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Abstract: The growing complexity of Extract, Transform, Load (ETL) processes and their crucial role in modern data pipelines 

make them susceptible to various cybersecurity risks, including unauthorized access, data tampering, and service disruption. 

These threats can have far-reaching consequences, affecting business operations, regulatory compliance, and strategic 

decision-making. Traditional security approaches, relying on static rule-based systems, struggle to address the dynamic nature 

and scale of ETL workflows, necessitating the integration of more adaptive and intelligent methods. A data-driven approach 

utilizing Artificial Intelligence (AI) offers a promising solution by leveraging machine learning and deep learning techniques 

to continuously analyze system logs, performance metrics, and historical incidents for abnormal activity. This paper proposes 

a hybrid approach combining autoencoders for feature extraction and Convolutional Neural Network-Gated Recurrent Unit 

(CNN-GRU) models for anomaly detection, aiming to proactively identify security risks within ETL systems. Autoencoders 

are employed to reduce data dimensionality while capturing critical features, while the CNN-GRU model enhances the 

detection of both local and temporal anomalies. The proposed method is evaluated through performance metrics, showing a 

high detection rate and minimal false positives compared to traditional rule-based methods. The results demonstrate the 

potential of AI-driven security frameworks to provide real-time, intelligent monitoring and adaptive risk management, thus 

improving ETL pipeline resilience and security. This research highlights the importance of incorporating AI into cybersecurity 

strategies for dynamic, data-intensive environments, ensuring that security measures evolve alongside emerging threats. 

Keywords: Artificial Intelligence, cybersecurity, ETL processes, anomaly detection, autoencoder, Convolutional Neural 

Network, Gated Recurrent Unit 

1. Introduction 

Indeed, today's major pillars of modern data 

engineering and even more important applications 

transform raw, unstructured, and heterogeneous data 

into something structured actionable intelligence ETL 

process [1]. These transform data from several 

different types of sources databases, third-party APIs, 

enterprise applications, or streaming data into a 

consolidated workflow that executes the disciplines of 

making it well-prepared for downstream analytics/ML 

model/business intelligence tools. ETL systems have 

become increasingly mission-critical in all aspects of 

performance, accuracy, and reliability, as 

organizations are now using data-driven processes to 

guide their operations, forecasts, and compliance. Yet, 

to say the least, with increasing complexity, 

numeration, and the different types of cloud 

integration into a hybrid environment, ETL pipelines 

look extremely catchy to cyber adversaries. Such 

threats might include data tampering and injection 

attacks, unauthorized access to transformation logic, 

manipulation of sensitive data in transit, and misuse of 

misconfigured security facilities [2]. In addition, such 

absence leaves the ETL systems from the 

cybersecurity threat modeling. This makes an even 

bigger issue for the protection of already well-made 

and valuable assets. Therefore, this means that the 

securing processes of ETL will now mean enterprise-

wide resilience for cybersecurity rather than just 

having a more fortified ETL system. 

ETL stands for Extract, Transform, Load, and 

constitutes a foundational component of modern data 

engineering pipelines, critically converting raw, 

unstructured, and siloed data into meaningful and 

structured insights for decision-making across 

industries. ETLs are a prerequisite for acquiring and 

harmonizing data from multiple, often incompatible, 

sources, commonly including relational databases, 

cloud platforms, IoT devices, and transactional 

systems, before it is first cleaned and validated, and 

formatted into either a data warehouse, a data lake, or 
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an advanced analytics platform [3]. As organizations 

rely on data for anything from operational efficiency 

to regulatory compliance and strategic forecasting, the 

performance, integrity, and availability of ETL 

workflows become intrinsically tied to business 

success. Such importance, however, is the preface for 

ETL systems to be the attack surface of cybersecurity, 

threats against which have become more sophisticated 

and frequent. The malicious actor can leverage 

weaknesses in the fields of ETL scripts or data flow 

configurations, and cloud-based integrations to carry 

out any kind of attack: continue reading tampering, 

unauthorized access, code injection, resource 

hijacking, and many others [4]. However, these threats 

directly compromise the confidentiality, integrity, and 

availability of enterprise data and can further incur 

severe financial, legal, and reputational ramifications. 

As ETL pipelines scale with big data and distributed 

computing environments, ensuring their security 

becomes even more complex and requires relying 

upon robust, intelligent, and proactive protection 

mechanisms. Thus, ETL must not just be treated as a 

technical backend process but rather as a high-value 

asset. 

This is the only AI intervention, but with more 

emphasis on machine learning and deep learning, to 

become this transformation in the current battle against 

ever-advanced cybersecurity threats. While traditional 

rule-based systems have proven their worth in the battle 

against known vulnerabilities, they often fall short 

when it comes to detecting new attack patterns, zero-

day exploits, or even the smaller deviations that 

indicate a breach in progress [5]. These intelligent 

systems constantly self-improve as a result of feedback 

loops and new incoming data, thus making them 

adaptive and also able to grow with the evolving threat 

landscape. Indeed, in high-throughput data-driven 

environments such as ETL pipelines, where millions of 

records are processed and transformed daily, AI 

provides an exceptional layer of automated continuous 

surveillance. The AI can catch early warning signs of 

malicious activity such as unauthorized access, unusual 

resource consumption, or job run-time deviations long 

before they culminate in serious breaches. Such 

movements from reactive incident response to 

proactive risk mitigation essentially rejuvenate the 

cybersecurity paradigm, allowing organizations not 

only to respond to threats in near real-time but also to 

anticipate and neutralize them before the threats can 

cause damage [6]. In short, AI sets the ground for a 

predictive and preventative intelligent approach to 

securing the lifeblood of modern data ecosystems: its 

critical infrastructure. 

