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Abstract: Stress emerges as the body's reaction to shifts in the surroundings exert influence, manifesting through a 

multitude of cognitive, physiological, or affective reactions. Prolonged acute stress may disrupt both physiological and 

psychological well-being equilibrium, resulting in decreased work efficacy and a heightened risk of chronic ailments such as 

hypertension and anxiety disorders. As psychological stress increasingly becomes a global issue, impacting people of all 

ages, there is an urgent demand for effective monitoring systems. A dependable and economical an acute stress detection 

system could allow individuals to track and regulate their stress levels, thus alleviating long-term negative outcomes. This 

article examines and discusses literature centered on machine learning-driven strategies for stress detection, highlighting 

their potential for real-time oversight. Furthermore, we delve into existing solutions that incorporate edge computing 

technologies, improving the practicality and efficacy of stress monitoring in real-world scenarios. By amalgamating current 

research, this review aspires to underscore the progress in machine learning methodologies for stress detection and the 

significance of edge computing in delivering timely and actionable insights for stress management. 
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INTRODUCTION 

Stress is an inherent part of human existence, 

triggered by various external and internal factors. 

Defined as the body's physiological and 

psychological response to changes in the 

environment, stress can manifest in numerous 

ways, impacting an individual's overall well-being. 

While short-term stress responses are often 

adaptive, prolonged exposure to stress can lead to 

severe health consequences. Acute stress, 

characterized by short bursts of high stress, poses 

significant risks if not monitored and managed 

effectively.  

The prevalence of stress-related disorders is rising 

globally, necessitating the development of efficient 

monitoring systems to facilitate early intervention 

and management. Machine learning (ML) has 

emerged as an invaluable resource across various 

domains, particularly within the healthcare sector, 

where it reveals innovative techniques for the 

identification and monitoring of stress. By 

analyzing extensive datasets, machine learning 

algorithms are capable of identifying patterns and 

correlations that may escape the attention of human 

analysts. This capability is particularly 

advantageous in the realm of stress assessment, 

given the significant variability in individual 

responses to stressors. The application of machine 

learning methodologies facilitates the development 

of customized stress management systems that 

adapt to the unique stress profiles of individuals, 

thereby enhancing the overall effectiveness of 

stress alleviation strategies. Recent advancements 

in wearable technology and sensors have further 

propelled the integration of machine learning into 

real-time stress monitoring. These devices can 

continuously collect physiological metrics 

including heart rate variability, skin conductance, 

and body temperature, which serve as crucial 

markers of stress levels. When combined with 

machine learning algorithms, this data can be 

analyzed instantaneously, providing users with 

immediate feedback regarding their stress states. 

This prompt information empowers individuals to 

undertake proactive measures to mitigate their 

stress before it escalates into more serious health 

complications. 

Stress is characterized as the physiological 

response of the body to unfavorable environmental 

stimuli that impede an individual's standard coping 

strategies [1]. Although positive stress (eustress) 
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serves to enhance concentration and assists 

individuals in overcoming challenges, adverse 

stress (distress) ignites the engagement of the 

hypothalamic-pituitary-adrenal (HPA) axis. 

Prolonged activation of the HPA axis could lead to 

both somatic and psychological complications [2]. 

Moreover, psychological stress can disrupt bodily 

functions and diminish work performance in daily 

activities, potentially resulting in adverse effects on 

the economy [3]. Monitoring levels of negative 

stress can yield essential insights for recognizing 

stressors and executing interventions to avert future 

disturbances. 

 

Figure 1. Examples of Objective and Subjective Stress Assessment Methods. 

Stress can be divided into two unique categories: 

(i) physiological or "objective" stress and (ii) 

psychological or "subjective" stress, often called 

perceived stress. Objective stress reveals itself 

through changes in physical indicators like 

increased blood pressure, heart rate, and cortisol 

levels. In contrast, subjective stress depends on 

how an individual perceives the stressfulness of a 

specific situation. Commonly used methods for 

evaluating perceived stress include questionnaires 

such as the DASS 21 (Depression, Anxiety, and 

Stress Scale), STAI (State-Trait Anxiety 

Inventory), and POMS (Profile of Mood States) 

(Figure 1). 

Noteworthy physiological markers of stress include  

(i) cortisol (levels of the stress hormone)  

(ii) Signals from GSR (Galvanic Skin 

Response), ECG (Electrocardiogram), and EEG 

(Electroencephalogram). 

