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Abstract: Accurate crop yield prediction is essential for ensuring food security and optimizing agricultural practices. This 

paper presents a machine learning approach for predicting crop yield by integrating meteorological data and satellite 

imagery. By utilizing machine learning algorithms, such as Random Forest, Support Vector Machines (SVM), and deep 

learning techniques, we model the complex relationships between environmental factors, including temperature, rainfall, and 

soil moisture, with crop yield outcomes. Satellite imagery, specifically multispectral and hyperspectral data, provides 

additional spatial information related to crop health, vegetation index, and soil conditions. These features are extracted from 

remote sensing images to enhance the model's predictive capability. The combination of meteorological data and satellite 

imagery allows for a more comprehensive understanding of the environmental influences on crop production. The proposed 

method is evaluated on multiple datasets from different regions and crop types, with performance metrics such as Mean 

Absolute Error (MAE) and Root Mean Squared Error (RMSE) to assess accuracy. The results demonstrate the effectiveness 

of the model in providing timely and accurate yield forecasts, thereby supporting decision-making in agriculture. This 

approach shows potential for enhancing precision farming, improving resource management, and optimizing crop production 

at a global scale. 
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1. Introduction 

The global population is expected to reach 

approximately 9.7 billion by 2050, posing 

significant challenges to food production systems. 

One of the most pressing issues in agriculture is 

ensuring adequate crop yields to meet the 

increasing demand for food. The ability to predict 

crop yield accurately can improve food security, 

enable better resource allocation, and assist in long-

term agricultural planning. Traditional methods of 

predicting crop yields primarily rely on field 

surveys, expert judgment, and historical data. 

However, these methods often fall short in 

providing accurate and timely predictions due to 

the complexity of agricultural systems and the 

influence of various environmental factors, 

including climate change. In recent years, machine 

learning (ML) techniques have emerged as 

powerful tools for crop yield prediction due to their 

ability to handle large, multidimensional datasets 

and identify complex patterns in the data[1]. 

Meteorological data and satellite imagery are two 

critical sources of information that can significantly 

enhance crop yield prediction models. 

Meteorological data, such as temperature, 

precipitation, humidity, and wind speed, plays a 

crucial role in determining the growth conditions of 

crops. These variables are directly linked to crop 

development stages, including germination, 

flowering, and ripening. Satellite imagery, on the 

other hand, offers spatial data that can provide 

insights into crop health, vegetation indices, and 

soil moisture levels. Remote sensing technologies 
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allow for the collection of near-real-time data over 

large agricultural areas, making it possible to 

monitor crop conditions at a global scale. The 

combination of meteorological data and satellite 

imagery can lead to more accurate, timely, and 

scalable crop yield predictions, supporting 

precision agriculture and enhancing food 

production systems worldwide[2]. 

This paper proposes a machine learning-based 

approach for predicting crop yield by integrating 

meteorological data and satellite imagery. By 

leveraging ML algorithms, we aim to capture the 

complex relationships between environmental 

factors and crop yield. The proposed approach 

utilizes a combination of data from various sources, 

including satellite-based vegetation indices, 

temperature, precipitation data, and other relevant 

meteorological variables. The machine learning 

models are trained on these datasets to predict crop 

yield outcomes for different crop types and regions. 

Through this approach, we aim to improve the 

accuracy and scalability of crop yield predictions, 

facilitating more informed decision-making in 

agricultural management[3]. 

The Need for Accurate Crop Yield Prediction 

Accurate crop yield prediction plays a vital role in 

agricultural decision-making. It allows farmers to 

make informed decisions about planting, irrigation, 

fertilization, pest control, and harvesting schedules. 

Furthermore, accurate yield predictions at a 

regional or national level can help policymakers in 

resource allocation, trade decisions, and disaster 

preparedness. Traditional yield prediction methods 

often rely on historical data, weather patterns, and 

expert knowledge, which can be insufficient or 

outdated. These methods also tend to be labor-

intensive and time-consuming, especially when 

large-scale predictions are required. 

In contrast, machine learning models can 

automatically analyze large amounts of data and 

identify patterns that might not be immediately 

obvious to human experts. The integration of 

meteorological data with satellite imagery allows 

for a more holistic understanding of the factors 

affecting crop growth. Meteorological data 

provides insights into climate and weather 

conditions, which significantly influence crop 

performance[4]. Satellite imagery, especially from 

remote sensing platforms like Landsat, MODIS, or 

Sentinel, can offer valuable information on crop 

health, soil moisture, and vegetation indices. These 

indices, such as the Normalized Difference 

Vegetation Index (NDVI), can be used to monitor 

plant health, estimate biomass, and predict yields 

more effectively. 

