed 𝑣out , the output power is set to 0 . 

The wind power will increase linearly when wind 
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speed stays within the cut-in and rated thresholds, otherwise resulting in rated output. 

Table 2 The Watts Decided By The CPU Utilization Of Servers 

Servers 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117 

HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135 

 Carbon Emission Model 

The coal-based energy, known as brown 

energy, will emit carbon footprint into the 

environment. Although RES is assumed to generate 

0 carbon emission [22], this paper follows the 

settings in [23], [24], considering a more realistic 

scenario where the CFR value of wind is treated as 

a constant. 

Definition6: Let 𝑃𝑘
𝑏(𝑡) and 𝐶𝐹𝑅𝑘 be the 

brown energy consumption and CFR of the 𝑘 th 

data center respectively, both of which jointly 

determine the carbon footprint 𝐶𝐹𝑘(𝑡) at time 𝑡, 
and can be defined as: 

𝐶𝐹𝑘(𝑡) = ∑  

𝑛

𝑘=1

 𝑃𝑘
𝑏(𝑡) × 𝐶𝐹𝑅𝑘 + 𝑅𝐸𝑆𝑘(𝑡) × 𝐶𝐹𝑅

𝑤𝑖𝑛𝑑(11) 

where 𝐶𝐹𝑅wind  is the CFR of wind energy. 

𝑃𝑘
𝑏(𝑡) is affected by RES and can be calculated as: 

𝑃𝑘
𝑏(𝑡) = max(0, 𝑃𝑘(𝑡) − 𝑅𝐸𝑆𝑘(𝑡)) (12) 

Energy Cost Model 

For cloud service providers, they have to 

afford costs associated with the negative 

environmental impact of carbon emissions and 

electricity expenses of the traditional grid due to 

insufficient renewable energy to meet their energy 

consumption demands. 

Definition 7: Let Cost𝑘(𝑡) be the energy 

cost of the 𝑘 th data center at time 𝑡, which mainly 

comes from the purchased traditional grid due to 

insufficient renewable energy Cost𝑘
grid 
(𝑡) and the 

carbon emission cost Cost𝑘
Carbon (𝑡). Cost𝑘(𝑡) can 

be defined as: 

Cost𝑘(𝑡) = ∑  

𝑛

𝑘=1

  (Cost𝑘
grid 
(𝑡) + Cost𝑘

Carbon (𝑡))(13) 

where Cost𝑘
grid 
(𝑡) and Cost𝑘

Carbon (𝑡) are 

determined by the electricity price Price𝑘(𝑡), 
carbon emission price Price carbon , and CFR. 

For the Cost𝑘
grid 
(𝑡), a pricing method in 

real-time is adopted, offering temporal-varied 

electricity prices for geographically distributed 

DCs. At time 𝑡, the 𝑘 th DC′ energy cost then can 

be calculated as: 

Cost𝑘
grid 
(𝑡) = 𝑃𝑘

𝑏(𝑡) × Price𝑘(𝑡) (14) 

For the Cost𝑘
Carbon (𝑡), the carbon emission 

price is assumed to be a constant, and thus the 

carbon cost can be calculated as: 

Cost𝑘
Carbon (𝑡) = 𝐶𝐹𝑘(𝑡) ×  Price 

carbon (15) 

 

 

THE PROPOSED FRAMEWORK FOR 

WORKLOAD SHIFTING 

In this section, the proposed CFWS 

framework is introduced to devise an adaptive 

overloaded host detection strategy and a DRL-

based VM consolidation algorithm to improve the 

energy efficiency of RES-supplied cloud DCs. 

CFWS Framework 

The proposed CFWS framework aims to 

achieve an optimization between energy cost and 

carbon emissions by using the proposed TCN-

MAD method to detect overloaded PMs and a 

DRL-based VM consolidator to perform the 

optimal VM-PM mapping accordingly. Algorithm 

1 outlines the procedure for VM consolidation 

within the proposed CFWS framework. Firstly, the 

workload predictor utilizes the designed TCN-

MAD method to detect overloaded PMs, and 

underloaded PMs are identified by a predefined 

static threshold, forming the source PM_List (Lines 

4-7). Subsequently, the VM consolidator 

establishes a sequential decision model for finding 

the most suitable PM and achieving the best 

mapping for each VM in VM_List (Lines 8-13). 

