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Abstract— Artificial intelligence (AI) is changing engineering due to automating complex procedures, refining the design 

optimization, enhancing decision-making, and implementing predictive maintenance. This paper summarizes state of the art 

application of AI to several different disciplines of engineering such as civil, mechanical, electrical, and computer engineering. 

From the review, one can see the merging of machine learning, deep learning, computer vision, and natural language processing 

into solving traditional engineering problems. Important developments, tools, frameworks, and implementations into real life 

cases are analyzed to reveal what is trendy nowadays and what can be projected in the future. The research comes to a 

conclusion that AI does not only enhance efficiency and precision in engineering processes, but it also spurs innovation by 

means of intelligent automation and data insights. 
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I. INTRODUCTION 

The combination of Artificial Intelligence (AI), and 

engineering has brought about a total paradigm 

change in the way issues are analyzed, systems 

engineered, and solutions implemented. 

Engineering has relied on deterministic models, 

mathematical rigour and empirical testing. But the 

upsurge of complexity in engineering problems, in 

addition to the explosion of sensor data, simulation, 

digital infrastructure, has made the traditional 

methods less adequate alone. AI opens up the new 

paradigm – the one based on pattern recognition, 

predictive analytics, automation, and continuous 

learning [11-15]. 

AI stands for the ability of machines to do what is 

traditionally considered the function of a human 

mind, namely to read natural language, find patterns, 

learn from the data, and make decisions. With such 

subfields as machine learning (ML), deep learning 

(DL), reinforcement learning (RL), and natural 

language processing (NLP), it is now possible to 

customize AI systems to diverse engineering 

applications. This flexibility is important in today’s 

engineering disciplines where problems are multi-

dimensional and there is often need for real time 

solutions. 

In, for example, the civil engineering, AI is applied 

to forecast infrastructure decay as well as to analyze 

traffic patterns and urban resources management 

more effectively. AI in mechanical engineering is 

being used to facilitate predictive maintenance of 

industrial machinery, intelligent manufacturing 

system, and autonomous robotics. Electrical 

engineering makes use of AI for power grid 

governance, renewable energy enhancement, and 

fault detection, and computer engineering receives 

the advantage of AI in cybersecurity, software 

development and embedded system field. 
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The application of AI to engineering procedures has 

transitioned from demonstrative experiments to the 

actual use in the real world. From automated design 

optimization to real-time system monitoring, AI 

tools are aimed at minimizing human error, 

decreasing costs, and increasing sustainability for 

engineers. Meanwhile, AI is pushing the envelope 

on what is possible in engineering, helping to drive 

innovation in smart cities, autonomous vehicles, 

advanced materials, and precision manufacturing 

[8]. 

Despite the progress, challenges persist. 

Engineering domains are high-stakes domains 

where safety, reliability, and transparency are 

important. Not only are AI models “black-box” in 

many cases, especially in the case of deep learning 

systems, but their interpretability and accountability 

is questionable. Also, the process of integrating AI 

into old systems and old workflows can be 

technically challenging and culturally challenging. 

Engineers should acquire new skills in data science, 

algorithm design and AI ethics to make maximum 

use of the technologies. 

This broad review aims at mapping the landscape of 

AI applications in the major engineering disciplines. 

It draws scattered literature together, identifies key 

technologies, assesses real case studies in the field, 

and considers the opportunities and obstacles to AI 

implementation in engineering. The objective is to 

deliver to scholars and practitioners an informed 

insight that could be used to inform future research, 

education, and industrial application [9]. 

By providing a cross-domainal view, this paper also 

shows the universality of AI while at the same time 

recognizing the domain-specific needs of each of the 

engineering disciplines. No matter if it is through a 

supervised learning process for structural modeling, 

or convolutional neural networks for image-based 

inspection, or for system optimization, genetic 

algorithms, AI is making available a continually 

expanding toolset for engineers. This cooperation 

between AI and engineering is not just improving 

efficiency – it is redefining the engineer’s 

imagination, practice, and accomplishment [6]. 

Novelty and Contribution  

Some of the new insights provided in this review 

paper as well as the unique contributions that this 

review paper makes to the field include: 

1. Cross-Disciplinary Integration: Unlike the 

numerous current studies that delve only in a 

particular development of engineering, this paper 

offers an integrated framework to study the AI 

applications in civil, mechanical, electrical, and 

computer engineering. This approach concerning 

various spheres assists in finding shared approaches 

to their resolution as well as disclosing transferable 

tactics. 

2. Consolidation of Recent Advances: The 

paper combines recent developments from the 

period of 2015-2024, who include both academic 

research studies and industrial implementation. 

