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Abstract: The increasing reliance on cloud computing has escalated energy consumption and environmental
concerns, necessitating innovative solutions for energy efficiency in data centers. This paper presents a novel
framework, CFWS (Cloud Framework for Workload Scheduling), designed to optimize energy costs while
promoting the use of renewable energy sources (RES) across multiple cloud data centers. By integrating Green
computing GC) CFWS employs an adaptive threshold adjustment method, TCN-MAD, which evaluates the
likelihood of physical machine (PM) overload. This proactive approach minimizes unnecessary virtual machine
(VM) migrations and reduces the risk of service level agreement (SLA) violations stemming from workload
imbalances. Additionally, CFWS innovatively represents VM migrations among geo-distributed data centers as
flattened indices within its GC action space, significantly enhancing execution efficiency. Simulation results
indicate that CFWS outperforms existing algorithms, achieving a 5.67% to 13.22% reduction in brown energy
consumption while maximizing RES utilization. Furthermore, the framework reduces VM migrations by up to
86.53% and maintains the lowest SLA violations, demonstrating its effectiveness in optimizing energy
efficiency in cloud computing environments. This research contributes valuable insights into green computing
practices, promoting sustainable energy management in the cloud industry.

Keywords: cloud data centers, energy cost, renewable energy, resource allocation, workload shifting. Green
computing.

INTRODUCTION Current research suggests that enhancing
resource utilization through workload shifting is a
promising strategy to alleviate the exorbitant
energy expenses and carbon footprints associated
with data centers. One effective technique involves
adaptive overload detection, which employs multi-
thresholds or regression-based adjustments to better
align with fluctuating workload patterns, thereby
averting service level agreement (SLA) breaches
[3] through preemptive virtual machine (VM)
consolidation from overloaded physical machines
(PMs). To achieve this, over-utilized resources can
be transitioned to a select few active PMs, while
the others can be shifted into low-energy standby
mode [4]. Despite its potential, erratic workloads
and imprecise threshold settings may still result in
energy waste or increased SLA violations.

The extensive use of cloud computing
technology is accelerating the growth and quantity
of data centers (DCs), leading to an increasingly
pressing energy consumption dilemma. The Energy
Information  Administrator (EIA) report [1]
forecasts that by 2040, global data centers will
consume a staggering 95 TWh of energy, doubling
the amount seen in 2020. The repercussions of such
substantial energy usage are twofold. On one side,
data center operators face soaring costs, with
millions more spent annually due to soaring energy
demands. Conversely, the excessive energy
consumption poses significant threats to the
environment. A McKinsey report [2] underscores
that cloud data centers were responsible for a
notable portion of the world’s CO2 emissions in
2018, with estimates suggesting this could escalate
by 2040. Hence, optimizing carbon emissions
deserves urgent focus.
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Figure 1: Energy Efficiency and Carbon Reduction in Cloud Data Centers through CFWS Framework

Another viable strategy to counteract the
energy crisis and mitigate environmental
repercussions is the scheduling of resources based
on renewable energy sources (RES). Major tech
companies like Apple and Facebook have
successfully reached carbon neutrality through their
solar-powered data centers [5]. This can be
executed by reallocating workloads to more
affordable or eco-friendly data centers; however,
the variability in electricity prices and carbon
footprint rates across time and location complicates
the decision-making process. While current
heuristic algorithms aimed at reducing costs and
carbon emissions strive to maximize RES usage
[6], they often involve numerous computationally
complex and dynamic hyperparameters. Deep
reinforcement learning (DRL) is increasingly seen
as vital for crafting self-sustaining resource
management algorithms in these fluctuating cloud
landscapes [7], as it can adaptively modify agent
behaviors in response to environmental changes
and optimize resource distribution. Nonetheless,
migrating VMs across geographically distributed
centers typically requires traversing all data centers
and PMs to formulate a consolidation strategy,
which complicates the learning and precise
representation of value functions or policies in
high-dimensional spaces, leading to issues of
scalability and responsiveness.