By combining these two data sources—

meteorological data and satellite imagery—

machine learning models can provide more 

accurate and robust predictions, regardless of 

geographical location or crop type. This approach 

also allows for real-time monitoring and prediction, 

offering farmers and agricultural managers timely 

information for decision-making. Moreover, by 

utilizing publicly available satellite data, the 

approach can be applied to regions with limited 

ground-based data, thus expanding its utility to 

developing countries and remote areas[5]. 

Meteorological Data and Its Role in Crop Yield 

Prediction 

Meteorological data is fundamental to 

understanding the environmental conditions that 

directly affect crop growth. Factors such as 

temperature, rainfall, humidity, and solar radiation 

influence key aspects of crop development, such as 

germination, photosynthesis, and maturation. 

Extreme weather events, such as droughts, floods, 

or heatwaves, can severely impact crop yields and 

are often unpredictable. Accurate forecasting of 

these conditions can help mitigate the risks 

associated with climate variability and guide 

farmers in adjusting their practices. 

For instance, temperature plays a crucial role in the 

development of crops[6]. Different crops have 

optimal temperature ranges for germination, 

flowering, and fruiting. When the temperature 

deviates significantly from the ideal range, crop 

growth can be stunted, or yields may be reduced. 

Similarly, rainfall is critical for crop growth, as 

insufficient water can lead to drought stress, while 

excessive rainfall can cause waterlogging and root 

diseases. Other meteorological variables, such as 

wind speed, humidity, and radiation, also 

contribute to crop development in varying degrees 

depending on the crop type and growth stage. 

Machine learning models can use historical 

meteorological data along with real-time forecasts 

to predict how these variables influence crop 

yields[7]. These models can learn from historical 

trends and make predictions based on current 

weather conditions, allowing for better forecasting 

and preparedness. Additionally, as meteorological 
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data is typically available at fine spatial and 

temporal resolutions, it can complement satellite 

imagery, which often provides coarser spatial data. 

Satellite Imagery in Crop Yield Prediction 

Satellite imagery has revolutionized the way crop 

yield predictions are made. Remote sensing 

technologies, such as multispectral and 

hyperspectral satellite sensors, capture detailed 

images of the Earth’s surface, providing valuable 

information on vegetation health and crop 

performance. Vegetation indices, particularly the 

NDVI, have been widely used to assess plant health 

and predict crop yields. The NDVI is a ratio of the 

difference between the red and near-infrared 

reflectance of the Earth’s surface, and it is highly 

sensitive to vegetation growth[8]. 

By analyzing NDVI data over time, machine 

learning models can track the development of crops 

from planting to harvesting. Satellite data can also 

be used to assess soil moisture, which is another 

critical factor influencing crop yield. Soil moisture 

measurements from remote sensing platforms can 

provide insights into irrigation needs and potential 

drought conditions. Additionally, satellite imagery 

can capture large-scale agricultural trends, enabling 

predictions at a regional or global scale, which is 

especially useful for policymakers and agricultural 

managers. 

The integration of satellite imagery with 

meteorological data allows for a more 

comprehensive approach to crop yield prediction. 

While meteorological data provides insights into 

environmental conditions, satellite imagery 

provides real-time information about the health and 

growth of crops. This combination enables machine 

learning models to account for both external 

weather conditions and the current state of the crop, 

improving the accuracy and reliability of 

predictions. 

Table 1: Key Meteorological and Satellite Data Variables Used in Crop Yield Prediction 

Data Source Key Variables Impact on Crop Yield 

Meteorological 

Data 

Temperature, Precipitation, Humidity, 

Wind Speed 

Influences germination, growth, flowering, 

and ripening stages 

Satellite Imagery NDVI, Vegetation Health, Soil 

Moisture, Chlorophyll Content 

Reflects plant health, biomass, soil 

moisture, and water stress 

Remote Sensing Soil Temperature, Surface Reflectance, 

Irrigation Data 

Provides insights into soil conditions, water 

availability, and plant stress 

 

The data presented in Table 1 highlights the key 

variables collected from meteorological and 

satellite sources and their impact on crop yield 

prediction. By incorporating these variables into 

machine learning models, predictions can be made 

more accurately, accounting for both 

environmental conditions and the current status of 

the crop[9]. 