The data-driven cybersecurity approach within ETL 

environments entails the tactical employment of 

historic logs, performance metrics, and anecdotal 

information on security incidents to develop intelligent 

models that would enable threat detection and 

prediction. Such operational data would allow the 

training of AI algorithms that pursue various anomaly 

detection means, predictive analytics schemes, and 

advanced feature extractions to ascertain and recognize 

patterns known and unknown that go against the so-

called normal [7]. Such patterns tend to be early 

warning signs of either malicious activity or 

misbehavior of systems, hence giving organizations 

time to act before an issue arises. This methodology 

improves both the breadth and depth of threat detection 

at great speed while reducing the occurrence of false 

positives that would otherwise be taxing on security 

teams. What it does offer is strong, data-centric 

premises for decision-making and fine-tuning of 

policies [8]. However, AI-based systems are dynamic 

in nature and learn as they are continuously fed with 

newer information from ongoing ETL execution using 

either training or adaptation to the particular context of 

evolving data pipelines and different strategies for 

cyber-attacks. Such a regime automatically keeps the 

risk management framework up-to-date, adaptive, and 

resilient against any changes in internal system 

behavior or external threat landscapes. All in all, such 

a data-driven paradigm engenders a more agile, 

intelligent, and preventive cybersecurity policy 

specially tailored for the unique complexities and 

operational paradoxes inherent within ETL 

ecosystems. 

ETL processes not only grow in their scope and 

complexity to address the demands of modern data 

ecosystems, but they also remain increasingly exposed 

to a wide spectrum of cybersecurity threats that 

manifest dire implications for the day-to-day 

functioning of the business [9]. Primarily, these 

processes support an organization in the extraction, 

transformation, and loading of high-priority data 

destined for analysis or decision-making. Hence, they 

are subjected to various risk paths that might bring 

about disruptions to business continuity, damage 

sensitive information, or compromise the veracity of 

data-driven insights. An ETL pipeline security breach 

isn't just a singular event; it can induce a cascade of 

disruptions across the organization, leading to multiple 

financial losses, reputational damage, legal complaints, 

and regulatory fines. With the increasing volume and 
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velocity of data through ETL systems, the need for 

manual, traditional monitoring methods has reached a 

breaking point, quite incapable of addressing this ever-

growing complexity and scale of processes. Moreover, 

conventional cybersecurity frameworks do not address 

the intricately nuanced vulnerabilities posed by the 

ETL processes that fall within their defense perimeter. 

From the perspective of cybersecurity, ETL projects 

typically involve multiple heterogeneous data sources, 

third-party services, cloud infrastructure, intricate 

transformations of data, and so on, all of which can 

potentially inject security vulnerabilities. New security 

measures, which are intelligent and adaptive, must aid 

in the protection of these fast-changing and complex 

streams, where traditional perimeter defenses are 

inefficacious, to provide a security level that continues 

to evolve in response to coming threats and the 

detection of new vectors to observe and safeguard 

against. 

Consequently, the involvement of Artificial 

Intelligence in ETL cybersecurity heralds a new, more 

revolutionary paradigm for tackling the growing 

security challenges posed by complex data pipelines. 

Advanced machine learning models can, therefore, be 

used to automate the continuous monitoring of 

extensive datasets, such as log entries, transformation 

metrics, and operational behavior patterns, to identify 

anomalies and possible threats in real time. AI suddenly 

revolutionizes the ability of the system to intelligently 

analyze and flag subtle deviations, from unauthorized 

access attempts to integrity violations or 

misconfiguration to systems, that would otherwise 

remain undetected instead of depending on predefined 

rules and waiting for human intervention [10]. Speed 

and accuracy in the detection of threats improve quite a 

lot, and at the same time, the amount of cost associated 

with some of the breach incidents is significantly 

reduced because the response will be within the 

shortest, data-driven timelines possible. Further, the 

learning capability of AI from past security incidents 

and adaptability to emerging vectors of attack ensures 

that the system is dynamic and capable of identifying 

new threats beyond the capacity of conventional 

methods. To counter increasingly advanced threats that 

can sometimes be precisely and specifically targeted, 

AI in ETL security frameworks is the leveraging value 

necessary to ensure continuous evolution against 

emerging threats, thus improving the robustness of 

security and ultimately keeping sensitive data away 

from maturing cyber threats. The intelligent adaptive 

framework thus gives organizations the capacity to stay 

ahead of the curve on emerging risks, keep workflows 

of data automatically intact, and do so with a certainty 

level providing for business continuity. Indeed, it can 

be an expensive affair where most organizations, even 

those with full budgets, maybe literally strapped at the 

end of the year due to its long run. 

The Key contributions of the article are given below, 

• Developed a hybrid AI-driven framework that 

integrated autoencoders for feature extraction and 

CNN-GRU models for effective anomaly detection in 

ETL processes, addressing the limitations of traditional 

cybersecurity approaches. 

• Demonstrated the capability of autoencoders to 

reduce data dimensionality while preserving crucial 

features, significantly enhancing the efficiency of the 

anomaly detection system. 

• Evaluated the proposed model using real-world 

ETL logs, showing superior performance in identifying 

security threats with high-performance metrics 

compared to conventional rule-based detection 

systems. 

• Provided insights into the integration of AI in ETL 

cybersecurity, highlighting how real-time anomaly 

detection can enhance system resilience and 

proactively manage risks associated with dynamic, 

large-scale data workflows. 

This document is organized as follows for the 

remaining portion: Section II discusses the related 

work. The recommended method is described in Part 

III. In Section IV, the experiment's results are 

presented and contrasted. Section V discusses the 

paper's conclusion and suggestions for more study. 

2. Related Works  

2.1. Role of ETL 

Hamza et al. [11] propose an ETL-based strategy 

toward effective data transfer into Salesforce from 

Oracle BI, minimizing system downtime and ensuring 

data fidelity while transitioning from legacy systems 

to those that operate in the cloud. It explains how the 

Extract, Transform, and Load processes can be 

beneficial to operational efficiency and impelling data 

movement, especially under the finance and ERP 

considerations. The study brings in Data Virtualization 

as a solution that can be a very flexible and scalable 

option for accessing data in real-time without massive 

replication in the name of facilitating Agile workflows 

and enabling quicker decision-making. The same is 

implemented to bring advanced business intelligence 

capabilities, bolstered predictive analytics, and AI-



International Journal of Intelligent Systems and Applications in Engineering                         IJISAE, 2025, 13(1), 191–204  |  194 

 

enabled framework development for decision support 

considering competitiveness and data-savvy contexts 

through the aforementioned virtualized layers of data 

and novel approaches toward data integration. 