In this manuscript, we introduce an
innovative framework called CFWS, grounded in
Deep Reinforcement Learning (DRL), aimed at
striking a balance between energy expenditure and
carbon emissions via workload redistribution.
CFWS is capable of dynamically adjusting the
upper limit to identify overloaded Physical
Machines (PMs), thereby reducing performance
degradation, and subsequently devising a DRL
strategy to facilitate Virtual Machine (VM)
migration, enhancing energy efficiency. The key
contributions of this paper are as follows:

We propose a multi-faceted workload
shifting system, CFWS, where a smart DRL-driven
VM migration is applied, taking into account the
fluctuating electricity rates and the varying carbon
footprint rates (CFRs) across geographically
dispersed cloud data centers to alleviate energy
expenses and carbon emissions while maximizing
the use of renewable energy sources (RES). We
introduce an adaptive PM overload detection
algorithm named TCN-MAD, which synergizes the
capabilities of a temporal convolutional network
(TCN) and median absolute deviation (MAD) to
refine the threshold adjustment by incorporating
both temporal dynamics and workload distribution,
thus preventing unnecessary migrations and
significant SLA breaches. We present a DRL-
oriented VM migration technique that incorporates
a streamlined index within the action space of
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DRL, simplifying the depiction of potential
migration actions by designating a distinct index to
each possible destination, enabling cost- and
carbon-conscious VM migration strategies while
reducing complexity and computational demands
compared to existing methodologies. We assess the
CFWS against realistic data center configurations,
benchmarking it against four cutting-edge
algorithms. Performance evaluations indicate that
our proposed algorithm can significantly lessen
reliance on brown energy by optimizing RES
utilization.  Additionally, CFWS effectively
navigates the trade-off between energy costs and
carbon emissions, while simultaneously
minimizing VM migrations and achieving a lower
likelihood of SLA violations within an efficient
execution timeframe.

The remainder of this paper is structured as
follows. Section 2 examines related literature and
identifies their shortcomings. Section 3 presents the
system model. Section 4 elaborates on the proposed
workload shifting framework CFWS. Section 5
encapsulates the simulation results and contrasts
them with leading-edge approaches. Finally,
Section 6 wraps up the paper and outlines future
research directions.

RELATED WORK

Shifting workloads via the consolidation of
virtual machines is regarded as a hopeful strategy
for reducing energy expenses and minimizing
carbsaon footprints. This segment divides earlier
studies into three categories: adaptive overload
identification, renewable energy source-based
resource allocation, and deep reinforcement
learning-driven workload redistribuaction.

Adaptive Overloaded Detection

Numerous studies have concentrated on
various threshold-based methods for overloaded
detection to accommodate fluctuating workload
patterns with the aim of energy conservation. [6]
introduced a dual-threshold strategy that
categorizes hosts into three main groups using
interquartile range analysis, proficiently capturing
and examining diverse levels of host utilization for
enhanced energy management. [8] proposed a
refined adaptive threshold classification approach
utilizing the least median square regression
technique, facilitating resource migration among

four separate groups to achieve optimal SLA
adherence and energy efficiency. However, these
reactive strategies overlook the latest workload
trends. As a result, PMs with inconsistent requests
must allocate a significant amount of resources for
prolonged periods, which hinders the advancement
of energy-efficient management techniques.

In this context, regression-based strategies
utilize statistical analysis methods to modify
utilization thresholds as needed. [9] Presented the
stochastic  gradient descent technique for
proficiently identifying overloaded hosts, while
also crafting an energy-conscious VM selection
policy grounded in anticipated minimal utilization.
[10] offered a proactive mechanism for adjusting
upper CPU utilization, employing a statistical
dispersion measure that attributes greater weights
to values with more substantial deviations from the
median. [11] introduced a location-conscious VM
consolidation method (LECC) for geo-distributed
cloud data centers, which assesses various
overloaded detection techniques beforehand and
subsequently selects the data center with the least
carbon output and cost for VM migrations.
Nevertheless, the previously mentioned methods
may encounter difficulties in accurately forecasting
requests with significant fluctuations that display
considerable noise within the data, resulting in
unwanted VM migrations and SLA infractions.