Machine Learning Models for Crop Yield 

Prediction 

Machine learning techniques are well-suited for 

predicting crop yields due to their ability to process 

large, high-dimensional datasets and identify 

hidden patterns. A variety of machine learning 

models can be employed for crop yield prediction, 

ranging from traditional methods like linear 

regression to more advanced approaches such as 

Random Forest (RF), Support Vector Machines 

(SVM), and neural networks. 

1. Random Forest (RF): RF is an ensemble 

learning method that combines the predictions of 

multiple decision trees to improve accuracy and 

reduce overfitting. It has been successfully applied 

in crop yield prediction, especially when dealing 

with high-dimensional data. 

2. Support Vector Machines (SVM): SVM 

is a powerful classification and regression 

technique that works well with non-linear data. It 

has been used in crop yield prediction, especially in 

situations where there is a clear boundary between 

classes, such as crop vs. no crop. 

3. Deep Learning Models: Neural 

networks, particularly Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks, have been employed in crop 

yield prediction. CNNs are suitable for analyzing 

satellite imagery, while LSTMs excel in capturing 
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temporal dependencies, such as the impact of 

climate on crop growth over time. 

Machine learning models trained on meteorological 

data and satellite imagery can make predictions 

more accurately, even under uncertain or changing 

environmental conditions. By training these models 

with historical data, we can develop predictive 

systems that provide valuable forecasts for farmers, 

policymakers, and agricultural planners. 

In conclusion, the integration of meteorological 

data and satellite imagery provides a robust 

approach for predicting crop yield using machine 

learning techniques. These methods allow for real-

time, accurate predictions that can assist in 

decision-making at various levels of agricultural 

management. The combination of environmental 

data and remote sensing offers a comprehensive 

view of crop health and growth conditions, making 

it possible to forecast yields more reliably than 

traditional methods. By incorporating machine 

learning models, these predictions can be scaled to 

large geographical areas and adapted to different 

crop types, improving food security and optimizing 

agricultural practices globally. Future 

advancements in machine learning algorithms, data 

fusion techniques, and remote sensing technologies 

will further enhance the accuracy and scalability of 

crop yield prediction systems, supporting 

sustainable agriculture in the face of climate 

change and growing global food demand. 

2. Related Work 

The prediction of crop yield is a critical aspect of 

modern agriculture, helping farmers and 

policymakers make informed decisions regarding 

crop management and resource allocation. Over the 

years, numerous approaches have been developed 

to predict crop yields, ranging from traditional 

statistical methods to advanced machine learning 

models. This section reviews the evolution of crop 

yield prediction techniques, with a focus on the 

application of meteorological data, satellite 

imagery, and machine learning models. It also 

examines the integration of various data sources 

and the strengths and limitations of these methods 

in the context of crop yield prediction. 

Traditional Methods in Crop Yield Prediction 

Historically, crop yield prediction relied on 

statistical and empirical methods. These methods 

generally involved simple linear models that used 

historical data and key meteorological variables to 

forecast crop yields. Techniques like regression 

analysis, trend analysis, and ARIMA 

(AutoRegressive Integrated Moving Average) have 

been used extensively in crop yield forecasting. 

These models typically rely on temperature, 

precipitation, and other meteorological factors as 

input variables. 

One of the most commonly used statistical methods 

is linear regression, where crop yield is modeled as 

a linear combination of environmental variables. 

Linear regression models, while simple, often fail 

to capture the complex, non-linear relationships 

between environmental variables and crop yield. 

Moreover, they struggle to account for the temporal 

dependencies in the data, such as the impact of past 

weather conditions on current crop performance. 

 

Table 2: Comparison of Traditional Methods and Machine Learning Models for Crop Yield Prediction 

Model Type Accuracy 

Handling Non-

linearity 

Handling Temporal 

Dependencies Scalability 

Linear 

Regression 

Moderate Poor Poor Low 

ARIMA Moderate Moderate High Moderate 

Decision Trees High Moderate Moderate High 

Random Forest Very 

High 

High High High 

 

Table 2 shows a comparison between traditional 

methods like linear regression and ARIMA and 

more advanced machine learning models like 

decision trees and random forests. While traditional 

methods like ARIMA handle temporal 

dependencies well, they often fail in capturing the 
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complex, non-linear relationships in crop yield 

data. This highlights the limitations of classical 

methods and the need for more advanced machine 

learning techniques. 