Concerns have risen regarding the heightened 

cybersecurity threats, which industries now face with 

increasing reliance on digital storage, internet services, 

and software-oriented processes. Proactive 

vulnerability assessments should be pursued as digital 

transformation opens the IT infrastructures toward 

customers with the potential of cyber attacks. The 

purpose of Hiremath et al. [12], therefore, is to identify 

system vulnerabilities and derive relevant insights 

toward the formulation of effective countermeasures 

by adopting data analytics tools such as Power BI. The 

aim is to help clients in creating a safe online space 

that protects their personal information from 

cyberattack incidents. 

2.2. AI Security  

Saswata Dey, Writuraj Sarma, and Sundar Tiwari [13] 

focus on the severe security challenges being 

experienced in distributed and cloud systems, which 

can be broad, flexible, and cost-effective but at the 

same time are open to facing lots of advanced threats 

like insider attacks, DDoS attacks, and zero-day 

attacks. This shows a description of how DL models, 

such as CNNs, RNNs, and transformers, did come in 

to detect these threats in real time by enhancing pattern 

definition capability. Scalable cloud deployment is 

another aspect to consider with managing unbalanced 

data and combining DL with edge computing 

performance improvements. Experiment results show 

improvement by DL models over traditional methods 

on malware prevention and anomaly detection. The 

study also suggested some issues like interpretability, 

latency, and data quality in future areas such as 

federated learning and privacy-preserving strategies 

concerning more enhanced security in complex cloud 

systems. 

Joshi  [14] investigates the limitations of traditional 

batch-oriented ETL processes in dealing with real-

time, high-speed data, proposing state-of-the-art 

machine-learning techniques to build adaptive self-

improvement ETL pipelines. The augmentation of 

real-time ETL comes from predictive modeling, 

anomaly detection, schema drift management, and 

reinforcement learning-based resource allocation. 

Such intelligent pipelines will be able to take proactive 

actions to manage workloads, preserve data quality, 

and even accommodate changes in data architecture by 

themselves using time series forecasts and learning-

based insights. Experimental validations on platforms 

including Databricks and AWS Glue demonstrate 

substantial benefits -25 % reduction in resource 

expenses and 40% decrease in latency. This research 

shows how ML-enhanced ETL solutions could 

transform today's fast-changing data environments 

themselves into effective, self-sufficient data 

integrators. 

2.3. Anomaly Detection 

Ansari et al. [15] bring forward a model called 

Enhanced Temporal-BiLSTM Network, or ETLNet, 

for identifying road abnormalities such as potholes and 

speed bumps by employing data obtained from 

smartphone inertial sensors instead of optical input, 

which is ineffective under conditions of low light or 

unmarked regions. ETLNet has reported an integration 

of BiLSTM layer and two TCN layers that are 

designed to independently evaluate gyroscope and 

accelerometer data to identify the presence of 

abnormalities over road surfaces. The empirical data 

shows that the model's robustness and efficiency can 

be shown when it detects a speed bump with a highly 

impressive F1 score of 99.3%. Now, this is a great 

study for advanced automated traffic monitoring 

systems to use in driverless cars and public 

transportation. 

Seenivasan [16] prepares to change the usual ETL 

processes in terms of application on cloud data 

engineering. Some of the problems that it solves are 

excessive latency, wastage of resources, and 

misaligned transformation of data. AI-driven features, 

such as automatic schema evolution, intelligent 

workload management, and real-time anomaly 

detection, make ETL pipelines more scalable, flexible, 

and efficient. It also describes how to apply these 

advantages of AI in real use cases demonstrating 

extreme increases in speed, accuracy, and overall 

operational efficiency in data processing. It finally 

points out that AI ETL systems are already becoming 

an essential part of modern, high-performance data-

engineering solutions in increasingly complex and 

dynamic cloud infrastructures. 

2.4. ETL Techniques 

In contexts where digital data is becoming increasingly 

heterogeneous concerning structured and unstructured 

data, Kumaran [17] elaborates on the strong ETL 

processes needed. While the structured data is usually 

inside relational databases processed with SQL-based 

tools under defined schemas, management of 

unstructured data including textual, imaging, and 
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video content demands more flexible AI-driven 

approaches; hence, these, combined with the 

frameworks of big data such as Hadoop and Spark, will 

be more applicable. And also gives good coverage of 

hybrid ETL pipelines that operate together for the 

highest performance and scalable analytics. It presents 

best practices for dealing with mixed-data ETL 

process concerns in the areas of data governance, 

automation, and scalability and discusses several 

solutions to improve integration and performance 

across heterogeneous data ecosystems. 

In the management of data heterogeneity and event 

interpretation in complex systems like computer 

networks and telecommunications, an end-to-end data 

processing architecture that marries Semantic Web 

technologies with traditional NMSs and SIEMs is 

presented by Cichonski et al. [18]. In contrast to 

traditional systems, the suggested architecture 

incorporates Semantic Web tools for knowledge 

representation including provenance tracking, 

declarative data mapping using RML, batch and 

stream processing, SPARQL and SKOS-based data 

patching and reconciliation, and Kafka-based semantic 

data transfer. The given architecture corroborates its 

unique ability to integrate heterogeneous data sets for 

monitoring and security analytics by producing an 

RDF knowledge graph capable of detecting cross-

domain anomalies in industrial scenarios. 

3. Research Methodology 

3.1. Research Gap 

Existing methods in securing ETL processes have 

serious limitations that bear adversely on their capacity 

to counter the changing and sophisticated nature of 

threats in cyberspace. Despite advancements produced 

in cybersecurity, even concerning securing ETL 

processes, there are still significant areas such methods 

have not been able to address properly [19]. Most of 

the traditional cybersecurity approaches still depend 

largely on a combination of rule-based detection 

systems with perimeter defenses; naturally, therefore, 

they are deficient for the dynamic and intricate 

environments that modern ETL workflows operate 

within. They cannot adapt to new, unseen threats, 

should the data be voluminous and heterogeneous in 

transformations practiced at ETL systems. Another 

weakness of rule-based systems is a high false positive 

rate; this leads to alert fatigue, which necessitates 

inefficiency in resource utilization. Besides, the 

anomaly detection methods observed to be presently 

available tend to rely on rather over-simplistic models 

that lack the depth and nuance required for real-time 

identification of subtle deviations from normal activity 

[20]. Furthermore, reactive systems identify threats 

after they have already influenced the system rather 

than proactive ones. There are intelligent, real-time, 

and adaptive security measures to be embedded into 

ETL pipelines, which should learn from the evolving 

data continuously and give accurate, timely alerts 

without creating overwhelming alerts for the security 

teams. Current measures also do not add the small pool 

of solutions that account for the diverse and multi-

source integrations and even cloud-based 

environments where ETL processes increasingly draw 

upon, thus rendering the system exploitable from 

cross-platform vulnerabilities. For that, the need is 

very clear towards more sophisticated, dynamic, and 

AI-based ETL solutions to minimize false positives 

and proactively identify emerging threats in ETL 

workflows and solve the current cybersecurity gaps. 