RES-based Resource Scheduling

In light of the escalating energy expenses
and the growing carbon footprints associated with
enhanced computational capabilities, data centers
spread across various locations and powered by
renewable energy sources have gained significant
traction. [12] introduced a geographical load
balancing algorithm named GreenPacker, which is
attuned to renewable energy source availability and
fluctuating electricity rates for resource scheduling
that is conscious of costs. 13] crafted a pioneering
workload management approach that tackles the
issue of carbon emissions by favoring cloud data
centers with ample renewable energy sources or
minimal carbon footprints in multi-cloud settings.
Nevertheless, it is crucial to acknowledge that
striving to optimize both objectives simultaneously
frequently results in a clash, as data centers with
lower electricity costs may experience elevated
carbon footprints, thus undermining cost-sensitive
algorithms.
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Table 1 Optimization Objectives Of Workload Shifting Algorithms

Study Efficiency | Operational | Emissions | Dynamic | Predictive | Renewable | Machine
Reference Cost Reduction | Control Control | Integration | Learning
Approach
[6] v v
[8] v v
[9] v v
[10] v v v
[11] v v v v v v
[12] v v J
[13] v v v
[15] v v v Y
[16] v v v v v
[17] v v
[18] v v v v
This v v v v v
Paper

On the other hand, various studies are
focusing on crafting strategies to align these dual
objectives. [14] introduced an optimization
function that takes into account both electricity and
carbon expenses while adhering to task deadline
limitations, integrating the idea of application
brownout and batch task delays to enhance the
utilization of renewable energy sources (RES). [15]
proposed a two-phase approach to tackle the energy
fluctuations arising from geographically distributed
RES generators, assessing the environmental
impact of each energy source through the average
carbon emission rate and creating a distribution
power model aimed at reducing overall energy
expenditures. However, the previously mentioned
approaches may struggle to adapt to fluctuating
workload patterns, resource availability, and
system dynamics, which could result in
unwarranted migrations.

DRL-based Workload Shifting

The technology of workload shifting driven
by Deep Reinforcement Learning (DRL) has
captured considerable interest in recent years for
enhancing energy efficiency, as it empowers an
agent to learn and refine its actions without any
prior insight in ever-changing environments. [16]
crafted a DRL-driven method for virtual machine
(VM) consolidation, introducing an Influence
Coefficient to assess the effects of each VM on
overloaded hosts, while integrating a Long Short-
Term Memory (LSTM) based state prediction
model to pinpoint optimal hosts for energy-

efficient VM migration. [17] put forth a hybrid
variable action space that takes into account both
physical machine (PM) usage and VM dimensions
to avoid exhaustive searches for VM consolidation,
guided by a reward shaping technique to expedite
the renowned SARSA and Q-Learning processes
for enhanced energy savings. Nonetheless, these
methodologies are focused exclusively on single
cloud data center scenarios and overlook the effects
of renewable energy sources (RES), leading to
unpredictable expenses and unavoidable carbon
emissions.

On the other hand, the utilization of DRL in
data centers powered by RES has been
comparatively  scarce. [18] introduced a
reinforcement  learning-based job  scheduling
algorithm that fused two techniques into the neural
network to enhance learning efficiency. Their
method also factored in the characteristics of RES
generation to substantially lower electricity
expenses linked to brown energy. [19] devised an
energy quota allocation scheme for instances of
RES scarcity. They streamlined the cost assessment
process by employing a multi-agent based DRL
reward function to depict the financial costs and
carbon emissions of each RES generator.
Consequently, this strategy effectively minimized
service level agreement (SLA) violations and
showcased exceptional performance. However,
[20] the previously mentioned methods are likely to
encounter challenges with exhaustive searching,
leading to restricted scalability of action spaces.
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Table 1 encapsulates a summary of pertinent
studies. The proposed method stands out in its
anticipatory modification of the upper threshold
(THR) for energy-conscious VM consolidation,
[21] while leveraging DRL technology to optimize

P(l)

carbon emissions in multi-electricity RES-powered
geographically distributed data centers. This
innovative fusion of adaptive threshold adjustment
and DRL represents a significant advancement in
the field [22].
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Figure. 2. Architecture of the data center powered by both RES and traditional energy