In reference [4], various physiological indicators of 

stress and the associated technologies utilized for 

their measurement were examined. Furthermore, 

[5] provided a review of diverse sensors and 

commercial devices designed for the assessment of 

stress. This article investigates machine learning 

methodologies for the detection of stress and 

evaluates the literature concerning real-time 

models of stress monitoring.GSR is recognized as 

the most widely utilized physiological measure of 

stress. It encompasses both physiological and 

psychological arousal, wherein the activation of the 

autonomic nervous system (ANS) amplifies sweat 

gland activity, thereby enhancing skin 

conductance. Figure 2 illustrates the correlation 

between GSR and the transition of the ANS from a 

state of stress to relaxation [6]. Nevertheless, the 

sole utilization of GSR for stress identification can 

be intricate due to issues related to signal quality 

and variability in responses. The reliance 

exclusively on GSR has proven insufficient in 

differentiating between varying levels of stress. For 

instance, [7], a combination of Electrodermal 

Activity (EDA) and Photoplethysmograph (PPG) 

signals achieved greater accuracy compared to the 

use of EDA in isolation [8]. Approaches employing 

multiple sensors typically surpass those reliant on a 

single sensor, indicating that stress-monitoring 

devices should incorporate multiple sensors for 

enhanced accuracy in detection. Wearable sensor 

systems are optimal for the real-time monitoring of 
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stress, providing comfort, convenience, and 

unobtrusive observation. 

Innovative prototypes and methodologies for the 

evaluation of stress through wearable technology 

have been extensively documented [9], a stress-

monitoring patch capable of measuring skin 

temperature, skin conductance, and pulse wave 

signals was introduced. [10-12] describe the 

development of a glove equipped with EDA and 

pulse wave sensors. Researchers at the MIT Media 

Lab devised a system for the monitoring of 

physiological signals aimed at enhancing 

communication [13]. Additionally, a sensor 

designed to measure heart rate, skin conductance, 

and skin temperature was proposed [14]. [15] 

Details the creation of an advanced body sensor 

network tailored for ambulatory stress monitoring. 

 

Figure 2. Fluctuations in Galvanic Skin Response in relation to psychological stress [6]. 

Notwithstanding, there exists a plethora of 

commercially accessible devices and 

configurations intended for the acquisition and 

recording of physiological signals. 

METHOD 

Data Acquisition 

Physiological data sourced from the PHYSIONET 

repository (http://www.physionet.org/), crafted by 

the innovative minds of Jennifer Healey and 

Rosalind Picard, were employed for this 

investigation. This repository comprises 

information from healthy participants who 

navigated a route through Boston, encompassing 

urban streets (high tension), motorways (moderate 

tension), and intervals of relaxation (low tension). 

The compilation features 17 drivers, with seven 

individuals (06, 07, 08, 10, 11, 12, and 15) chosen 

for possessing comprehensive data. 

 

 

Figure 3. Different signals for 'drive06' 
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Five physiological indicators for every driver were 

examined: Foot Galvanic Skin Response (FGSR), 

Hand Galvanic Skin Response (HGSR), 

Electromyography (EMG), Heart Rate (HR) 

derived from Electrocardiogram (ECG) data, and 

Respiration (RESP). Figure 1 showcases the 

signals recorded for 'drive06' in the study by 

Healey and Picard. Preprocessing: The dataset is 

segmented into distinct portions that align with 

different stress levels for analysis purposes. Time 

frames of 100, 200, and 300 seconds are 

implemented to signify three unique stress 

categories: low stress (relaxation), moderate stress, 

and high stress. Each physiological signal is then 

partitioned into nine sections based on 100-second 

intervals. The first three overlapping sections 

represent the initial resting phase, identified as low 

stress (Figure. 2). The next three overlapping 

sections relate to the first urban driving phase, 

linked to high stress (Figure 3), while the last three 

overlapping segments are associated with the first 

highway phase, marked as moderate stress. 

Feature Extraction  

In each segment, we unveil 78 distinct 

characteristics. Every characteristic is selected 

from the plethora of vital and frequently utilized 

aspects pertaining to physiological signals, as 

referenced in sources [2-13]. An overview of these 

characteristics can be found in table 1. 