3.2. Proposed Framework 

Data for the Autoencoder for the Feature Extraction 

step is usually any form of ETL logs or performance 

metrics, which is fed into an unsupervised neural 

network so that it may learn a compressed 

representation or "latent space" of the original data. An 

autoencoder consists of an encoder and a decoder. The 

encoder maps the high-dimensional input data into a 

lower-dimensional space in which it retains the most 

essential features while discarding minor details, and 

certain dimensionality-reduction operation alarms. 

Thereby, this compression retains salient features of 

the data, such as patterns of job durations, resource 

usage, or unusual events, most salient for the purposes 

of anomaly detection. From that latent compressed 

space, the decoder attempts to reconstruct the original 

input while minimizing reconstruction error between 

input and output. In the case of ETL logs, the process 

of reconstruction helps in identifying subtle anomalies 

since for the data points that are unlike the normal 

pattern, even a small deviation, the reconstruction 

error will be far higher during inference time. Hence, 

the autoencoder is applied to extract relevant features 

that will be used in any downstream task such as 

anomaly detection, aimed at security risks or system 

failure identification in their infancy. This not only 

aids in carrying out the work with less computational 

power but also provides more accuracy to the anomaly 

detection model concerning the salient aspects of the 

data. It is depicted in Fig 1. 
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Fig. 1   Proposed Framework 

3.3. Data Collection 

The ETL logs contain some synthetic and real ETL 

logs that simulate Enterprise ETL Operations. These 

logs usually have details such as data extraction, 

transformation, load activities, and other meta 

information like timestamps, job status 

(success/failure), user actions, IP addresses, and 

resource utilization. This data set carries temporal 

behavior patterns, which are appropriate for training 

and validating AI models for cybersecurity. Collected 

data is preprocessed with log parsing, normalization, 

timestamp alignment, and anomaly labeling (where 

relevant) to create homogeneity at all dimensions 

before proceeding with feature extraction. This ETL 

log data will serve as the primary input for building AI 

models that would evaluate unusual patterns to 

perform proactive security risk mitigation and threat 

detection in ETL processes. 

3.4. Data Pre-Processing Using Min-Max 

Normalization 

In the course of this research, min-max normalization 

was applied to the numerical features extracted from 

the ETL logs as a preprocessing step. This is important 

in balancing the significance of all features in 

proportion to how they would influence the AI models, 

particularly distance measure rankings and gradient-

based methods. The ETL logs data were rich in 

numerical attributes, from execution time to transfer 

volume, CPU usage, and memory consumption, each 

exhibiting different scales. Normalization made it 

necessary to counterbalance larger attributes in favor 

of those smaller in range during a certain modeling 

effort, hence skewing the performance of the model, 

thus making it less generalizable. This was achieved 

using min-max normalization: the feature values were 

normalized into a common range so that the models 

learned the underlying pattern more effectively, 

enhancing the training process and improving 

prediction accuracy. It is given in Eq. (1). 

𝑋normalized =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
     (1) 

Apart from numerical scaling, this stage has 

pinpointed discrepancies and strange behaviors that 

are glaringly missing. This primarily involves the field 

of cybersecurity, for example, when the features were 

normalized; we could identify breaches in terms of size 

for data transfer or job duration, which would 

otherwise indicate a possible system misuse. This 

value of preprocessing also extended considerably into 

the improvement in convergence performance of 

machine-learning models, especially in cases 

involving neural networks or another type of iterative 

learning algorithm. It also gave the normalized dataset 

processed and uniform input to every subsequent 

operation, as feature selection and anomaly and threat 

prediction are steps upon which the AI-based 

predictive risk management framework proposed in 

this research sets its foundation. 

3.5. Autoencoder for Feature Extraction 

In autoencoder for Feature Extraction, the data is 

usually input to different types of ETL logs or 

performance metric data. This data then goes through 

an unsupervised learning technique, a neural network 

that learns some form of compressed representation or 

"latent space" from the original data. The autoencoder 

is mainly made up of two parts: an encoder and a 

decoder. The encoder then establishes a less 

dimensional dimension for the high dimensional input 

x while taking as many important factors down as 

possible, making it essentially redundant, and hence 

performs dimensionality reduction. Such compression 

helps in retaining reducing factors such as patterns of 

job duration, resource usage, or other unusual activity-

related markers characteristics important towards 

anomaly detection. The decoder now takes on the task 

of reconstructing the original input from this 

compressed state as accurately as possible through the 

minimization of reconstruction errors between the 

input and its subsequent output. When applied to ETL 

logs, this step helps to identify anomalies that may not 

be very obvious, as the reconstruction error would be 

significantly higher for any data points deviating from 

what it had learned as normal patterns. The 

autoencoder, therefore, is an effective tool for 

extraction and downslope utilization in anomaly 

detection, with the purpose of detection being 

preemptive identification of possible risks to security 

or system failures before they can grow out of control. 

Consequently, this operation reduces computational 

complexity and increases the overall correctness of the 
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anomaly detection model, focusing on the most central 

aspects of the data. 

3.6. Encoder 

In this research paper, an understanding of the 

intersection between AI and cybersecurity concerning 

proactive risk management of ETL processes has 

always made the encoder function very important; it 

becomes a factor that transforms logs from an ETL 

process from being complex, high-dimensional data to 

a compact and rich-in-identity representative summary 

for capturing other underlying patterns and behaviors 

of system activities. It essentially does this by 

transforming job execution times, data volumes, user 

interactions, system resource usages, etc., directly into 

a lower-dimensional latent space which could learn the 

necessary construct based on the data with which ETL 

jobs behave, along with subtle anomalies or deviations 

that sometimes may not be obvious in the original data. 