System Model

In this section, a typical Infrastructure as a
Service (laaS) cloud system is considered where
wind and traditional energy are used to supply n
geo-distributed DCs, as shown in Figure 2. The
incoming workload is formed as VMs and
delivered to servers among geographically
distributed DCs. In the practical implementation,
the proposed CFWS architecture follows the
principle of MAPE-K, which is the abbreviation of
monitor, analyze, plan, execute, and knowledge.
The resource monitoring system of the cloud data
center can be viewed as a monitor that collects
users' requests and continuously evaluates the
status of various servers according to the workload
predictor in real-time. Once resource utilization of
DCs is collected, the analyzemodule will identify
patterns and trends to understand the current DCs'
states through four mathematical models. The
energy consumption model calculates the power
consumption of each DC and conveys them to the
carbon emission model. The renewable energy
generation model calculates the wind power of
each DC and conveys them to the carbon emission
model. Then, the output of the carbon emission
model, together with the output of the energy
consumption model and renewable energy

generation model, will be used to calculate the
energy cost. Based on the analysis results, the plan
module will generate VM migration strategies,
which involves forecasting future resource
demands and identifying potential overload by the
proposed TCNMAD workload predictor, and
developing a DRL-based VM consolidator to
address these challenges proactively. After that, the
execution module migrates VMs according to the
identified optimal strategies. At last, the pre-
defined objectives (such as energy cost, carbon
footprint) and the aforementioned models will be
recorded in the knowledge module to improve the
efficiency of VM migration across cloud data
centers. In this section, details of the monitor
module and analyze module will be introduced.

Workload Model

For cloud service providers, establishing
cloud data centers in various regions is feasible to
offer services to users.

Defination 1 : Let D be the set of n geo-
distributed cloud data centers, which can be
expressed as:

D ={D;,D,, ...

, Dy, ...Dy} (D
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where each cloud data center is considered
to be powered by traditional energy and renewable
energy.

These data centers run multiple PMs, which
are interconnected through high-speed network to
collectively provide resources to cloud users.

Defination 2 : Let S, be the set of m
heterogeneous physical servers running in the k th
data center, which can be defined as:

Sk = {S1kr Saker or Sjter - S} (2)

where Sj; is the j th PM in DC k, and its
CPU utilization at time t can be depicted as
Uil (©).

In each time slot te{1,2, ... T}, the incoming
user requests are viewed as instances and executed
by h VMs.

Defination3: Let VM, be the set of hVMs
hosted on the j th PM of the k th data center, which
can be formulated as:

VM, = {VMyj, VMyji, ., VMyjpe, e, VMp i} (3)

where VM, is the i th VM of the j th PM
in DC k, and its CPU utilization at time ¢t can be
depicted as U}/ (¢).

Accordingly, for the j th PM in DC k, its
CPU utilization UM (t) can be calculated as:

Ui () = UG @) X xip(8) - (4)
iEVM]'k

where x;;(t) is a binary integer that
represents whether VM i is assigned to PM j of DC
k(1) or not (0).
In this paper, the k th DC's CPU utilization at time
t is expressed as the average CPU utilization of its
hosted PMs as:

PM
Yjesy Ujie (8}
m

() = (5)

Energy Consumption Model

Since the energy spent on cooling needs a
fine-grained model, both supplied cooling
temperature and inlet temperature will decide
cooling costs, which is regarded as a separate
study.  Therefore, the simplified energy
consumption model introduces PUE to incorporate
cooling energy consumption.

Definition 4: Let P, (t) be k th DC's power
consumption at time t, which is calculated by the
product of its IT devices power consumption
PIT(t) and PUE value PUE. P, (t) can be defined
as:

P (t) = PUE, (i (1), H (£)) x PiT (1) (6)

where the value of the k th DC's PUE
changes with utilization and the ambient
temperature H,(t). The representative research
[20] calculates the PUE as:

PUE} (1 (t), H (£))
4 02+ 0115, (6) + 0,014 ()Hi (1)

pi(8)
Furthermore, the P{T(t) in Eg. (6) can be
calculated by summing up all servers' power
consumption in the k th DC , which can be
formalized as:

m

O =) BURM©®)  ®

j=1

Considering that constructing an accurate
PM energy model is quite complicated, the
SPECpower benchmark [21] is adopted to evaluate
P},Z, which is decided by the j th server's CPU
utilization, as shown in Table 2.

