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Abstract— Engineering depends greatly on optimization, as efficiency, accuracy and lowering costs are what really matter. 

Lately, people have turned to machine learning as an effective way to face these problems. This article discusses using different 

ML techniques like supervised, unsupervised and reinforcement learning for optimization in the fields of structure, energy, 

manufacturing and transport. The research investigates the benefits and drawbacks of the approaches, reviews ongoing studies 

and provides a comparison analysis referring to benchmark data and simulations. The research reveals that using ML for 

optimization can lead to faster results, greater adaptability and higher accuracy than using traditional approaches. In the end, 

the paper outlines new trends and recommends topics for further research. 
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I. INTRODUCTION 

In engineering, optimization is significant as it 

supports applications like designing structures, 

machines, making structures and systems more 

energy efficient, proper resource management and 

advanced manufacturing. The purpose of 

engineering optimization is to discover the most 

suitable approach, having to deal with several 

objectives at once such as cost, quality, safety, 

performance and sustainability. For years, problems 

such as these have been solved by using traditional 

approaches such as linear programming, nonlinear 

programming and gradient-based methods. Yet, 

they do not always succeed when faced with non-

convex, multi-modal or dynamic types of problems. 

Such problems are also likely to need detailed 

mathematical models, but such models might not 

exist if the problems involve much uncertainty, 

distorted information and different systems 

connected in complex ways [1-2]. 

In the last few years, computational engineers have 

started relying heavily on machine learning (ML). 

Unlike old methods, machine learning does not rely 

on creating an explicit model of the system. They 

make use of data to learn and identify different 

patterns, relationships and ways to improve their 

work. With ML, you can find insights from past 

experiences and apply those insights to new and 

unexpected situations. For this reason, engineers 

now shift from following rules and models to using 

intelligent optimization frameworks based on 

collected data [5]. 

Thanks to Industry 4.0 and new smart devices, there 

is now a greater amount of data available in 

engineering. The wealth of data enabled machine 

learning to be used in different areas of engineering 

optimization. One example is how ML supports 

engineers in structural designs by predicting 
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strength, ensuring materials are used efficiently, 

assists in manufacturing, improves manufacturing 

methods by optimizing paths, cuts down waste and 

improves throughput; improves energy by smart 

planning, conserves energy and forecasts energy 

demand; and helps in transportation through routing, 

scheduling and controlling traffic. 

In engineering optimization, many different 

machine learning algorithms are put to use. Many 

people in this field use regression models and 

decision trees to foresee objective functions or 

possible constraints. By using clustering which 

belongs to unsupervised learning, we can find 

unexpected patterns and collections of data used in 

design. Agents can discover the most suitable 

strategies in RL by experimenting and trying 

different approaches either in simulations or in real 

life. Therefore, it is well suited for controlling 

processes and updating systems [11-14]. 

Although many ML applications in engineering 

have been proven, researchers have yet to agree on 

the best methods for each type of optimization 

problem. Also, the accuracy, clarity, ability to grow 

and how much computing power is needed must be 

carefully gauged. VARs Engineering should take 

care of things like data accuracy, expanding the use 

of ML models and including them within 

engineering tools and processes. 

This paper aims to explore the benefits of employing 

machine learning in improving optimization in 

engineering. The paper performs a broad 

examination and tests the outcomes of using 

different ML strategies across different engineering 

areas. Besides helping researchers, the goal is to 

support engineers in using ML for finding solutions 

to engineering problems they face on the job [6]. 

At the outset, I read a range of articles to find out 

how ML has influenced engineering optimization. 

Next, it explores the technique used to judge the 

different machine learning algorithms on various 

workbench problems. Results are checked to 

determine if they are optimized, easy to compute and 

reliable.  

Novelty and Contribution  

This research is unique due to its detailed, direct and 

diverse assessment of ML approaches aimed at 

solving engineering optimization problems. Where 

prior research looked at only a single machine 

learning technique applied to an individual area, this 

work looks at all three main machine learning 

approaches and shows how they relate to structural 

design, thermal systems, manufacturing and energy 

efficiency [7]. 

This study’s most important contributions are 

described as follows: 

• Employing Machine Learning in Many 

Industries: The approach uses machine learning 

methods on real engineering tasks, testing its 

outcomes in different situations. This means that 

different optimization problems require different 

approaches, depending on the field. 