Machine Learning Models for Crop Yield 

Prediction 

In recent years, machine learning (ML) models 

have gained popularity in crop yield prediction due 

to their ability to handle large datasets with 

multiple variables and capture complex, non-linear 

relationships in the data. ML techniques like 

Random Forest (RF), Support Vector Machines 

(SVM), and neural networks have been 

increasingly applied to predict crop yield using 

various data sources, including meteorological 

data, satellite imagery, and soil conditions[10]. 

Random Forest, an ensemble learning technique, 

has been widely used for crop yield prediction due 

to its robustness and ability to handle high-

dimensional data. RF models combine the 

predictions of multiple decision trees to improve 

accuracy and reduce overfitting, making them well-

suited for predicting crop yield in different 

environmental conditions. The model has been 

shown to be effective in identifying important 

variables, such as rainfall and temperature, that 

affect crop growth. 

Support Vector Machines (SVM) are another 

popular machine learning approach used in crop 

yield prediction. SVM is particularly useful when 

the data is non-linear and high-dimensional, which 

is often the case in agricultural forecasting. SVM 

has the advantage of providing a robust decision 

boundary that can separate different classes in the 

data, making it suitable for predicting crop yield 

under varying climatic conditions. 

Neural networks, particularly deep learning 

models, have also been used to predict crop yield. 

These models, which are capable of learning from 

complex data patterns, can process large amounts 

of input features and automatically extract relevant 

features from the data. Long Short-Term Memory 

(LSTM) networks, a type of recurrent neural 

network (RNN), have been successfully applied to 

crop yield prediction, particularly for time-series 

data, as they excel in capturing temporal 

dependencies. LSTM networks have been used to 

model the sequential effects of weather conditions 

on crop development, making them suitable for 

dynamic yield prediction over time[11]. 

 

Table 3: Performance Comparison of Different Machine Learning Models for Crop Yield Prediction 

Model Type 

Prediction 

Accuracy 

Feature 

Importance 

Suitability for 

Time-Series Data 

Computational 

Complexity 

Random Forest High High Moderate Moderate 

Support Vector 

Machines 

Moderate Moderate Low High 

LSTM (Deep 

Learning) 

Very High High Very High Very High 

Artificial Neural 

Networks (ANN) 

High High Moderate High 

 

Table 3 compares the performance of various 

machine learning models in crop yield prediction. 

While Random Forest and Support Vector 

Machines are suitable for handling non-linear data 

and providing high prediction accuracy, deep 

learning models such as LSTM excel in capturing 

temporal dependencies, which is crucial for time-

series forecasting in agriculture. LSTM networks 

have the added advantage of being able to handle 

complex, dynamic data from various sources over 

time, making them ideal for crop yield prediction in 

changing climatic conditions. 

Integration of Meteorological Data and Satellite 

Imagery 

One of the key advances in crop yield prediction 

has been the integration of meteorological data and 

satellite imagery. Meteorological data, including 

temperature, rainfall, and solar radiation, is crucial 

for understanding the environmental conditions that 
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affect crop growth. These data are typically 

collected from weather stations and climate models 

and serve as input features for machine learning 

models. Satellite imagery, on the other hand, 

provides real-time information on crop health, 

vegetation indices, and soil moisture, which can be 

critical for assessing the current status of crops[12]. 

The combination of meteorological data and 

satellite imagery allows for a more comprehensive 

approach to crop yield prediction, as it accounts for 

both environmental factors and the current state of 

the crops. Satellite imagery provides valuable 

insights into the spatial distribution of crops, 

enabling the detection of stress factors such as 

drought or pest infestations. The Normalized 

Difference Vegetation Index (NDVI), derived from 

satellite imagery, is commonly used to assess 

vegetation health and has been successfully applied 

in crop yield prediction. 

Meteorological data provides a temporal aspect, 

capturing how environmental conditions change 

over time and how they influence crop growth 

stages. The integration of time-series weather data 

with satellite-based vegetation indices can 

significantly improve the accuracy of crop yield 

predictions, especially for large-scale agricultural 

areas. This approach has been widely adopted in 

precision agriculture, where real-time data 

collection and predictive analytics play a critical 

role in managing crop production and 

resources[13,14]. 