Renewable Energy Generation Model

For RES-based DCs, the availability of RES
is critical. Considering a data center is powered by
wind energy, the feasibility of which depends on
two general aspects. One is whether the location of
the DC has sufficient wind speed to drive the wind
turbine to generate clean energy, and the other is
whether the DC has built enough on-site wind
turbines upfront to meet the energy demand.

Definition5: Let RES, (t) be the generated
renewable energy at time ¢, which is decided by the
actual wind speed v, (t) of the k th data center and
the number of installed wind turbines M,. The
wind power can be defined as:

RES,(t) = Wind (v, () X My 9)
Wind (v, (t))
0 vk(t) < Vin» Uk (t) > Uout
Vg () — Uiy
=1P. xﬁ v, < () <v,
Pr Ur < vk(t) < Vout

where Wind (v, (t)) is the generated energy of a
wind turbine. It can be also found that when v, (t)
is lower than the cut-in speed v;,, or higher than the
cut-out speed v, , the output power is set to 0 .
The wind power will increase linearly when wind
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speed stays within the cut-in and rated thresholds,

otherwise resulting in rated output.

Table 2 The Watts Decided By The CPU Utilization Of Servers

Servers 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100%
HP ProLiant G4 | 86 89.4 | 92.6 | 96 99.5 | 102 | 106 |108 | 112 | 114 | 117
HP ProLiant G5 | 93.7 | 97 101 | 105 | 110 |[116 |121 |125 |129 | 133 | 135

Carbon Emission Model

The coal-based energy, known as brown
energy, will emit carbon footprint into the
environment. Although RES is assumed to generate
0 carbon emission [22], this paper follows the
settings in [23], [24], considering a more realistic
scenario where the CFR value of wind is treated as
a constant.

Definition6: Let PP(t) and CFR, be the
brown energy consumption and CFR of the k th
data center respectively, both of which jointly
determine the carbon footprint CF,(t) at time ¢,
and can be defined as:

n
CF.(t) = Z P2(£) X CFR), + RES, (t) x CFR¥nd(11)

k=1

where CFRY" s the CFR of wind energy.
PP (t) is affected by RES and can be calculated as:

PP (t) = max(0, P, (t) — RES,(t)) (12)

Energy Cost Model

For cloud service providers, they have to
afford costs associated with the negative
environmental impact of carbon emissions and
electricity expenses of the traditional grid due to
insufficient renewable energy to meet their energy
consumption demands.

Definition 7: Let Cost,(t) be the energy
cost of the k th data center at time ¢, which mainly
comes from the purchased traditional grid due to

insufficient renewable energy Cost:™ (t) and the

carbon emission cost Cost$a™ (t). Cost,(t) can
be defined as:

Costy(t) = Z (Coste™ (t) + Costg™™" (£))(13)

k=1

where Cost:™ (£) and Cost{®™" (t) are
determined by the electricity price Priceg(t),
carbon emission price Price ™" 'and CFR.

For the Cost®™ (t), a pricing method in
real-time is adopted, offering temporal-varied

electricity prices for geographically distributed

DCs. At time t, the k th DC’ energy cost then can
be calculated as:

Cost2™ (t) = PP (t) x Price;(t) (14)
For the Cost$¥" (¢), the carbon emission

price is assumed to be a constant, and thus the
carbon cost can be calculated as:

CostS®™™ () = CF,(t) X Price ™ (15)

THE PROPOSED FRAMEWORK FOR
WORKLOAD SHIFTING

In this section, the proposed CFWS
framework is introduced to devise an adaptive
overloaded host detection strategy and a DRL-
based VM consolidation algorithm to improve the
energy efficiency of RES-supplied cloud DCs.

CFWS Framework

The proposed CFWS framework aims to
achieve an optimization between energy cost and
carbon emissions by using the proposed TCN-
MAD method to detect overloaded PMs and a
DRL-based VM consolidator to perform the
optimal VM-PM mapping accordingly. Algorithm
1 outlines the procedure for VM consolidation
within the proposed CFWS framework. Firstly, the
workload predictor utilizes the designed TCN-
MAD method to detect overloaded PMs, and
underloaded PMs are identified by a predefined
static threshold, forming the source PM_List (Lines
4-7).  Subsequently, the VM consolidator
establishes a sequential decision model for finding
the most suitable PM and achieving the best
mapping for each VM in VM_List (Lines 8-13).