• Five algorithms (Support Vector Machines, 

Artificial Neural Networks, Random Forests, K-

Means Clustering and Deep Q-Networks) are put up 

against each other by checking their performance 

with frequent notions like accuracy, speed to find a 

solution, general performance and how much time it 

took to run. 

• Reinforcement Learning for Engineering 

Control: According to the research, Deep Q-

Learning can help optimize dynamic systems in an 

adaptive and timely manner. This is a step forward 

from the traditional way of doing static 

optimization. 

• According to the paper, it is possible to 

integrate ML with old methods such as optimization 

and simulation. The hybrid models are described as 

those that combine domain expertise and knowledge 

learned from the data. 

• Real and Synthetic Datasets: The 

framework offered by the study can be applied or 

improved by other researchers and engineers 

working on optimization issues. 

• The paper covers issues that may arise due 

to ML, like poor model interpretability, training 

models to work only with the data provided and 

accuracy problems caused by low data quality. 

To sum up, the research reveals that no ML method 

can always work best, yet a careful and specific 

choice and organization of algorithms can cause 

significant improvement in optimization tasks for 

engineers. 

II. RELATED WORKS 

In 2023 K. Bian et.al. and R. Priyadarshi et.al., [3] 

proposed the engineering optimization makes 

greater use of machine learning to improve on 

traditional techniques. Logic based problem-solving 

often fails to solve problems that include high 

dimensions, many nonlinear constraints, disturbing 

random factors or non-differentiable functions. As a 
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result, researchers have been exploring ways that 

data-driven machine learning can either help or 

replace traditional methods in both design and daily 

operations. 

In the field of structural engineering, machine 

learning methods are used for estimating properties 

of materials, reviewing the chances of things failing 

and boosting the optimization of an architecture 

under any load. They generally need supervised 

learning, using both simulated and tested results to 

model various physical relationships.  

In 2023 S. Ramadan et.al. and E. O. Elgendi et.al., 

[15] suggested the manufacturing industry 

optimizes machine movements, reduces time spent 

on tasks and monitors quality. For this type of work, 

unsupervised learning is commonly applied to 

detecting patterns and mistakes in sensor 

information and reinforcement learning has 

demonstrated improvements in controlling and 

scheduling the process. In power systems, machine 

learning technology is applied for forecasting 

energy demand, improving the performance of the 

grid and handling renewable sources of energy. The 

research proves that ML works better than 

conventional optimization techniques in cases where 

the environment is constantly changing. 

In optimization of control systems, agents are 

starting to learn on their own from the results they 

obtain, so that they can better measure such things 

as energy efficiency, time to respond or how stable 

the system is. Since it is dynamic, reinforcement 

learning makes it possible for a system to stay 

flexible as its conditions evolve, unlike a static 

approach. 

In 2022 K. C. Onyelowe et al., [4] introduced the 

studies use just a few datasets in their research, the 

results may not be widely applicable. It is also worth 

mentioning that non-explanatory deep neural 

networks can stand in the way of using ML in very 

important applications. Integrating ML with 

traditional engineering programs and ways of 

working is not easy and still needs help from experts 

in several fields. 

III. PROPOSED METHODOLOGY 

This section presents a multi-phase methodology 

integrating machine learning algorithms into the 

engineering optimization pipeline. The approach is 

designed to handle diverse optimization scenarios 

through data preparation, model training, 

performance evaluation, and decision refinement 

[8]. 

A. Problem Formulation and Dataset Preparation 

The optimization problem is defined as finding the 

optimal decision vector x that minimizes or 

maximizes an objective function 𝑓(𝑥) subject to 

constraints: 

 Minimize (or Maximize)  𝑓(𝑥), 𝑥 ∈ ℝ𝑛

 Subject to:  𝑔𝑖(𝑥) ≤ 0, ℎ𝑗(𝑥) = 0
 

Data collection is performed either through 

simulations, sensor readings, or publicly available 

repositories. The data is then normalized to improve 

ML performance: 

𝑥′ =
𝑥 − 𝜇

𝜎
 

where 𝜇 and 𝜎 are the mean and standard deviation, 

respectively. 