 

Table 1 Symbolic Features and Their Descriptions 

Feature Description EMG HR Foot GSR Hand GSR RESP 

Mean Normalization EMG21 HR21 FGSR21 HGSR21 RESP21 

Root Mean Square (RMS) EMG22 HR22 FGSR22 HGSR22 RESP22 

Average Power 0.01 - 0.1 Hz EMG23 HR23 FGSR23 HGSR23 RESP23 

Average Power 0.1 - 0.2 Hz EMG24 HR24 FGSR24 HGSR24 RESP24 

Average Power 0.2 - 0.3 Hz EMG25 HR25 FGSR25 HGSR25 RESP25 

Average Power 0.3 - 0.4 Hz EMG26 HR26 FGSR26 HGSR26 RESP26 

Average Power F1 - F2 Hz EMG27 HR27 FGSR27 HGSR27 ---- 

Average Power F3 - F4 Hz EMG28 HR28 FGSR28 HGSR28 ---- 

Ratio Low Band / High Band EMG29 HR29 FGSR29 HGSR29 RESP27 

Difference Between Adjacent 

Elements (Means) 

EMG30 HR30 FGSR30 HGSR30 RESP28 

Difference Between Adjacent 

Elements (2nd times) 

EMG31 HR31 FGSR31 HGSR31 RESP29 

Interquartile Range (IQR) EMG32 HR32 FGSR32 HGSR32 RESP30 

Sum of Rise Time (10% to 90% of 

Reference Levels) 

EMG33 HR33 FGSR33 HGSR33 RESP31 

Peak 2 Peak EMG34 HR34 FGSR34 HGSR34 RESP32 

Sum of Local Peak EMG35 HR35 FGSR35 HGSR35 RESP33 

Number of Local Peaks EMG36 HR36 FGSR36 HGSR36 RESP34 

 

In Table 1, certain frequencies remain unspecified, which we have subsequently presented in Table 2. 
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Table 2. Undefined Frequency in Table 1 

Signal Frequency 

(Hz) 

Frequency 

1 (F1) 

Frequency 

2 (F2) 

Frequency 

3 (F3) 

Frequency 

4 (F4) 

Low Band 

Frequency 

High 

Band 

Frequency 

Electromyography 

(EMG) 

0.35 0.65 0.05 5.5 0.05 to 0.2 0.05 to 6.0 

Heart Rate (HR) 0.03 0.25 0.22 0.55 0.03 to 0.22 0.22 to 0.6 

Foot Galvanic 

Skin Response 

(Foot GSR) 

0.04 0.55 0.55 1.8 0.04 to 0.55 0.55 to 1.8 

Hand Galvanic 

Skin Response 

(Hand GSR) 

0.04 0.55 0.55 1.8 0.04 to 0.55 0.55 to 1.8 

Respiration 0.015 0.12 0.18 0.35 0.015 to 0.12 0.35 to 

0.45 

 

Feature Selection 

The feature vectors encompass seventy-eight 

distinct attributes for each segment of all signals, 

resulting in extended training durations and 

complex computations. Consequently, the 

optimization of feature selection markedly 

improves the efficiency of classification 

methodologies. A feature selection algorithm 

generally integrates a search technique to propose 

new subsets of features with an evaluation criterion 

to assess these subsets. The most straightforward 

algorithm evaluates every conceivable feature 

subset to determine the one that minimizes the 

error rate. Within the Weka software environment, 

all features are prioritized utilizing CfsSubsetEval 

and InfoGain AttributeEval.Conversely, an 

alternative algorithm leverages machine learning 

techniques to discern the most pertinent features. In 

Weka, the optimal features for classification are 

established through ClassifierSubsetEval in 

conjunction with the SVM classifier. This 

investigation employs both algorithms to ascertain 

the most significant features. Initially, by 

amalgamating both methodologies, all features are 

ranked, with the highest selections merged with 

those identified by the secondary algorithm, 

thereby facilitating classification across multiple 

states. In contrast, the latter approach exclusively 

depends on features selected by the second 

algorithm, thereby constraining classification to a 

singular state.Subsequent to identifying the 

effective features, SVM and KNN classifiers with 

cross-validation are utilized for classification 

purposes. Signal processing and feature extraction 

are executed using MATLAB 2012a, followed by 

the implementation of SVM and KNN for 

classification in WEKA 3.6. 

RESULTS 

In the case of three unique conditions, the durations 

of 100 seconds, 200 seconds, and 300 seconds are 

examined. The outcomes pertaining to Support 

Vector Machine (SVM) and K-Nearest Neighbors 

(KNN), Table 3 relating to different sensor counts 

and varied feature collections, are detailed in tables 

3, 4, 5, 6, 7, and 8. 