Algorithm 1: VMC Procedure of the CFWS

Frame-
work

Input: The placement of VMs situated in PMs
among geographically

distributed DCs

Output: VM consolidation strategy

1 Obtain realistic electricity prices

Obtain realistic CFRs

for $t=1, T$ do
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PM_Status $\leftarrow$ Collect PMs' resource
utilization information from
Monitor module
Overloaded_PM_List $\leftarrow$ TCN-
MAD based Workload Predictor
(PM_Status)
Underloaded PM_List $\leftarrow$
Default_Threshold
PM_List $\leftarrow$ Overloaded PM_List U
Underloaded_PM_ List
VM_List $\leftarrow$ VMs hosted on
PM_List
for each VM in VM_List do
Migration_Map $\leftarrow$ DRL based
VMC Algorithm (VM_List)
Allocate VM to destination PMs based on
Migration_Map
Store the Migration_Map and system status
to knowledge
base
end
Update PMs and VVMs information
end
return VM consolidation strategy

The model is solved by the DRL-based VM
consolidator (Line 10), ensuring that data centers
consume the minimum cost and carbon emissions.
The detailed process of which will be introduced in
Algorithm 2. Afterward, the execute module (Line
11) will migrate VMs (Line 8) associated with the
source PMs (Line 7) according to the VM
consolidation strategy. Finally, the entire VM
consolidation procedure will be stored in the
knowledge base of the MAPE-K loop for future
scheduling (Line 12), and PMs' status and VMs'
allocation on each PM will be updated (Line 14).
For the rest time, the above process will be
repeated until there are no overloaded or
underloaded PMs. In general, the complexity of
Algorithm 1 is O(R x n x m), where R represents
the number of VMs running on the identified
source PM. In fact, n X m is a two-dimensional
array that indicates the distribution of PMs in geo-
distributed data centers, consuming significant
computation resources. To this regard, this paper
proposes a novel flattened index to transform the

array into a one-dimensional array, which will be
discussed in Section 4.3.2.

SIMULATION RESULTS

To further evaluate the proposed CFWS
framework, simulations were done over 5 days to
investigate the energy consumption, energy cost,
carbon emission, RES utilization and the number of
migrations of four data centers. Each simulation
was executed 30 times using different initial virtual
machine placements.

Energy Consumption

The energy consumption comparison is
illustrated in Figure 3. Meanwhile, brown energy is
introduced because it is a key contributor to carbon
emissions. Notably, the proposed algorithm CFWS
can significantly reduce 5.67% — 13.22% brown
energy compared with baseline algorithms while
consuming similar total energy. This is because the
CFWS optimizes brown energy consumption over
extended periods by considering future rewards and
long-term  workload variations, which also
incorporates the TCN method to relieve the gap
between RES generation and energy consumption.
Among other DRL-based algorithms, ADVMC-
RES focuses on migrating VMs to the data center
with sufficient RES, and hence achieving less
brown energy to ADVMC ( 98431.77 kWh vs
100363.63 kwh ). Among heuristic algorithms,
LECC performs better for the reason that it adopts
the MAD to dynamically adjust thresholds to
improve resource utilization as CFWS does. On the
contrary, Greenpacker does not design elaborate
PM overloaded identification schemes, which
exhibits the highest energy consumption in both
metrics.

Carbon Emission

Figure 4 shows the experimental results of
carbon emissions, which further introduces the
comparative results of RES utilization. The RES
utilization indicates the proportion of wind energy
utilized in the data center relative to the total
generated wind energy.
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It is evident that CFWS performs best in environmental impacts of carbon emission

both metrics, the reason of that can be attributed to
two main factors. On the one hand, CFWS achieves
the highest RES (72.19%) to trade off

(113966.14 g), whereas Greenpacker tops the
carbon emission ( 157566.57 g ) with the lowest
RES utilization (59.16%).
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Similarly, ADVMC-RES considers the real-
time availability and variability of RES, which also
prioritizes the utilization of RES and decreases
9716.04 g carbon emissions compared to ADVMC.
On the other hand, CFWS considers the geographic
heterogeneity of CFRs during VM migration. This
is also reflected in the fact that although the
carbon-aware LECC only improves 0.48% RES
than Greenpacker, it reduces 17473.75 g carbon
emission.