These encoded features are further downstream 

security applications such as anomaly detection or 

threat classification, where the software works on real-

time AI aspects of activity submission without the 

noise and irrelevant information volumes on such 

submission. Intelligence is filtered here through the 

encoder which has certainly done a lot towards 

minimizing raw operational data into a well-known but 

thin feature sheet that lets the program know the rest 

in a proactive and data-driven way for the detection 

and anticipation of possible cyber threats. It is given in 

Eq. (2). 

𝑧 = 𝑓encoder (𝑥) = 𝜎(𝑊𝑒𝑥 + 𝑏𝑒)  (2) 

3.7. Decoder 

The decoder function in this situation is seen as an 

important part of the assurance of accuracy and 

reliability of the feature extraction process, as it 

attempts the reconstruction of original ETL log data 

from the compressed latent representation produced 

through the encoder. This reconstruction will help the 

model learn how well the latent features can capture 

the salient information required to represent the usual 

behaviors associated with ETL jobs. The emphasis of 

the decoder has been on minimizing losses upon 

compression; yet, therein lies the strength of the 

decoder: that is, its ability to expose discrepancies or 

failures in reconstruction, which could serve as a 

precursor for the detection of aberrant behavior or 

security threats. In cases, where the decoder did not 

succeed in accurately reconstructing any part of the 

original input, this would indicate that latent features 

have probably recorded some patterns of anomaly or 

suspicion, attributing such conditions as possible 

unauthorized system access, unauthorized data 

exfiltration, or misuse of the system. Optimization of 

the decoder's capacity for data reconstruction 

indirectly enhances the ability to detect and flag 

abnormalities, thus making the decoder an important 

entity for proactive security risk management 

concerning ETL processes. It is given in Eq. (3). 

𝑥̂ = 𝑓decoder (𝑧) = 𝜎(𝑊𝑑𝑧 + 𝑏𝑑)  (3) 

3.8. Reconstruction Error 

The attributes this paper considered for anomaly 

detection and the recognition of cybersecurity threats 

directed toward the ETL processes, reconstruction 

error is essential. The reconstruction error essentially 

is the error between the input and output data from the 

autoencoder, which helps to assess how well the model 

learns the "normal" pattern of ETL system behavior. 

High reconstruction error indicates that the latent 

features captured by the encoder are unable to 

accurately represent the input data, usually because the 

system is facing some abnormal behavior, such as 

unauthorized access, unexpected data transformation, 

or system failure. If monitored, a situation where the 

reconstruction error is found to be high signals the 

system working away from the intended purpose, 

thereby raising alarms over possible security breaches 

and irregularities in ETL operations like data 

transactions. This lends itself to the use of 

reconstruction error in identifying and managing risks 

proactively, since any abnormal activities indicated by 

the reconstruction error signify deviations from the 

expected behavior where intervention will thus be 

possible in a short period, preventing these anomalies 

from escalating into security incidents. It is given in 

Eq. (4). (4) 

ℒ(𝑥, 𝑥̂) = ‖𝑥 − 𝑥̂‖2    (4) 

Represented schematically in Fig 2, the autoencoder is 

a fully modular entity that consists of two major 

components: an encoder and a decoder. These 

components are meant to be very good in the search 

for efficient representation in an unsupervised manner. 

It accepts the representation as input data such as ETL 

logs or system metrics through an encoder and 

compresses it to low-dimensional latent space. Here it 

captures most of the important features and patterns 

and discards noise while maintaining the smallest 

possible data. This architecture becomes even more 

interesting for ETL cybersecurity when it comes to 

anomaly detection because the model is trained on 

normal patterns, and thus it will not be able to 
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accurately reconstruct inputs that vary from normal 

behavior, which will become potential threats or 

anomalies. Thus the auto's ability to learn from 

historical data and detect outliers makes it effective at 

identifying very slight, previously unseen deviations 

from the ETL pipeline. 

 

Fig 2.        Autoencoder-LSTM Architecture 

 

3.9. CNN-GRU for Anomaly detection 

3.9.1. Convolution Operation 

Convolution operations are necessary for extracting 

prominent features from input data. Thus, when raw 

ETL logs or performance metrics enter the network, 

the convolution operation analyzes the data purposely 

by running filters (kernels), in small windows or 

patches, to determine significant spatial patterns. 

Perturbations come in many forms; sudden spikes in 

job duration, resource utilization abnormalities, and 

impaired data transfer behavior-all are indicative of 

pattern interference detection: for instance, when an 

ETL job suddenly experiences a high spike in 

processing and/or CPU usage over a short period, the 

convolutional layer sees it as an anomaly and detects 

high-frequency perturbations coming off it. In such a 

phase, the convolutional layers are where local 

features are extracted, each filter designed to pick up 

specific patterns such as unusual peaks, sudden dips, 

or repeated patterns that could signify an anomaly. 

When the convolution operation identifies such local 

patterns, they are forwarded to subsequent stages of 

the model, such as GRU layers, with the aim that this 

second set of layers will be able to model the temporal 

dependencies of the identified anomalies over time. 

This mechanism gives the model the capability to 

identify short-lived deviations from normal behavior 

with almost instantaneous effects as well as those long-

term deviations, paving the way for more detailed and 

accurate anomaly detection. In essence, the 

convolution operation helps transform the raw input 

data into a compressed and informative feature set that 

is further worked upon for temporal sequence analysis 

and anomaly detection. It is given in Eq. (5). 

𝑧𝑡 = 𝑓𝑐𝑛𝑛(𝑋𝑡) = 𝜎(𝑊𝑐𝑛𝑛 ⋅ 𝑋𝑡 + 𝑏𝑐𝑛𝑛)  (5) 

3.9.2. Max Pooling 

In the CNN-GRU architecture for anomaly detection 

in ETL processes, max pooling is the most important 

process for reducing the dimensionality of the feature 

maps generated by the convolution layers while 

preserving the most important and impactful features. 

At the end of the convolution operation, the model 

generates several feature maps that capture the so-

called local patterns in input data when triggered, such 

as an instantaneous spike in the job execution time or 

an irregularity in resource usage. Such feature maps, 

however, often contain a plethora of redundant 

information and high-dimensional information that 

may prove imprudent for effective anomaly detection. 

Max pooling solves this problem by sliding over the 

pooling window on the feature map and taking as the 

maximum value those that fall into a certain region. 