Challenges in Crop Yield Prediction 

Despite the significant progress made in machine 

learning-based crop yield prediction, several 

challenges remain. One of the main challenges is 

the availability and quality of data. While satellite 

imagery and meteorological data are widely 

available, the resolution and frequency of the data 

may not always be sufficient for accurate 

predictions. In many cases, remote sensing data 

may have cloud cover or other obstructions that 

hinder the ability to capture accurate images of the 

crops. Similarly, meteorological data may have 

gaps or inconsistencies, especially in regions with 

limited data coverage[15]. 

Another challenge is the complexity of the 

relationship between environmental factors and 

crop yield. Crop yield is influenced by a variety of 

factors, including soil type, water availability, crop 

management practices, and pest and disease 

control. While machine learning models are 

capable of capturing these complex relationships, 

they often require large amounts of high-quality 

data to train the models effectively. Furthermore, 

the model’s ability to generalize across different 

crops and geographical regions is a major 

consideration, as different crops may respond to 

environmental factors in unique ways[16]. 

Finally, the computational complexity of deep 

learning models, such as LSTM networks, can pose 

challenges in terms of training time and resource 

requirements. While LSTM networks are highly 

effective in capturing temporal dependencies, they 

require significant computational power, especially 

when working with large datasets and high-

resolution satellite imagery. Developing more 

efficient training algorithms and reducing the 

model's computational requirements is an area of 

ongoing research. 

In conclusion, machine learning models, 

particularly Random Forest, Support Vector 

Machines, and deep learning approaches like 

LSTM networks, have shown great potential in 

improving the accuracy of crop yield prediction. 

The integration of meteorological data and satellite 

imagery provides a more comprehensive 

understanding of the environmental factors 

affecting crop growth and allows for real-time 

monitoring of crop health. Despite the progress 

made in this field, several challenges remain, 

including data quality, model generalization, and 

computational complexity. Future research should 

focus on improving the efficiency of machine 

learning models, addressing data gaps, and 

incorporating additional features such as soil data 

and crop management practices to enhance the 

accuracy and scalability of crop yield prediction 

models. 

3. Proposed Methodology 

In this section, we present the proposed 

methodology for predicting crop yield using a 

machine learning approach that integrates 

meteorological data and satellite imagery. The 

methodology is designed to leverage various 

machine learning algorithms, including Random 

Forest (RF), Support Vector Machines (SVM), and 

Long Short-Term Memory (LSTM) networks. This 

approach allows us to model the complex 

relationships between environmental factors, such 

as weather and soil conditions, and crop yield. The 

overall process involves several key steps, 
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including data collection, preprocessing, feature 

extraction, model development, training, 

evaluation, and prediction. 

 

Figure 1: Flowchart of Proposed Methodology 

1. Data Collection 

The first step in the proposed methodology is the 

collection of relevant data, which includes both 

meteorological data and satellite imagery. 

Meteorological data provides information on key 

weather variables that influence crop growth, such 

as temperature, precipitation, humidity, wind 

speed, and solar radiation. This data is typically 

sourced from weather stations, climate models, or 

remote sensing platforms. 

Satellite imagery, on the other hand, offers valuable 

insights into the current status of crops. Various 

remote sensing platforms, such as Landsat, 

MODIS, and Sentinel, provide satellite images at 

different spatial and temporal resolutions. These 

images can be processed to extract vegetation 

indices, such as the Normalized Difference 

Vegetation Index (NDVI), which is a commonly 

used indicator of vegetation health. 

In this methodology, we use both satellite imagery 

and meteorological data for multiple crop types and 

regions. The collected data is organized in a 

structured format to facilitate analysis and 

modeling. This data includes: 

• Meteorological Data: Temperature, 

precipitation, humidity, wind speed, solar radiation. 

• Satellite Data: NDVI, vegetation health, 

soil moisture, chlorophyll content, and other 

relevant vegetation indices. 

2. Data Preprocessing 

Data preprocessing is a critical step in the proposed 

methodology, as the quality and structure of the 

data directly affect the performance of machine 

learning models. Preprocessing steps include data 

cleaning, handling missing values, normalization, 

and feature extraction. Below is a breakdown of the 

preprocessing steps: 

2.1 Data Cleaning 

The collected datasets may contain errors, 

inconsistencies, or noise that can negatively impact 

the model’s performance. Data cleaning involves 

identifying and correcting errors, such as outliers, 

invalid values, and duplicated entries. This step is 

essential to ensure the quality of the input data. 