 

Table 3 Assessment characteristics for intervals of 100 seconds utilizing Support Vector Machine (SVM) 

methodologies. 

Features used for 120 seconds 

state 

Number of 

Features 

SVM Classification 

Accuracy 

Number of 

Sensors 
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ALL 75 89.50% 6 

RESP 1,2,6,7,8,9,10 – HR 2 – 

EMG 7,10,12 – HGSR 9,11,14,16 – 

FGSR 5,7,9,12,14 

18 97.85% 5 

RESP 3,6,8,9 – HR 2 – EMG 15 – 

HGSR 9 – FGSR 5 

9 95.75% 5 

RESP 3,6,8,9 – HR 2 – HGSR 9 7 92.40% 3 

RESP 3,6,8,9 – HGSR 9 6 86.20% 2 

RESP 1,3,6,8,12 6 83.50% 1 

ClassifierSubsetEval feature 

selection: EMG 4,12,15 – HGSR 

6,14 – FGSR 8 – RESP 5,6,9,12 

12 81.30% 4 

 

In the realm of the 100-second interval state, the 

pinnacle of accuracy is attained through the 

deployment of the SVM classifier, utilizing an 

extensive assortment of five sensors and twenty 

features. Moreover, Table 4 superior precision is 

realized through a meticulously selected feature set 

employing the SVM classifier, Table 5 which 

incorporates all five sensors and eight features. In 

instances where there is a decrease in the number 

of sensors and features, the KNN classifier 

demonstrates improved accuracy, depending solely 

on one sensor and three features.  

 

Table 4 Examination characteristics over intervals of 200 seconds employing Support Vector Machine 

(SVM) methodology. 

Features used for 150 seconds state Number of 

Features 

KNN Classification 

(%) 

Number of Sensors 

ALL 80 88.55% 6 

RESP 1,4,9,12 - HR 2 - EMG 

7,12,16 - HGSR 9,12 - FGSR 

3,12,17 

19 94.85% 6 

RESP 1,5,11,13 - HR 2 - EMG 10,15 

- HGSR 12 - FGSR 3 

9 96.43% 5 

RESP 1,12,14 - HR 2 - EMG 7,10 - 

HGSR 9 

7 94.35% 5 

RESP 1,12,13 - HGSR 9 5 89.80% 4 

RESP 2,6 4 93.20% 3 

ClassifierSubsetEval feature 

selection: EMG 5,13,17 - HGSR 

10,12 - FGSR 3,7,9,12 

11 91.25% 5 

 

In the context of a 200-second interval state, the 

utmost precision is attained through the utilization 

of an SVM classifier, incorporating all five sensors 

and sixteen features. Conversely, when considering 

a limited number of features, Table 6 the highest  
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accuracy is accomplished with a KNN classifier, 

utilizing four sensors and seven features. 

Furthermore, in scenarios involving a reduced 

count of sensors and features, the optimal accuracy 

is realized via the KNN classifier, employing a 

singular sensor and three features. 

 

Table 5 Examination characteristics for intervals of 200 seconds utilizing KNN. 

Features used for 150 seconds state Number of 

Features 

KNN Classification 

(%) 

Number of Sensors 

ALL 80 88.55% 6 

RESP 1,4,9,12 - HR 2 - EMG 

7,12,16 - HGSR 9,12 - FGSR 

3,12,17 

19 94.85% 6 

RESP 1,5,11,13 - HR 2 - EMG 10,15 

- HGSR 12 - FGSR 3 

9 96.43% 5 

RESP 1,12,14 - HR 2 - EMG 7,10 - 

HGSR 9 

7 94.35% 5 

RESP 1,12,13 - HGSR 9 5 89.80% 4 

RESP 2,6 4 93.20% 3 

ClassifierSubsetEval feature 

selection: EMG 5,13,17 - HGSR 

10,12 - FGSR 3,7,9,12 

11 91.25% 5 

 

Table 6 Examination attributes for intervals of 300 seconds employing Support Vector Machines (SVM). 

Features used for 400 seconds state Number of 

Features 

SVM Classification 

(%) 

Number of Sensors 

ALL 80 81.25% 6 

RESP 1,4,7,10 - HR 2 - EMG 5 - 

HGSR 4 - FGSR 8,9 

10 98.75% 5 

RESP 2,6,8 - HGSR 7 - FGSR 4 5 86.45% 3 

RESP 1,5,9 4 82.20% 2 

ClassifierSubsetEval feature 

selection: EMG 2 - HGSR 5 - RESP 

8,10 

6 94.65% 4 

 

Table 7 Examination of characteristics over intervals of 300 seconds utilizing KNN methodology. 