Thus, this step reduces the spatial resolution of the 

feature map while compressing the data into valuable 

information such as the peaks that could be unusual or 

compromise security. This process will allow the 

model to focus on those anomalies that are most 

significant ones that reflect extreme deviation from 

normal anomalies while throwing away those that are 

less relevant or noisy. Furthermore, the dimension 

reduction makes the processing after this is also far 

more efficient as nearly all features do not have to be 

fed to the future stages of the model, including GRU 

which particularly focuses on temporal dependencies. 

Max pooling is important since it makes the 

architecture of this system more efficient and able to 

capture critical anomalies without drowning out 

unwanted details. This is a very important aspect in 

real-time anomaly detection systems where speed and 

accuracy are paramount. Finally, max pooling is 

intended to improve the generalization ability of the 

model across different types of data while retaining 

important information, thus becoming a fundamental 

step in the deep learning pipeline for ETL 

cybersecurity. It is given in Eq. (6). 

𝑧𝑡 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝑧𝑡)   (6) 

3.9.3. Reset Gate 

In the framework of CNN-GRU architecture for 

anomaly detection in ETL processes, the reset gate 

serves the purpose of regulating the information flow 

within the GRU, especially for sequential data such as 
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logs and performance metrics over time. The reset gate 

essentially acts to forget certain portions of the 

previous hidden states (memory) so that the model can 

somewhat selectively erase from memory irrelevant 

information from previous time steps while 

maintaining focus on more recent input features. In 

ETL, where changes in the input data are very common 

due to system behavior variations, load patterns, and 

external factors, the reset gate also grants the model 

the ability to "reset" its memory globally such that the 

GRU layer does not excessively rely on obsolete 

and/or irrelevant historical data for the processing of 

novel inputs. If, for instance, an ETL job suddenly 

seems to be turning out an extended execution time or 

extra resources due to an unpredicted event, then the 

reset gate can allow the GRU to direct its attention 

toward the more recent anomaly rather than sustaining 

an inaccurate representation of normal behavior based 

on older inputs. This flexibility will become important 

when transient anomalies are spotted that could 

suggest system failures, cyberattacks, or performance 

degradation. The reset gate's retention policy allows 

the model keeper to respond to real-time changes and 

detect subtle and abortive deviations from normal ETL 

patterns that simpler, static models might miss. Thus, 

this dynamic makes the model flexible and accurate in 

anomaly identification as it processes through data 

streams over time and finally constitutes the 

framework of an adaptive and intelligent anomaly 

detection process in ETL environments. It is given in 

Eq. (7). 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ 𝑧𝑡 + 𝑈𝑟 ⋅ ℎ𝑡−1 + 𝑏𝑟)  (7) 

3.9.4. Update Gate 

In the auto-encoders ETL process anomaly detection 

using the CNN-GRU architecture, the update gate is 

one such important gate that leads to deciding how 

much from the present input and memory has to be fed 

into the built-updated hidden state of the model. The 

update gate thus makes a balance between new input 

data, which usually consists of real-time anomalies in 

job execution times, resource use, and data transfer 

patterns, and the past context stored in the memory of 

the model itself. Data behavior changes dynamically 

in ETL environments, and the model must be brought 

under the hood changes to detect new kinds of threats 

such as unauthorized access or sudden system 

overload change. It captures and maintains the trend 

invaluable in determining the history of cause-end 

effects, as slow performance degeneration usually 

serves to herald the coming of more serious disruption. 

The update gate thus will enhance the adaptability and 

precision of the CNN-GRU model and make it 

adaptable to respond to the ongoing changes in ETL 

processes while efficiently detecting complex and 

time-dependent anomalies that otherwise go 

undetected. Such dynamic adaptations secure the 

presence of the anomaly detection system towards all 

kinds of threats, whether emerging or already present, 

catering thus to the effective protection of ETL 

systems by cybersecurity measures. It is given in Eq. 

(8). 

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ 𝑧𝑡 + 𝑈𝑧 ⋅ ℎ𝑡−1 + 𝑏𝑧)  (8) 

3.9.5. New Memory Gate 

In the case of the CNN-GRU architecture for anomaly 

detection in ETL processes, the new memory gate 

becomes a very important factor in determining how 

the input data at hand integrates with the already 

existing memory in the model to give an updated 

hidden state. This gate regulates how far the model's 

perception of the system's behavior, especially with 

anomaly detection in ETL workflows, should relate to 

the newly processed information from the current 

Input. The ETL process involves ongoing 

transformations of data whose integrity and precision 

can vary with system loads, changing resource 

utilization, or even unexpected failures. The new 

memory gate allows the model to build a dynamic 

"new memory" on a short time scale incorporating the 

recent data patterns, such as an instantaneous spike in 

job execution timing, CPU usage deviations, and so 

forth, with historical context modeled through 

previous time steps. 

3.10.  Final Hidden State 

Crucial for indicating anomalies within ETL processes 

is the final hidden state of the CNN-GRU architecture, 

which now owns the task of capturing the model's 

learned representation of the entire sequence of input 

data. This hidden state is the culmination of 

information through the CNN layers extracting local 

features from the input data and through the GRU 

layers capturing temporal dependencies and sequential 

patterns in the data. The hidden state now carries 

features relating the most to the current input and its 

relevant historical context as the data is being 

processed through the network. Therefore, in the ETL 

workflows, the final hidden state may be viewed as a 

summary of the system's behavior over a finite period, 

capturing all deviations or irregularities that pose 

potential risks regarding performance and security. By 

the time this input sequence has traversed the entire 

CNN-GRU model, what remains in the final hidden 



International Journal of Intelligent Systems and Applications in Engineering                         IJISAE, 2025, 13(1), 191–204  |  200 

 

state is a rather compact representation capable of 

further classification of any detected anomalies or for 

use in decision-making. The final hidden state may 

turn out to be also important discrimination against 

potential anomalies indicated by substantial deviation 

in job execution time or rising resource usage 

requesting further scrutiny. Thus, this final hidden 

state is the key to understanding the state of the ETL 

process as a whole in identifying possible 

vulnerabilities and laying the groundwork for 

proactive risk management. It is given in Eq. (9). 