Algorithm 1: VMC Procedure of the CFWS 

Frame- 

work 

    Input: The placement of VMs situated in PMs 

among geographically 

        distributed DCs 

    Output: VM consolidation strategy 

    1 Obtain realistic electricity prices 

    Obtain realistic CFRs 

    for $t=1, T$ do 
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        PM_Status $\leftarrow$ Collect PMs' resource 

utilization information from 

        Monitor module 

        Overloaded_PM_List $\leftarrow$ TCN-

MAD based Workload Predictor 

            (PM_Status) 

        Underloaded_PM_List $\leftarrow$ 

Default_Threshold 

        PM_List $\leftarrow$ Overloaded_PM_List U 

Underloaded_PM_List 

        VM_List $\leftarrow$ VMs hosted on 

PM_List 

        for each VM in VM_List do 

            Migration_Map $\leftarrow$ DRL based 

VMC Algorithm (VM_List) 

            Allocate VM to destination PMs based on 

Migration_Map 

            Store the Migration_Map and system status 

to knowledge 

            base 

        end 

        Update PMs and VMs information 

    end 

    return VM consolidation strategy 

 

The model is solved by the DRL-based VM 

consolidator (Line 10), ensuring that data centers 

consume the minimum cost and carbon emissions. 

The detailed process of which will be introduced in 

Algorithm 2. Afterward, the execute module (Line 

11) will migrate VMs (Line 8) associated with the 

source PMs (Line 7) according to the VM 

consolidation strategy. Finally, the entire VM 

consolidation procedure will be stored in the 

knowledge base of the MAPE-K loop for future 

scheduling (Line 12), and PMs' status and VMs' 

allocation on each PM will be updated (Line 14). 

For the rest time, the above process will be 

repeated until there are no overloaded or 

underloaded PMs. In general, the complexity of 

Algorithm 1 is 𝑂(𝑅 × 𝑛 × 𝑚), where 𝑅 represents 

the number of VMs running on the identified 

source PM. In fact, 𝑛 × 𝑚 is a two-dimensional 

array that indicates the distribution of PMs in geo-

distributed data centers, consuming significant 

computation resources. To this regard, this paper 

proposes a novel flattened index to transform the 

array into a one-dimensional array, which will be 

discussed in Section 4.3.2. 

SIMULATION RESULTS 

To further evaluate the proposed CFWS 

framework, simulations were done over 5 days to 

investigate the energy consumption, energy cost, 

carbon emission, RES utilization and the number of 

migrations of four data centers. Each simulation 

was executed 30 times using different initial virtual 

machine placements. 

Energy Consumption 

The energy consumption comparison is 

illustrated in Figure 3. Meanwhile, brown energy is 

introduced because it is a key contributor to carbon 

emissions. Notably, the proposed algorithm CFWS 

can significantly reduce 5.67% − 13.22% brown 

energy compared with baseline algorithms while 

consuming similar total energy. This is because the 

CFWS optimizes brown energy consumption over 

extended periods by considering future rewards and 

long-term workload variations, which also 

incorporates the TCN method to relieve the gap 

between RES generation and energy consumption. 

Among other DRL-based algorithms, ADVMC-

RES focuses on migrating VMs to the data center 

with sufficient RES, and hence achieving less 

brown energy to ADVMC ( 98431.77 kWh vs 

100363.63 kWh ). Among heuristic algorithms, 

LECC performs better for the reason that it adopts 

the MAD to dynamically adjust thresholds to 

improve resource utilization as CFWS does. On the 

contrary, Greenpacker does not design elaborate 

PM overloaded identification schemes, which 

exhibits the highest energy consumption in both 

metrics. 

Carbon Emission 

Figure 4 shows the experimental results of 

carbon emissions, which further introduces the 

comparative results of RES utilization. The RES 

utilization indicates the proportion of wind energy 

utilized in the data center relative to the total 

generated wind energy. 
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Figure 3. Energy consumption 

 

Figure 4. Carbon emission and RES utilization 

It is evident that CFWS performs best in 

both metrics, the reason of that can be attributed to 

two main factors. On the one hand, CFWS achieves 

the highest RES (72.19%) to trade off 

environmental impacts of carbon emission 

(113966.14 g), whereas Greenpacker tops the 

carbon emission ( 157566.57 g ) with the lowest 

RES utilization (59.16%).  
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Figure 5. Energy cost 

Similarly, ADVMC-RES considers the real-

time availability and variability of RES, which also 

prioritizes the utilization of RES and decreases 

9716.04 g carbon emissions compared to ADVMC. 