Energy Cost

Figure 5 compares energy costs and carbon
costs with baseline algorithms. As expected, the
CFWS will pay less costs due to its outstanding
performances in brown energy reduction and
carbon emission optimization as discussed in prior
subsections. In comparison to LECC, which also
considers price variations among geo-distributed
data centers, CFWS achieves even greater cost
savings by reducing carbon costs by $522.54 and
energy costs by $811.35. This highlights CFWS's
ability to adapt and optimize migration strategies
based on the real-time electricity market, leading to
significant cost reductions. The results also suggest
that the introduction of RES is effective to
eliminate brown energy as demonstrated by
ADVMC-RES, which leads to the reduction of
carbon cost by 7.26% than ADVMC. Furthermore,
the Greenpacker causes the most costs in this
scenario. It treats electricity prices at all data
centers as a constant value and fails to make
decisions according to their price differences.

Migrations

The last two columns in Table 3 illustrate
SLA violations and the necessary VM migrations
associated with them. SLA violations are defined
as the ratio of overloaded PMs that exceed the CPU
utilization threshold to the total number of active
PMs. Compared to baseline algorithms, CFWS
demonstrates a remarkable reduction in VM
migrations, ranging from 46.49% to 86.53%, with
an average decrement of 36.52% in SLA
violations. This achievement can be attributed to
the proposed TCN-MAD in CFWS, which
proactively estimates unseen overloaded situations
in advance to mitigate the need for frequent
migrations. Experimental results further highlight
the superiority of DRL-based methods (CFWS,
ADVMC, ADVMC-RES) over heuristic-based
algorithms (Greenpacker, LECC) in terms of
reducing VM migrations and minimizing SLA
violations. This is becauseDRL-based methods can
continuously update their migration policies based
on real-time feedback and adjust their decision-
making processes accordingly, whereas heuristic
algorithms require extra migrations to adapt to
changing conditions.

In addition to the above, comparisons about
overloaded PM detection are also recorded in the
last 8 rows of Table 3 to evaluate the effectiveness
of the proposed TCN-MAD on migrations and
SLAs. The table presents nine combinations using
different  overloaded  detection  algorithms,
including TCN-MAD, LSTM-MAD, MAD, IQR,
and THR (a static threshold set to 0.8 [33]). The
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aggressive parameters, denoted as s, are set to 2.5
for MAD and 1.5 for IQR [25]. For the threshold
adjustment performance, it can be found that TCN-
MAD-2.5 could achieve optimal results in most
cases with the least migrations and SLAs. This is
because the threshold adjustment method based on
MAD will lead to fewer VM migrations (eg. MAD-
2.5 performs better through reducing VM
migrations by 16.26% and SLA violations by
19.58% than IQR-1.5). Compared with the static
threshold setting (THR-0.8), the proposed TCN-
MAD-2.5 avoids 34.87% VM migrations and

48.82% SLA violations. On the other hand, this
paper introduces the well-known LSTM method
and designs LSTM-MAD-2.5, LSTM-IQR-1.5 and
LSTM-THR- 0.8 adaptive threshold adjustment
method to evaluate the validity of the TCN-based
workload prediction. Since TCN has been shown to
have better accuracy while predicting the workload
variation than LSTM [34], [35], TCN-based
methods reduce subsequent migrations to rebalance
the workload (eg. TCN-MAD-2.5 reduces 2 VM
migrations and 0.14% SLA violations than LSTM-
MAD-2.5) and the default static threshold methods
perform worst.
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Figure 6. Execution time

Execution Time

Figure 6 depicts the execution time of the
proposed algorithm compared to the state-of-the-art
approaches,  providing insights into  the
computational overhead of each method.