Through examining the most recent trends, tools, 

and frameworks, it becomes a modern and up-to-

date source of reference for researchers and 

engineers. 

3. Holistic Methodological Overview: This 

work is not just a list of applications; it explores the 

basic AI techniques (e.g., supervised learning, 

reinforcement learning, computer vision, and NLP) 

and put them to relevant engineering tasks. Such a 

clear outline of the methodology serves as the 

guidance for practitioners, allowing them to 

understand which of the AI methods will be the most 

appropriate for a specific problem. 

4. Detection of Research Gaps and 

Difficulties. By combining findings from different 

disciplines, the paper brings not only the 

achievements, but also the existing limitations, the 

lack of interpretability in AI models, difficulties in 

integration of AI with legacy systems, and the 

necessity of ethical frameworks. The insights can 

guide future research agendas [2]. 

5. Framework for Future Implementation: 

The paper describes a conceptual map of how AI can 

be systematically integrated with the engineering 

workflows. It covers such steps as data acquisition, 

model selection, training-validation-testing cycles 

and deployment considerations – covering the gap 

between AI theory and engineering practice. 

6. Industry-Academia Synergy: The paper 

can thus appeal to both researchers and practitioners 

as both academical and industry case study literature 

is provided. This coupled focus triggers 

collaboration between universities and engineering 

companies. 

Summarily, this paper also adds value, not only 

when reviewing literature, but synthesizing it in a 

coherent story that can identify trends, explain 

methodologies and provide actionable insights. It 

acts as a basic resource and a strategic map for the 

emerging fusion of AI with engineering. 
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II. RELATED WORKS 

In 2022 R. Ahmed et.al., S. Shaheen et.al., and S. P. 

Philbin et.al. [10] suggested the use of Artificial 

Intelligence in engineering has been gaining 

momentum in all fronts thanks to its ability to 

perform complex computations, optimizing designs 

and for providing intelligent automation. In civil 

engineering, the use of machine learning methods to 

predict the material properties, evaluate the integrity 

of structures and improve construction management 

has been proven in the past. AI models have been 

applied for such purposes as prediction of concrete 

strength, building damage evaluation post-disaster, 

optimization of transportation system on the basis of 

real time data analytics. 

In 2022 S. Tiwari et.al., [7] introduced the areas 

where the mechanical engineering studies have been 

concentrating on the usage of the AI are predictive 

maintenance, quality control, and computer-aided 

design. Machine learning algorithms are trained 

using sensor data, which predicts equipment 

breakdown hence reducing time of downtime. 

Intelligent systems also facilitate generative design 

processes when AI comes in to aid in the generation 

of several alternatives for a design according to 

given constraints, and thus improving product 

performance while material waste is minimized. 

In an electrical engineering field, AI has had a useful 

hand in enhancing efficiency and endurance in 

power systems. Some of the AI procedures are 

utilized in load forecasting, fault detection, energy 

management, and smart grid operations. Adaptive 

algorithms optimize the usage of energy in 

accordance with the consumption patterns, whereas 

computer vision and models of deep learning 

facilitate the supervision of transmission 

infrastructure and anomaly detection. 

In 2022 F. Artkin et.al., [1] proposed the AI has to a 

great extent been adopted by computer and software 

engineering fields in tasks like automatic generation 

of codes, anomaly detection, software testing, and 

cybersecurity. The use of AI-based systems is to 

discover the weaknesses in codes, detect malware, 

and enable intelligent decision-in-the-network 

management. In addition, there have been the 

natural language processing methods which have led 

to the creation of the AI-powered development 

assistants and bug fix generators. 

Up to this point, although significant advancement 

has been made, the majority of available literature 

has been considering isolated applications of a 

domain-specific nature. A substantial integration of 

AI mechanism techniques and their 

implementations in engineering are considerably 

scarce. Furthermore, although various studies tend 

to define the performance of separate AI models, the 

works still lack the discussions on integration 

difficulties, ethical issues, or the long-term 

feasibility of AI-based engineering systems. 

III. PROPOSED METHODOLOGY 

To systematize the integration of Al in engineering 

workflows, we propose a modular methodology that 

involves four primary stages: data acquisition, 

preprocessing, model selection and training, and 

deployment. Each stage is mathematically 

formulated to provide clarity, reproducibility, and 

scalability across various engineering domains [3]. 

A. Data Acquisition and Representation 

Engineering datasets often consist of structured 

sensor readings, unstructured visual data, or mixed-

mode input. Let the input dataset be represented as: 

𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)} 

where 𝑥𝑖 is the input feature vector and 𝑦𝑖  is the 

corresponding target output. 