B. Feature Selection and Dimensionality Reduction 

Principal Component Analysis (PCA) is used to 

reduce dimensionality without losing key 

variability: 

𝑍 = 𝑋𝑊 

where 𝑍 is the transformed feature matrix, 𝑋 is the 

standardized input data, and 𝑊 is the eigenvector 

matrix of the covariance matrix of 𝑋. 

C. Machine Learning Model Selection 

Three ML categories are used: Supervised Learning, 

Unsupervised Learning, and Reinforcement 

Learning. For regression-based supervised models, 

the general prediction model is: 

𝑦̂ = 𝑓𝜃(𝑥) 

The cost function for training, such as Mean Squared 

Error (MSE), is defined as: 

𝐽(𝜃) =
1

𝑚
∑  

𝑚

𝑖=1

(𝑓𝜃(𝑥(𝑖)) − 𝑦(𝑖))
2
 

Gradient descent is used to update weights during 

training: 

𝜃: = 𝜃 − 𝛼 ⋅ ∇𝜃𝐽(𝜃) 

where 𝛼 is the learning rate. 

D. Optimization Using Reinforcement Learning 

In environments like dynamic load optimization or 

real-time energy consumption control, 

reinforcement learning is ideal. The agent-
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environment interaction follows the Bellman 

equation: 

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾max
𝑎′

 𝑄(𝑠′, 𝑎′) 

The policy 𝜋(𝑎 ∣ 𝑠) defines the probability of taking 

action 𝑎 in state 𝑠. The objective is to find the 

optimal policy: 

𝜋∗ = arg max
𝜋

 𝔼 [∑  

∞

𝑡=0

  𝛾𝑡𝑟𝑡] 

where 𝛾 is the discount factor. 

E. Hybrid Optimization Strategy 

We integrate genetic algorithms (GA) with ML to 

explore global search space effectively. The GA 

fitness function is defined as: 

Fitness(𝑥) =
1

1 + 𝑓(𝑥)
 

A crossover operator combines parent solutions: 

𝑥child = 𝜆𝑥1 + (1 − 𝜆)𝑥2 

where 0 < 𝜆 < 1 controls the gene mixing ratio. 

Mutation introduces randomness for exploration: 

𝑥′ = 𝑥 + 𝜖, 𝜖 ∼ 𝒩(0, 𝜎2) 

F. Performance Metrics 

The accuracy of predictions and optimization 

performance is evaluated using metrics like: 

• Mean Absolute Error (MAE): 

MAE =
1

𝑛
∑  

𝑛

𝑖=1

|𝑦𝑖 − 𝑦̂𝑖| 

• R-squared: 

𝑅2 = 1 −
∑  (𝑦𝑖 − 𝑦̂𝑖)

2

∑  (𝑦𝑖 − 𝑦‾)2
 

• Computational time and convergence 

rate. 

G. Iterative Refinement 

Based on metric outcomes, hyper-parameters such 

as learning rate, number of estimators, and 

regularization terms are fine-tuned using Bayesian 

optimization or grid search. 

 

FIGURE 1: WORKFLOW OF MACHINE LEARNING-BASED OPTIMIZATION IN ENGINEERING 

APPLICATIONS 
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IV.  RESULT & DISCUSSIONS 

It was verified on a collection of engineering datasets, including optimizing structures, analyzing thermal 

efficiency and controlling processes. Each time, we looked at how much accuracy and efficiency were achieved 

when testing a model and its parameters. A number of factors including accuracy, error rates and processing time 

were used to make a full comparison [9]. 

Both Random Forest and SVR had strong capabilities to predict results in the field of structural component 

optimization. A distribution of errors is presented in Figure 2 for several models used to estimate how much 

weight a structure can support. We saw that Gradient Boosted Trees had smaller deviations in the residuals and, 

thus, would do better with new data. Along the horizontal axis is where predictions appear and along the vertical 

one is error, so you can tell that, in general, tree-based models remain close to zero-error points. 

 

FIGURE 2: ERROR DISTRIBUTION ACROSS MODELS IN STRUCTURAL OPTIMIZATION 

Part of the testing focused on improving the thermal 

system by estimating live heat exchange efficiency. 