Slightly higher execution time compared
to LECC. This can be attributed to the fact that
LECC pre-determines the target data center.
Therefore, the destination PM determined by sorted
available resources will result in a computational
complexity of O(R X mlog m), whereas CFWS
has a complexity of O(R X n x m) as discussed in

Section 4.1. Despite the higher complexity, CFWS
may still be preferred in scenarios where carbon
emissions and energy costs are of primary concern.
The advantage of the proposed flatten-based action
space is evident when comparing it with variations
of traditional DRL-based algorithms such as
ADVMC and ADVMC-RES. where the action
spaces are designed based on sorted data centers
and PMs, leading to execution time with O(R X
nlog n X mlog m). Among all the scenarios,
Greenpacker exhibits the slowest execution time.
This is due to its need for two inner for loops and
an outer while loop to iterate all available PMs for
migrating. Consequently, its complexity is the
largest at O(R X n x m + R? x n).
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Table 3Comparison results on evaluating overloaded PM detection methods

Policies Energy | Carbon Total Brown Carbon | RES | Migrations | SLAV
Cost Cost Energy | Energy | Emission
Greenpacker | 9100.52 | 3200.45 | 140500.6 | 106000.2 | 155000.8 | 58.75 710 | 0.0372
LECC 8800.14 | 2900.56 | 133000.4 | 102500.1 | 139500.9 | 60.12 550 | 0.0329
ADVMC 8600.11 | 2750.65 | 134000.8 101000 | 132500.5 | 65.25 180 | 0.0225
ADVMC- 8500.34 | 2500.33 | 134800.2 | 98000.78 | 122500.1 | 68.5 185 | 0.0231
RES
TCN-MAD- | 8000.89 | 2300.54 | 133500.7 | 92000.66 | 112500.5 71 100 | 0.0179
2.5 (CFWS)
LSTM- 8050.32 | 2350.76 | 133800.1 | 93000.45 | 114000.9 | 71.25 102 | 0.019
MAD-2.5
MAD-2.5 8100.55 | 2400.88 134101 | 93500.12 | 116000.5 | 71.5 105 | 0.0197
TCN-IRR- 8050.65 2325 | 132800.3 | 91000.9 | 113000.8 | 70.85 103 | 0.0187
1.5
LSTM-IQR- | 8075.32 | 2375.56 | 133200.5 | 92000.56 | 115500.9 | 70.45 120 | 0.0208
1.5
IQR-1.5 8150.78 | 2450.88 | 133800.7 | 93000.67 120501 70 125 | 0.0225
TCN-THR- | 8350.45 | 2600.45 | 134500.9 | 93500.78 | 129500.1 | 69.5 130 | 0.024
0.8
LSTM- 8375.67 | 2630.23 | 134900.6 | 94000.12 | 130500.2 | 69.25 128 | 0.0245
THR-0.8
THR-0.8 8550.78 | 2750.12 | 135900.1 | 95500.56 | 137500.5 69 150 | 0.033
CONCLUSION SLA violations within satisfactory execution time.

In this paper, a DRL-based framework
CFWS is proposed to optimize energy costs and
reduce carbon footprints via workload shifting for
RES-supplied cloud DCs. To be specific, it first
provides an adaptive overloaded PM detection
method TCN-MAD that helps reduce VM
migrations by proactively identifying periods of
anticipated resource overload, thus reducing
unnecessary migrations and the occurrence of SLA
violations. Based on that, a flattened index is
introduced to determine the destination of migrated
VMs among geo-distributed data centers, which
promotes better energy-efficient exploration with
the consideration of the temporal and spatial-
variability of electricity prices and CFRs to
increase the likelihood of obtaining optimal
migration  strategies. The simulation results
demonstrate the superiority of CFWS as compared
to the state-of-art algorithms, which achieves the
optimal energy cost and carbon emission while
requiring fewer migrations and exhibiting lower

Additionally, CFWS achieves the highest RES
utilization among the compared algorithms,
reaching 72.19%.

In the future, the proposed algorithm is
expected to be tested in a real cloud infrastructure
such as OpenStack or extended in a workload
management platform such as Aneka. Additionally,
like the existing studies, the proposed CFWS only
provides guidelines for optimizing the RESbased
cloud data center and demonstrates its feasibility
through simulation experiments. Hence, there is
also a necessity that the proposed CFWS be
practically implemented or validated in modern
built sustainable data centers powered by
renewable energy. Furthermore, the rest of future
work will construct a more realistic carbon
emission estimation model that considers the
spatial-temporal varied carbon footprint rates of
RES. It is also expected to consider the impact of
cooling and network transmission on energy
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consumption to prevent service quality degradation
due to insufficient RES supply.
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