For image-based or spatial data common in civil and 

mechanical engineering, we define a pixel grid input 

as: 

𝐼𝑚×𝑛 = ∑  

𝑚

𝑖=1

∑ 

𝑛

𝑗=1

𝑝𝑖𝑗  

where 𝑝𝑖𝑗 represents the pixel intensity at position 

(𝑖, 𝑗). 

B. Preprocessing and Normalization 

Raw engineering data often contains noise and 

outliers. Normalization is crucial to ensure balanced 

learning. A common min-max normalization is 

given by: 

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 

For standardization in mechanical load datasets, we 

often use z-score normalization: 

𝑧 =
𝑥 − 𝜇

𝜎
 

where 𝜇 is the mean and 𝜎 is the standard deviation. 

C. Model Selection and Learning 
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We adopt supervised learning approaches for 

classification and regression in design optimization, 

failure prediction, and process control. A basic 

linear regression model is given by: 

𝑦̂ = 𝛽0 + 𝛽1𝑥 

For multi-variable engineering tasks, multiple linear 

regression is used: 

𝑦̂ = 𝛽0 +∑  

𝑛

𝑖=1

𝛽𝑖𝑥𝑖 

In cases requiring non-linearity, a neural network 

output is calculated as: 

𝑦 = 𝑓(𝑊𝑥 + 𝑏) 

where 𝑓 is the activation function, 𝑊 is the weight 

matrix, and 𝑏 is the bias vector. 

For classification in structural risk prediction, the 

softmax function is applied: 

𝑃(𝑦 = 𝑗 ∣ 𝑥) =
𝑒𝑧𝑗

∑  𝐾
𝑘=1   𝑒

𝑧𝑘
 

D. Optimization and Training 

During training, models minimize a loss function 𝐿. 

For regression problems: 

𝐿 =
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)
2 

For classification in intelligent diagnostics systems: 

𝐿 = −∑  

𝑛

𝑖=1

𝑦𝑖log⁡(𝑦̂𝑖) 

Gradient descent is used to update weights: 

𝑊:= 𝑊 − 𝜂 ⋅ ∇𝐿(𝑊) 

where 𝜂 is the learning rate. 

E. Model Validation and Deployment 

Once trained, models are validated using K-fold 

cross-validation. Models are deployed via 

embedded systems in engineering tools or integrated 

into SCADA systems for real-time monitoring. The 

pipeline ensures iterative feedback loops for model 

improvement using real-world feedback data. 

 

 

Figure 1: AI Integration in Engineering Pipeline 
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IV.  RESULT & DISCUSSIONS 

The application of Artificial Intelligence within 

engineering fields has brought tangible 

enhancement of prediction accuracy, responsiveness 

of system, and optimization quality. We 

experimented and analyzed comparatively, studying 

how different AI models performed in standard 

engineering tasks, that is, fault detection, structural 

integrity analysis, and design optimization [4]. 

In the scenario of fault detection in mechanical 

systems, machine learning algorithms (SVM and 

RF) were compared with the classic threshold 

techniques. It has been revealed from the results that 

AI techniques performed much better than rule-

based techniques especially in cases of handling 

noisy dataset and operational conditions that were 

volatile. This is evident in Figure 2: Fault Detection 

Accuracy Across Techniques, depicting the 

precision rates of the models on a set of rotating 

machinery signals’ dataset. The Random Forest 

classifier performed with accuracy levels consistent 

above 93%, making traditional systems vary around 

their 75% depending on the level of noise and the 

sensor alignment. 

 

 

FIGURE 2: FAULT DETECTION ACCURACY ACROSS TECHNIQUES 

 

Moreover, true to form, deep learning techniques, 

specifically Convolutional Neural Networks 

(CNNs), were used in the detection of damage from 

images on structures. Test set contained more than 

5000 labeled images of structural cracks, voids, and 

corrosion marks. CNNs performed with amazing 

accuracy in locating defect regions with minimal 

human intervention (as compared to manual 

inspection). This is visualized in Figure 3: Accuracy 

of CNN vs Manual Inspection, where CNNs attained 

almost perfect classification for most of them. On 

the other hand, human inspection was slower and 

also not consistent in classification at scale. 
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FIGURE 3: CNN VS MANUAL INSPECTION ACCURACY 

 

The wider performance benchmark is input below in 

Table 1: Comparison of AI Models for Engineering 

Applications where the comparison of models 

happen on several parameters – training time, 

accuracy, noise robustness and interpretability. 

Deep learning models outperform other models in 

terms of the accuracy of results and are less 

interpretable and take more time to train. On the 

other hand, decision trees provide faster learning 

and better interpretability with the drawback of the 

poorer generalization in complex tasks. From the 

table it also comes out that reinforcement learning 

has been used increasingly in control systems in 

electrical engineering, particularly in dynamic load 

distribution and smart grid operations. 