On the other hand, CFWS considers the geographic 

heterogeneity of CFRs during VM migration. This 

is also reflected in the fact that although the 

carbon-aware LECC only improves 0.48% RES 

than Greenpacker, it reduces 17473.75 g carbon 

emission. 

Energy Cost 

Figure 5 compares energy costs and carbon 

costs with baseline algorithms. As expected, the 

CFWS will pay less costs due to its outstanding 

performances in brown energy reduction and 

carbon emission optimization as discussed in prior 

subsections. In comparison to LECC, which also 

considers price variations among geo-distributed 

data centers, CFWS achieves even greater cost 

savings by reducing carbon costs by $522.54 and 

energy costs by $811.35. This highlights CFWS's 

ability to adapt and optimize migration strategies 

based on the real-time electricity market, leading to 

significant cost reductions. The results also suggest 

that the introduction of RES is effective to 

eliminate brown energy as demonstrated by 

ADVMC-RES, which leads to the reduction of 

carbon cost by 7.26% than ADVMC. Furthermore, 

the Greenpacker causes the most costs in this 

scenario. It treats electricity prices at all data 

centers as a constant value and fails to make 

decisions according to their price differences. 

Migrations 

The last two columns in Table 3 illustrate 

SLA violations and the necessary VM migrations 

associated with them. SLA violations are defined 

as the ratio of overloaded PMs that exceed the CPU 

utilization threshold to the total number of active 

PMs. Compared to baseline algorithms, CFWS 

demonstrates a remarkable reduction in VM 

migrations, ranging from 46.49% to 86.53%, with 

an average decrement of 36.52% in SLA 

violations. This achievement can be attributed to 

the proposed TCN-MAD in CFWS, which 

proactively estimates unseen overloaded situations 

in advance to mitigate the need for frequent 

migrations. Experimental results further highlight 

the superiority of DRL-based methods (CFWS, 

ADVMC, ADVMC-RES) over heuristic-based 

algorithms (Greenpacker, LECC) in terms of 

reducing VM migrations and minimizing SLA 

violations. This is becauseDRL-based methods can 

continuously update their migration policies based 

on real-time feedback and adjust their decision-

making processes accordingly, whereas heuristic 

algorithms require extra migrations to adapt to 

changing conditions. 

In addition to the above, comparisons about 

overloaded PM detection are also recorded in the 

last 8 rows of Table 3 to evaluate the effectiveness 

of the proposed TCN-MAD on migrations and 

SLAs. The table presents nine combinations using 

different overloaded detection algorithms, 

including TCN-MAD, LSTM-MAD, MAD, IQR, 

and THR (a static threshold set to 0.8 [33]). The 
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aggressive parameters, denoted as 𝑠, are set to 2.5 

for MAD and 1.5 for IQR [25]. For the threshold 

adjustment performance, it can be found that TCN-

MAD-2.5 could achieve optimal results in most 

cases with the least migrations and SLAs. This is 

because the threshold adjustment method based on 

MAD will lead to fewer VM migrations (eg. MAD-

2.5 performs better through reducing VM 

migrations by 16.26% and SLA violations by 

19.58% than IQR-1.5). Compared with the static 

threshold setting (THR-0.8), the proposed TCN-

MAD-2.5 avoids 34.87% VM migrations and 

48.82% SLA violations. On the other hand, this 

paper introduces the well-known LSTM method 

and designs LSTM-MAD-2.5, LSTM-IQR-1.5 and 

LSTM-THR- 0.8 adaptive threshold adjustment 

method to evaluate the validity of the TCN-based 

workload prediction. Since TCN has been shown to 

have better accuracy while predicting the workload 

variation than LSTM [34], [35], TCN-based 

methods reduce subsequent migrations to rebalance 

the workload (eg. TCN-MAD-2.5 reduces 2 VM 

migrations and 0.14% SLA violations than LSTM-

MAD-2.5) and the default static threshold methods 

perform worst. 

 

Figure 6. Execution time 

Execution Time 

Figure 6 depicts the execution time of the 

proposed algorithm compared to the state-of-the-art 

approaches, providing insights into the 

computational overhead of each method.  

Slightly higher execution time compared 

to LECC. This can be attributed to the fact that 

LECC pre-determines the target data center. 

Therefore, the destination PM determined by sorted 

available resources will result in a computational 

complexity of 𝑂(𝑅 × 𝑚log⁡𝑚), whereas CFWS 

has a complexity of 𝑂(𝑅 × 𝑛 × 𝑚) as discussed in 

Section 4.1. Despite the higher complexity, CFWS 

may still be preferred in scenarios where carbon 

emissions and energy costs are of primary concern. 