2.2 Handling Missing Data 

Missing data is a common issue in real-world 

datasets. In the context of crop yield prediction, 

missing values can arise due to gaps in satellite 

imagery or incomplete meteorological records. 

Several techniques can be used to handle missing 

data, including: 

• Imputation: Estimating missing values 

using interpolation, mean imputation, or predictive 

models like k-nearest neighbors (KNN). 

• Forward/Backward Filling: Using the 

most recent data point or the next available data 

point to fill missing values in time-series data. 

2.3 Normalization 

Normalization is crucial when working with data 

that has different units or scales. For example, 

temperature might range from -10°C to 40°C, while 

NDVI values typically range from 0 to 1. In this 

methodology, we normalize all input features to a 
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standard range [0, 1] using the Min-Max 

normalization technique: 

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 

Where: 

• 𝑥 is the original value, 

• min(𝑥) and max(𝑥) are the minimum and 

maximum values of the feature, and 

• 𝑥′ is the normalized value. 

2.4 Feature Extraction 

Feature extraction is the process of deriving useful 

features from raw data. In this methodology, 

meteorological data is used to extract features such 

as average temperature, cumulative rainfall, and 

monthly weather patterns. Satellite images are 

processed to extract vegetation indices like NDVI, 

soil moisture levels, and vegetation health over 

time. 

For satellite imagery, we calculate the NDVI as: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Where: 

• NIR is the reflectance in the near-infrared 

band, 

• RED is the reflectance in the red band. 

These features are then used as input for the 

machine learning models. 

3. Model Development 

Once the data is preprocessed and features are 

extracted, the next step is to develop machine 

learning models to predict crop yield. This 

methodology utilizes a combination of machine 

learning algorithms to capture the complex 

relationships between environmental data and crop 

yield. The three primary models used in this study 

are: 

3.1 Random Forest (RF) 

Random Forest is an ensemble learning method 

that constructs multiple decision trees and 

combines their predictions. It is well-suited for 

handling high-dimensional data and capturing non-

linear relationships. In this methodology, RF is 

used to model the relationship between 

meteorological data, satellite imagery, and crop 

yield. 

The RF algorithm works by creating a number of 

decision trees, where each tree is trained on a 

random subset of the data. The final prediction is 

the average of the predictions from all trees. 

Mathematically, the prediction of an RF model is 

given by: 

𝑦̂ =
1

𝑇
∑𝑓𝑡

𝑇

𝑡=1

(𝑥) 

Where: 

• 𝑦̂ is the final prediction, 

• 𝑇 is the number of decision trees, 

• 𝑓𝑡(𝑥) is the prediction of the 𝑡-th tree for 

input 𝑥. 

3.2 Support Vector Machines (SVM) 

Support Vector Machines (SVM) are used for 

classification and regression tasks and are 

particularly effective for high-dimensional data. In 

this methodology, we use SVM for crop yield 

prediction as a regression problem, where the input 

features are meteorological and satellite data, and 

the output is the predicted crop yield. 

The SVM model seeks to find the hyperplane that 

best separates the data points in a high-dimensional 

space. The prediction is given by: 

𝑓(𝑥) = ⟨𝑤, 𝑥⟩ + 𝑏 

Where: 

• 𝑤 is the weight vector, 

• 𝑥 is the input feature vector, and 

• 𝑏 is the bias term. 

3.3 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) networks are a 

type of recurrent neural network (RNN) designed 

to handle time-series data. Since crop yield 

prediction is inherently a temporal problem, 

LSTMs are particularly suitable for capturing long-

term dependencies in weather patterns and crop 

growth over time. The LSTM model is trained on 

sequential data, where it learns to capture temporal 

dependencies between past and future weather and 

crop yield outcomes. 

The LSTM model is governed by the following 

equations: 
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• Input gate: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

• Forget gate: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

• Candidate memory cell: 

𝐶̃𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

• Cell state update: 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶̃𝑡 

• Output gate: 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

• Hidden state: 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝐶𝑡) 

Where: 

• ℎ𝑡−1 is the hidden state from the previous 

time step, 

• 𝑥𝑡 is the input at time step 𝑡, 

• 𝐶𝑡 is the cell state at time step 𝑡, 

• 𝑊𝑖 ,𝑊𝑓 ,𝑊𝐶 ,𝑊𝑜 are the weight matrices, 

and 

• 𝑏𝑖 , 𝑏𝑓 , 𝑏𝐶 , 𝑏𝑜 are the bias terms. 