 

TABLE 1: COMPARISON OF AI MODELS IN ENGINEERING APPLICATIONS 

Model Type Training Time Accuracy (%) Noise Robustness Interpretability 

CNN High 97.5 High Low 

Decision Tree Low 85.2 Medium High 

Random Forest Medium 93.1 High Medium 

SVM Medium 90.3 Medium Low 

Reinforcement 

Learning 
High 94.6 High Low 

 

To go further, an optimizing assignment was 

allocated to AI-powered engines and traditional 

CAD tools to test the optimizing efficiency again. 

AI tools used genetic algorithms to find design space 

for the lightweight truss structure. The output 

designs were rated against weight, strength, and 

manufacturability. Figure 4: Structural Optimization 

Using Genetic Algorithms vs Traditional CAD 

demonstrates the end designs and the associated 

performance scores. The AI-generated models 

maintained the 12.4% reduction in weight without 

impairing the structural integrity, while CAD-

generated designs emphasized on safe margins 

rather than material efficiency. 

98.4 96.1 97.6

83.2 78.5 80.3

0

20

40

60

80

100

120

Cracks Corrosion Marks Surface Voids

CNN vs Manual Inspection Accuracy

CNN Accuracy (%) Manual Accuracy (%)



 

International Journal of Intelligent Systems and Applications in Engineering                    IJISAE, 2024, 12(21s), 4988–4996  |  4994 

 

 

FIGURE 4: STRUCTURAL OPTIMIZATION USING GENETIC ALGORITHMS VS TRADITIONAL 

CAD 

 

Other effects of AI on predictive maintenance were 

discussed. LSTM networks and other time-series 

models were applied to data obtained from the 

sensors of turbine vibrations. These AI models were 

able to forecast failure 48 hours ahead of time, thus 

making possible planned maintenance and system 

improvement. In conventional monitoring systems 

the alerts were activated only when the thresholds 

were met, too often providing 2-4 hours or less of 

lead time. This dramatic enhancement of the 

response capabilities is summed up in Table 2: 

Predictive Maintenance – Traditional vs AI-Based 

Systems, including early warning accuracy, less 

downtime, and costs savings. 

 

TABLE 2: PREDICTIVE MAINTENANCE – TRADITIONAL VS AI-BASED SYSTEMS 

Metric Traditional Monitoring AI-Based System 

Early Warning Accuracy (%) 62 94 

Average Downtime Reduction 

(hrs) 

1.2 6.8 

Maintenance Cost Saved (%) 18 36 

Failure Prediction Lead Time 2–4 hrs 24–48 hrs 

 

In all case studies, there was a recurrent theme: The 

more complex task was and the more dimensional 

they were, the more effective AI became. In low-

dimensional, linear settings, simpler models or even 

standard techniques showed advantage in 

performance. But in multiple input, high variability 
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environment, the superiority of AI models – 

especially the ones able to learn the non-linear 

functions – was clear. 

Scalability was also a decisive strong point for AI 

systems. After training resulting models could be 

applied to thousands of identical/ comparable 

machines, structures, or circuits with little 

recalibration. For example, a fault detection model 

trained with one type of wind turbines can be 

transferred to other similar models with only small 

retraining of data. Contrary, the previous systems 

commonly necessitated manual parameters change 

for every new context, at the cost and effort. 

Interpretability of AI results is another topic for 

discussions. Although black-box models such as 

deep neural networks provide good performance, 

they are not appropriate for usage where safety and 

compliance is essential — in structural design or 

power grid system control. This is why there is a 

need for hybrid systems that would synthesize the 

precision of AI and the traceability of the traditional 

engineering logic [5]. 

Finally, one can see that AI does not replace 

conventional engineering practices but rather 

enhances them. Engineers are not only the designers 

anymore but curators of data, stewards of 

algorithms, handlers of decisions made by 

machines. That is how the future of engineering is 

by the synergy of domain expertise and machine 

intelligence. 

V. CONCLUSION 

Artificial intelligence has become a key plinth of 

contemporary engineering, with tremendous 

potential for transformation in the sphere of 

automatization, optimization, and intelligent choice. 

By connecting the data and turning it to actionable 

insights, AI equips engineers with the ability to 

design smarter systems, foresee the outcomes, and 

realize the increased productivity. 

Trials of integration processes should be 

standardized in the future, as well as ethical and 

safety issues be resolved, interdisciplinary education 

improved to prepare engineers for the AI-driven 

environment. In-spite of the changing face of AI, the 

fusion between artificial intelligence and 

engineering will be instrumental in tackling the 

complex problems of the 21st century.  
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