The advantage of the proposed flatten-based action 

space is evident when comparing it with variations 

of traditional DRL-based algorithms such as 

ADVMC and ADVMC-RES. where the action 

spaces are designed based on sorted data centers 

and PMs, leading to execution time with 𝑂(𝑅 ×
𝑛log⁡ 𝑛 × 𝑚log⁡𝑚). Among all the scenarios, 

Greenpacker exhibits the slowest execution time. 

This is due to its need for two inner for loops and 

an outer while loop to iterate all available PMs for 

migrating. Consequently, its complexity is the 

largest at 𝑂(𝑅 × 𝑛 × 𝑚 + 𝑅2 × 𝑛). 
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Table 3Comparison results on evaluating overloaded PM detection methods 

Policies Energy 

Cost 

Carbon 

Cost 

Total 

Energy 

Brown 

Energy 

Carbon 

Emission 

RES Migrations SLAV 

Greenpacker 9100.52 3200.45 140500.6 106000.2 155000.8 58.75 710 0.0372 

LECC 8800.14 2900.56 133000.4 102500.1 139500.9 60.12 550 0.0329 

ADVMC 8600.11 2750.65 134000.8 101000 132500.5 65.25 180 0.0225 

ADVMC-

RES 

8500.34 2500.33 134800.2 98000.78 122500.1 68.5 185 0.0231 

TCN-MAD-

2.5 (CFWS) 

8000.89 2300.54 133500.7 92000.66 112500.5 71 100 0.0179 

LSTM-

MAD-2.5 

8050.32 2350.76 133800.1 93000.45 114000.9 71.25 102 0.019 

MAD-2.5 8100.55 2400.88 134101 93500.12 116000.5 71.5 105 0.0197 

TCN-IRR-

1.5 

8050.65 2325 132800.3 91000.9 113000.8 70.85 103 0.0187 

LSTM-IQR-

1.5 

8075.32 2375.56 133200.5 92000.56 115500.9 70.45 120 0.0208 

IQR-1.5 8150.78 2450.88 133800.7 93000.67 120501 70 125 0.0225 

TCN-THR-

0.8 

8350.45 2600.45 134500.9 93500.78 129500.1 69.5 130 0.024 

LSTM-

THR-0.8 

8375.67 2630.23 134900.6 94000.12 130500.2 69.25 128 0.0245 

THR-0.8 8550.78 2750.12 135900.1 95500.56 137500.5 69 150 0.033 

 

CONCLUSION 

In this paper, a DRL-based framework 

CFWS is proposed to optimize energy costs and 

reduce carbon footprints via workload shifting for 

RES-supplied cloud DCs. To be specific, it first 

provides an adaptive overloaded PM detection 

method TCN-MAD that helps reduce VM 

migrations by proactively identifying periods of 

anticipated resource overload, thus reducing 

unnecessary migrations and the occurrence of SLA 

violations. Based on that, a flattened index is 

introduced to determine the destination of migrated 

VMs among geo-distributed data centers, which 

promotes better energy-efficient exploration with 

the consideration of the temporal and spatial-

variability of electricity prices and CFRs to 

increase the likelihood of obtaining optimal 

migration strategies. The simulation results 

demonstrate the superiority of CFWS as compared 

to the state-of-art algorithms, which achieves the 

optimal energy cost and carbon emission while 

requiring fewer migrations and exhibiting lower 

SLA violations within satisfactory execution time. 

Additionally, CFWS achieves the highest RES 

utilization among the compared algorithms, 

reaching 72.19%. 

In the future, the proposed algorithm is 

expected to be tested in a real cloud infrastructure 

such as OpenStack or extended in a workload 

management platform such as Aneka. Additionally, 

like the existing studies, the proposed CFWS only 

provides guidelines for optimizing the RESbased 

cloud data center and demonstrates its feasibility 

through simulation experiments. Hence, there is 

also a necessity that the proposed CFWS be 

practically implemented or validated in modern 

built sustainable data centers powered by 

renewable energy. Furthermore, the rest of future 

work will construct a more realistic carbon 

emission estimation model that considers the 

spatial-temporal varied carbon footprint rates of 

RES. It is also expected to consider the impact of 

cooling and network transmission on energy 
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consumption to prevent service quality degradation 

due to insufficient RES supply. 
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