Features used for 300 seconds state Number of 

Features 

KNN Classification Number of Sensors 

ALL 75 80.12% 6 

RESP 5, 10, 12 – HR 3 – EMG 4 – 

FGSR 4 – HGSR 4 

8 92.56% 5 

RESP 2, 7, 13 – EMG 1 – HGSR 2 6 97.85% 4 
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RESP 1, 3, 11 – FGSR 1 – HGSR 2 5 88.63% 3 

RESP 6, 7, 8 4 84.71% 2 

ClassifierSubsetEval feature 

selection: EMG 4 – HGSR 2 – RESP 

6 

3 93.67% 3 

 

In the realm of a 300-second temporal state, the 

pinnacle of precision is achieved through the 

deployment of the KNN classifier, which utilizes 

three sensors and five distinct features. As depicted 

in Tables 7 through 7, enhanced accuracy is noted 

with a lesser count of sensors and features during 

prolonged time spans, and it is significant to point 

out that the respiration sensor stands out as the 

most vital instrument for identifying stress. 

Ultimately, the results of this investigation, in 

conjunction with three other studies, are compiled 

in Table 8. As shown, the conclusions of this 

research reveal superior accuracy while leveraging 

a reduced array of features. 

 

Table 8 Compare the results 

Time int. (s) Acc. (%) Classifier Sensor 

numbers 

Features 

numbers 

Ref. 

250 96 k-NN 4 18 [2] 

250 82.75 Decision Tree 3 6 [5, 7] 

200 95.5 Random Forest 5 12 [6] 

150 97.12 Naive Bayes 4 14 [8, 9] 

120 99.25 SVM 5 19 current paper 

 

CONCLUSION 

In conclusion, the pressing issue of stress and its 

associated health risks necessitates the 

development of effective monitoring solutions. 

Machine learning has proven to be a valuable tool 

in identifying and analyzing stress patterns, 

offering promising avenues for real-time detection 

and management. By utilizing various algorithms, 

from supervised learning methods to more advance 

in the realm of neural networks, scholars have 

achieved considerable advancements in improving 

the precision and dependability of stress detection 

systems. These systems can provide valuable 

insights, enabling individuals to understand their 

stress responses better and take necessary actions 

to mitigate its impact. The integration of edge 

computing technologies further enhances the 

practicality of stress monitoring solutions. By 

processing data locally, edge computing reduces 

latency and ensures that users receive timely 

feedback on their stress levels. This immediacy is 

crucial, as it allows for real-time interventions that 

can prevent the escalation of stress into chronic 

conditions. Additionally, edge computing offers 

improved data privacy, addressing concerns about 

sensitive health information being transmitted to 

cloud servers. Together, these advancements 

represent a significant leap forward in creating 

user-centric stress management solutions. 

It has been established that levels of stress can be 

discerned through biological indicators, employing 

a diverse array of biological sensors, unique 

characteristics, and varying timeframes. The most 

efficacious attributes are chosen from an extensive 

collection of 78 characteristics to enable precise 

classification, attaining remarkable accuracy over 

durations of 100 seconds, 200 seconds, and 300 

seconds. The findings demonstrate that the 

respiration sensor is the most critical for the 

detection of stress. By utilizing supplementary 

information pertaining to individual conditions in 

various contexts, we can develop a framework to 



International Journal of Intelligent Systems and Applications in Engineering                     IJISAE, 2024, 12(23s), 2912–2920  |  2920 

 

identify stress across multiple scenarios and 

accurately quantify stress levels, which can 

significantly aid healthcare professionals in 

prescribing suitable treatments. Looking ahead, 

future research should focus on refining machine 

learning algorithms for better predictive accuracy 

and exploring additional physiological indicators of 

stress. Moreover, the user experience must be 

prioritized to ensure that stress monitoring systems 

are accessible and engaging for diverse 

populations. Ultimately, the combination of 

machine learning and edge computing presents a 

robust framework for developing innovative 

solutions to address the growing challenge of 

stress, empowering individuals to lead healthier 

and more balanced lives. As this field continues to 

evolve, interdisciplinary collaboration among 

technologists, healthcare professionals, and 

researchers will be essential to realize the full 

potential of these technologies in improving mental 

health outcomes. 
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