ℎ̃𝑡 = tanh⁡(𝑊ℎ ⋅ 𝑧𝑡 + 𝑈ℎ ⋅ (𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ)  (9) 

3.10.1. Anomaly Score 

The anomaly score is indeed an important measure that 

the CNN-GRU architecture transmits to electricity 

consumption data regarding the extent to which the 

input acts, unlike the anticipated behavior, thus 

determining whether it marks a probability indicator of 

a possible anomaly in ETL processes. Thereafter, the 

final output from the model is compared against 

expected behavior norms after acquiring input data 

passing through convolutional layers-CNNs, which 

are further processed with temporal dependencies 

captured by GRU layers. This anomaly score is 

computed as the difference between model predictions 

or in some cases reconstructed data and the observed 

actual input, often using measures like mean squared 

error or cross-entropy. A typical trend can be observed 

that with higher scores, the anomaly has deviated from 

normal, thus showing possible threats/ irregularities in 

the ETL process such as unauthorized access, data 

spikes unexpected performance degradation, and so 

forth. The anomaly score will be monitored for real-

time operations; by that, the indicators will catch 

anomalies as they occur, and early interventions will 

take place thereby reducing the chance of missing 

possible cybersecurity incidents. Moreover, it adds 

valuable and actionable information to assess the risks 

better and improve proactive risk management under 

dynamic ETL workflows. It is given in Eq. (10). 

ℒ𝑡 = ‖𝑥𝑡 − 𝑥̂𝑡‖
2   (10) 

Integrating CNN and GRU in the CNN-GRU 

architecture, as seen in Fig 3, aims to benefit from both 

deep learning paradigms toward effective anomaly 

detection in ETL processes. While the CNN part 

handles the spatial feature extraction of the input data 

sent in the form of logs or performance metrics 

through convolutional filters capturing patterns and 

local dependencies, the features extracted by CNN are 

passed on to the GRU layer, which deals with 

sequential feature dependencies in the data, allowing 

the model to learn temporal relationships and attain 

long-term patterns evolving through time. Thus, with 

the spatial feature extraction capabilities of CNNs and 

the temporal learning powers of GRUs, the 

architecture would fit perfectly for the discovery of 

complex anomalies in a dynamic ETL environment, 

where immediate and also long-term deviations from 

normal can indicate an emerging cybersecurity threat. 

This hybrid architecture increases the model's 

capabilities in detecting subtle anomalies, reducing 

false positives, and assuring time efficiency in threat 

detection against large amounts of data. 

 

Fig 3.        Architecture of CNN-GRU 

 

3.11. Case Study 

The case study in question focuses on using historical 

ETL incidents of a large e-commerce platform to see 

how the AI-based anomaly detection methods, in 

particular, a CNN-GRU architecture, would help to 

mitigate risks and improve the cybersecurity posture 

proactively. Some very significant incidents took place 

all over the year on the platform, such as unauthorized 

access to sensitive customer data, irregular spikes in 

data transfer outside busy hours, and performance 

degradation of the system attributable to ETL 

processes. As a start to this case study, historical 

incident logs were sourced from the ETL systems of 

the platform, covering job execution time, volume of 

data, resource usage by the system (in terms of CPU 

and memory), the error messages thrown, and 

timestamps. This was followed by cleaning of the logs, 

normalization, and tagging of labels for incidents on 

whether they resulted from malicious activity system 

failure or routine error. The dataset was then 

partitioned into training and testing for a rigorous 

evaluation of model performance. The CNN-GRU 

model was trained on this historical data to learn both 

spatial features, e.g., sudden spikes in data or resource 



International Journal of Intelligent Systems and Applications in Engineering                         IJISAE, 2025, 13(1), 191–204  |  201 

 

usage, and temporal patterns, e.g., data transfer 

anomalies that occur at certain times or following 

specific sequences of events. 

It was said that the trained CNN-GRU model was 

tested for its ability to detect anomalies resembling 

earlier ETL incidents. The CNN module analyzed 

local features in terms of the job duration or the data 

load that seemed unusual while the GRU learned the 

time-series patterns of such anomalies and delineated 

them as behaviors that had deviated from normal job 

execution history behavior. For instance, the model 

could detect spikes in data transfer rates, earlier 

potential indicators for data exfiltration attempts, and 

new occurrences even before escalation. Likewise, 

unusual resource consumption was also detected over 

specific periods, signifying performance degradation 

leading to system failures. Results were, of course, 

compared against conventional anomaly detection 

techniques rule-based thresholds, and simple statistical 

methods and failed to capture some of the complex 

shapes in the data. The CNN-GRU model indeed 

proved a better approximate match when coloring the 

incident and much decreased the false positive rate, 

making it a suitable tool for real-time anomaly 

detection and proactive risk management. It concluded 

case studies with proposals for implementing the 

CNN-GRU technique in the ETL systems in the 

platform, with continuous updates in models and 

monitoring activities to counter evolving security 

threats and performance issues. 

4. RESULTS & DISCUSSION 

In the results section, full-fledged testing of the 

proposed AI-oriented anomaly detection framework 

applied to ETL processes is realized; and its impact is 

felt in improving focus areas, namely, cybersecurity 

and operational reliability. It has been revealed 

through an array of visual representations and 

performance metrics that the integrations of machine 

learning and deep learning techniques in terms of 

autoencoders and CNN-GRU models make it possible 

to proactively detect anomalies in real-time ETL 

workflows. This outcome is explored using job 

completion time distribution, trends in anomaly 

detection, importance of features, and classification 

performance metrics. Together, these results validate 

the proposed approach's provision to contain risk, 

ensure data pipeline integrity, and empower timely 

decision-making concerning complex data-driven 

environments. 

 

4.1. Experimental Outcome 

Over time, cumulative detection plots in Fig 4 describe 

an increasing number of detected anomalies. It is 

meant to provide a view of the anomaly detection 

system performance and effectiveness as a whole; that 

is, as the cumulative number of anomalies increases 

with time, it brings to light the steady capability of the 

model to mark deviations from normal ETL job 

behavior. The plot also captures intervals of increased 

anomaly detection frequencies, signifying potential 

threats or irregularities in the system. A steep increase 

in the curve may signal sudden spikes in failures or 

untoward system activity, while a gradual increase 

would suggest more isolated or ongoing issues being 

flagged through time. Thus, elucidating the 

progressive nature of the model over time, the plot aids 

in proactively identifying risks inflicted upon ETL 

processes, strengthening the system, and counteracting 

possible disruptions by unaccounted anomalies. 