Figure 3 gives a comparison of how neural 

networks, SVR and polynomial regression models 

perform in terms of RMSE. As can be seen, drawing 

on neural networks permits the most accurate 

modeling of various temperature-dependent 

processes. SVR did poorly at mid-temperature 

levels, due to the frequent presence of sharp 

discontinuities there. According to these results, 

deep learning functions better than other algorithms 

when capturing temperature changes with no easy 

mathematical models. 
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FIGURE 3: RMSE COMPARISON IN THERMAL SYSTEM MODELING 

An RL agent was set up to help explain optimization 

capabilities in an experimental process control 

situation for a smart manufacturing cell. The system 

adjusted itself to lower the manufacturing time 

without causing more defected products. In Figure 

4, we can observe the learning process of the agent 

over 100 games. Initially, the performance was 

uneven due to influence from the simulation’s 

random noise; however, 50 episodes of learning 

shows an increase in reward. When the reward 

remains high, it reflects that the agent learned to 

behave very well under the variable environment. 

 

 

FIGURE 4: RL REWARD CONVERGENCE (LAST 3 EPISODE BATCHES) 

 

Comparing performance of the algorithms for 

structural optimization, Table 1 clearly shows how 

each model scored. The table reports MAE, RMSE 

and the inference time in milliseconds. It can be seen 

from the table that Random Forest provided the best 

accuracy and speed, beating other models in both 

measures. However, SVR was not as fast which 

meant it was not well-suited for applications that 

needed quick responses. When it comes to design 

constraints, polynomial regression did not perform 

well. 
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TABLE 1: PERFORMANCE COMPARISON OF ML MODELS IN STRUCTURAL OPTIMIZATION 

Model MAE (kN) RMSE (kN) Inference Time (ms) 

Random Forest 4.12 5.96 21 

SVR 4.85 6.90 102 

Gradient Boosted 4.20 6.02 38 

Linear Regression 6.78 8.33 13 

Polynomial Regression 9.12 11.40 19 

 

Scaling the model and supporting its training will 

require different approaches based on the sparsity of 

data. Table 2 shows the different times and memory 

used for model training on each of the three datasets. 

Even though Deep Neural Networks had to be 

trained for more cycles, they were very good at 

reaching a low-error state. Unlike the other models, 

Decision Trees are fast to train and simple to store, 

but they missed detecting some significant 

relationships between data points. It appears that 

there is a standard connection between how big a 

model is and how much it costs to use. 

 

TABLE 2: TRAINING CONVERGENCE AND MEMORY USAGE 

Model Avg. Epochs to Converge Memory Usage (MB) Notes 

Neural Network 87 214 Best convergence 

accuracy 

Decision Tree 12 45 Fast but shallow learning 

SVR 34 109 High regularization 

needed 

Random Forest 29 187 Stable and robust 

Gradient Boosted 41 198 Balance of speed and 

depth 

 

In every task, the mixture of GA and ML improved 

researchers’ ability to search through many possible 

solutions. The GA+ML approach had a better 

chance of finding the best solution than the purely 

local ML methods. In the thermal optimization 

scenario, models improved with GA had a 12% 

better heat transfer coefficient than models only 

using neural networks. This illustrates the 

importance of utilizing different approaches when 

dealing with advanced engineering designs. 

I analyzed the trends using error histograms, 

performance surfaces and convergence curves. 

Figure 1 shows that the residuals of tree-based 

models are closer to zero, implying that they 

accomplish the bias-variance trade-off well. Figure 

2 clearly demonstrates that neural networks respond 

well to changes in temperature patterns, both linear 

and nonlinear. The chart also demonstrates that the 

reinforcement learning agent learns at a consistent 

rate and does not deviate greatly once it fully 

explores its environment. 

According to the experiments, ensemble learning, 

deep learning and hybrid approaches involving 

machine learning and genetic algorithms can 

provide strong solutions to engineering problems. 

What these findings reveal is that these algorithms 

are beneficial in practice, as well as in theory [10]. 

V. CONCLUSION 

Tools from machine learning are valuable in 

improving engineering optimizations. ML 

algorithms can perform better than traditional 

methods since they are flexible and able to learn. At 

the same time, certain challenges exist such as 
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making ML models easy to interpret, using them 

quickly and having enough data. 

According to this study, a combination of ML and 

classic techniques can help achieve superior 

outcomes. Evolution for machine learning (ML) and 

artificial intelligence (AI) should aim to increase 

model transparency, improve pipeline automation 

and grow sets of data for training models using ML 

methods. Now that engineering challenges include a 

lot of data, it is essential for machine learning and 

optimization to collaborate.  
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