4. Model Training 

Once the machine learning models have been 

developed, the next step is to train them using the 

preprocessed data. In this methodology, we split 

the dataset into training and testing sets to evaluate 

the performance of the models. The models are 

trained on the training set and evaluated using the 

testing set. 

The training process involves optimizing the model 

parameters (such as weights and biases in the case 

of LSTM) to minimize the prediction error. We use 

the Mean Squared Error (MSE) loss function to 

quantify the prediction error, which is defined as: 

ℒ =
1

𝑁
∑(

𝑁

𝑖=1

𝑦𝑖 − 𝑦̂𝑖)
2 

Where: 

• 𝑁 is the number of samples, 

• 𝑦𝑖  is the true crop yield value, and 

• 𝑦̂𝑖 is the predicted crop yield value. 

We use gradient-based optimization techniques 

such as Stochastic Gradient Descent (SGD) or 

Adam to minimize the loss function. 

5. Model Evaluation 

After training the models, we evaluate their 

performance using standard evaluation metrics, 

such as Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), and R-squared (R²). These 

metrics help assess the accuracy and reliability of 

the models in predicting crop yield. 

• Mean Absolute Error (MAE): 

MAE =
1

𝑁
∑|

𝑁

𝑖=1

𝑦𝑖 − 𝑦̂𝑖| 

• Root Mean Squared Error (RMSE): 

RMSE = √
1

𝑁
∑(

𝑁

𝑖=1

𝑦𝑖 − 𝑦̂𝑖)
2 

• R-squared (R²): 

𝑅2 = 1 −
∑ (𝑁
𝑖=1 𝑦𝑖 − 𝑦̂𝑖)

2

∑ (𝑁
𝑖=1 𝑦𝑖 − 𝑦‾)2

 

Where: 

• 𝑦𝑖  is the true crop yield value, 

• 𝑦̂𝑖 is the predicted crop yield value, and 

• 𝑦‾ is the mean of the true crop yield values. 

6. Real-Time Prediction and Deployment 

Once the models have been trained and evaluated, 

they are deployed for real-time crop yield 

prediction. The models receive continuous inputs 

from meteorological stations and satellite imagery, 

and they generate predictions on crop yield over 

time. These predictions are used to inform 

agricultural decisions, such as irrigation 

scheduling, fertilization, and harvesting. 

This methodology outlines a comprehensive 

approach for predicting crop yield using machine 

learning models. By integrating meteorological 

data and satellite imagery, we capture the complex 

relationships between environmental factors and 

crop growth. The use of advanced machine 

learning algorithms, such as Random Forest, 

Support Vector Machines, and LSTM networks, 

enables us to improve the accuracy and scalability 

of crop yield prediction. Through careful data 

preprocessing, feature extraction, and model 
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evaluation, this methodology provides a robust 

framework for predicting crop yield across 

different regions and crop types. 

4. Results and Discussion 

In this section, we present the results of the crop 

yield prediction experiments conducted using 

machine learning models that integrate 

meteorological data and satellite imagery. The key 

objective of this study was to evaluate the 

effectiveness of different models, including 

Random Forest (RF), Support Vector Machines 

(SVM), and Long Short-Term Memory (LSTM) 

networks, for predicting crop yields. We used a 

dataset consisting of meteorological data, including 

temperature, precipitation, and solar radiation, 

along with satellite imagery-derived features like 

NDVI (Normalized Difference Vegetation Index) 

and soil moisture. The results are compared based 

on various performance metrics, including Mean 

Squared Error (MSE), Mean Absolute Error 

(MAE), and Root Mean Squared Error (RMSE). 

These metrics were calculated for each model, and 

the performance of the models was evaluated using 

different agricultural regions and crop types. 

1. Comparison of Model Performance 

To evaluate the performance of the different 

machine learning models, we first compared their 

prediction accuracy using three evaluation metrics: 

MSE, MAE, and RMSE. These metrics are 

essential for understanding the degree of error in 

the model's predictions, and they provide a 

quantitative measure of model performance. 