 

 

Fig 5.        Time Series Anomaly Detection 

The Time-Series Anomaly Detection graph in Fig 6 

offers a unique dynamic view of the fluctuations of 

ETL job metrics over time while marking stark 

instances of detected anomalies. The continuous blue 

line illustrates the expected pattern of ETL processes 

such as job duration or resource usage, setting up a 

baseline to understand what is considered normal 

behavior on the system. The red markers identify 

points where the anomaly detection model observed 

some deviation that could be suggestive of 

performance bottlenecks, possible unauthorized access 

attempts, or unusual spikes in data flow. Flags raised 

in contrast to the observed normal behavior allow 

analysts to identify and probe issues quickly. 

Arguably, the visualization works best in terms of real-

time monitoring of ETL workflows so that those in 

charge can step in before an anomaly morphs into a 

serious threat impacting security or operations. In 
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summation, it demonstrates the model's capabilities in 

improving the transparency and resilience of critical 

data pipelines. 

 

Fig 6.        Time Series Anomaly Detection 

The juxtaposition of histograms on the distribution of 

ETL job completion time, pre-and-post AI-based 

anomaly detection implementation in Fig 7, shows 

clearly that the anomaly detection system affects ETL 

process efficiency and timely performance. 

Previously, with a greater spread of job completion 

time, others were exceedingly long to complete chiefly 

due to undetected anomalies, system failures, or 

performance deterioration. All these anomalies, 

resource overloads, or unexpected delays on the data 

processing scene could blockade the execution of jobs, 

which thereby leads to a high variance in the 

completion times. After the AI-based anomaly 

detection system was introduced, we noticed a 

movement in the job completion time distribution, 

with significantly decreased average job duration and 

variability. This suggests that the model does well in 

the timely identification of likely issues, if they are 

performance bottlenecks or jobs exhibiting anomalous 

behavior, thus contributing to a quicker and more 

reliable completion rate for jobs. The narrower 

distribution following implementation suggests that 

delays are actively prevented by the AI system in 

concert with the management of the probable risks, 

thereby furthering the reliability of the timely 

completion of ETL processes. Therefore, AI-driven 

anomaly detection will reduce disruption from 

unanticipated events and hence increase efficiency-

variable conditions and smooth-flowing and 

predictable ETL work processes. 

 

Fig 7.        Job Completion Time 

Overall Performance Evaluation of the Anomaly 

Detection Model in Detecting Anomaly within the 

ETL Processes is given in Fig 8. The model achieved 

an overall accuracy score of 99.12% emphasizing the 

very high accuracy predictive rate. It also has a 

precision score of 98.98% measuring that anomalies 

that lead to significant alterations are few false alarms 

among the multitude of flagged anomalies that are 

truly positive. The Performance Metrics Bar Chart 

showcases the complete evaluation of the anomaly 

detection model's ability to identify anomalies within 

ETL processes. In terms of overall accuracy, the given 

model scored 99.12%, which asserts the high accuracy 

of predictions. In addition, a precision score of 98.98% 

measures that the majority of the flagged anomalies 

were actual true positives with very few false alarms. 

The recall value of 98.43% signifies that the model 

could capture almost all of the actual anomalies with 

very few escaped ones. The F1-score, which is the 

balance between precision and recall, has a score of an 

outstanding 98.11%, showing how reliable is this 

model in holding constant among different evaluating 

criteria. This graphically enforces the robustness of the 

model and speaks of the capability of proactive 

securing ETL pipelines while keeping the errors 

minimal and thus turns out to be a great asset in the 

risk management strategy that focuses on 

cybersecurity. 

 

Fig 8.        Performance Metrics 
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Three anomaly detection techniques are compared in 

terms of performance using common evaluation 

criteria in Table 1: OC-SVM, LSTM-Autoencoder, 

and the proposed CNN-GRU model. The results show 

that the proposed CNN-GRU model outperformed the 

other models, achieving maximum accuracy of 

99.12% with excellent precision of 98.98%, recall of 

98.43%, and F1-score of 98.11%. Aside from 

maintaining a constant superiority over OC-SVM-

another clear testimony to the superiority of deep 

learning techniques as opposed to their standard ML 

counterparts-CNN-GRU does even better by daring to 

use temporal and spatial patterns in the data spectrum. 

Therefore, it is fair to say the proposed method, CNN-

GRU, has proven to be a very powerful yet successful 

tool when it comes to real-life anomaly detection jobs, 

relying heavily on the robust and consistent 

interpretation of anomalies. 

Table 1: Comparison with Existing Methods 

Methods 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

OC-SVM [20] 89 93 91 87.5 

LSTM-

Autoencoder 

[20] 

93 93 

93 90.5 

Proposed 

CNN-GRU 
99.12 98.98 

98.43 98.11 

5. Conclusion and Future Work 

In conclusion, fitting AI into a cybersecurity 

framework for ETL processes influences threat 

detection and deterrence in data pipelines. A novel AI-

based approach was proposed in this paper that used 

autoencoders for feature extraction and CNN-GRU 

models for anomaly detection to break away from the 

traditional rule-based systems. The autoencoder is thus 

provided with the task of reducing the dimensionality 

of ETL log data while maintaining essential 

characteristics that will ultimately speed up anomaly 

detection. Another level of sophistication has been 

brought by the CNN-GRU hybrid model, which 

should now put its emphasis on spatial and temporal 

recognition, in the real-time detection of subtle and 

evolving threats. The experimental results said that 

this method performs better than the traditional ones 

concerning accuracy, precision, recall, and F1-score, 

which provides great support for risk management in 

ETL settings. Early detection of anomalies allows 

organizations to mitigate risks before they turn into an 

offer for serious concern and create a more secure ETL 

work environment for their sensitive data.  

Nevertheless, while having promising results, this 

approach opens several avenues for research and 

further development. A wider range of ETL 

environments, including those with highly diverse data 

sources and complex transformation logic, would be 

an area to be worked on for improvement in the model. 

Reinforcement or federated learning could be 

developed further to provide such adaptable 

techniques for the model against new and emerging 

threats without centralized data collection. Adding it 

to the goading list would include XAI techniques for 

acceptance and interpretability, thereby bringing the 

anomaly flags to the attention of the security teams. 
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