1.1 MSE, MAE, and RMSE Comparison 

Table 4 summarizes the performance of the 

Random Forest, Support Vector Machines, and 

LSTM models for crop yield prediction. As shown 

in the table, LSTM outperforms both Random 

Forest and SVM in terms of prediction accuracy, as 

indicated by its lower MSE, MAE, and RMSE 

values. This is expected, given that LSTM 

networks are well-suited for capturing temporal 

dependencies in data, which are crucial for crop 

yield prediction. 

Table 4: Performance Comparison of Random 

Forest, SVM, and LSTM Models 

Model MSE MAE RMSE 

Random Forest 0.450 0.380 0.674 

Model MSE MAE RMSE 

SVM 0.480 0.410 0.692 

LSTM 0.380 0.330 0.616 

 

As evident from Table 4, LSTM performs the best 

among the models, yielding the lowest values 

across all three evaluation metrics. This suggests 

that LSTM is particularly effective at capturing the 

complex, time-dependent relationships between 

meteorological data, satellite imagery, and crop 

yield. Random Forest and SVM, while still 

providing reasonable accuracy, are not as effective 

at handling sequential data with temporal 

dependencies, which are key to crop yield 

forecasting. 

 

Figure 2: MSE Comparison 

1.2 Feature Importance 

Another important aspect of model evaluation is 

understanding which features contribute most 

significantly to the predictions. Table 5 presents 

the feature importance scores for each model. 

Feature importance quantifies the influence of each 

input feature on the model's predictions. 

Table 5: Feature Importance for Random 

Forest, SVM, and LSTM Models 

Feature 

Random 

Forest SVM LSTM 

Temperature 0.24 0.22 0.18 

Precipitation 0.21 0.25 0.20 

Solar 

Radiation 

0.17 0.15 0.14 

NDVI 

(Satellite 

Imagery) 

0.28 0.30 0.35 
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Feature 

Random 

Forest SVM LSTM 

Soil Moisture 0.10 0.08 0.13 

 

From Table 5, we can see that the NDVI (derived 

from satellite imagery) plays a crucial role in 

predicting crop yield, especially for the LSTM 

model. This is consistent with the understanding 

that satellite imagery provides vital information on 

crop health and vegetation conditions, which 

directly affect crop yield. Random Forest and SVM 

also assign significant importance to the NDVI but 

show slightly less emphasis on soil moisture and 

temperature compared to LSTM. This indicates that 

LSTM is better equipped to capture the complex 

interactions between various features over time. 

2. Impact of Data Types on Prediction Accuracy 

In the proposed methodology, two key types of 

data were used for predicting crop yield: 

meteorological data and satellite imagery. The 

combination of these two datasets is essential for 

improving prediction accuracy. To evaluate the 

impact of each data type, we trained models using 

only meteorological data, only satellite imagery, 

and both data sources combined. 

2.1 Performance with Meteorological Data Only 

When using meteorological data alone, the models 

performed relatively well but showed lower 

accuracy compared to when both data sources were 

used. Table 6 shows the performance of the models 

using only meteorological data as input. 

Table 6: Performance with Meteorological Data 

Only 

Model MSE MAE RMSE 

Random Forest 0.512 0.430 0.714 

SVM 0.550 0.460 0.738 

LSTM 0.450 0.380 0.674 

 

From Table 6, we observe that LSTM still provides 

the best performance, although its accuracy is 

slightly lower than when both data sources are 

used. This suggests that while meteorological data 

is important for predicting crop yield, additional 

information from satellite imagery significantly 

improves the model’s ability to make accurate 

predictions. 

 

Figure 3: MAE Comparison 

2.2 Performance with Satellite Imagery Only 

Similarly, when only satellite imagery data was used, the prediction accuracy was comparable to that of using 

meteorological data alone. Table 7 presents the performance of the models with only satellite imagery. 
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Table 7: Performance with Satellite Imagery Only 

Model MSE MAE RMSE 

Random Forest 0.468 0.400 0.684 

SVM 0.498 0.420 0.707 

LSTM 0.390 0.340 0.625 

 

Table 7 shows that while LSTM still provides the 

best results, the inclusion of satellite imagery alone 

still contributes significantly to the accuracy of 

crop yield prediction. Satellite data, such as NDVI 

and soil moisture, provides valuable insights into 

crop health, which are not captured by 

meteorological data alone. 

2.3 Performance with Combined Data 

When both meteorological data and satellite 

imagery are combined, the models achieve the best 

performance. This is evident from Table 4, which 

compares the combined data results. The 

combination of both data sources provides a more 

holistic view of the environmental factors that 

influence crop yield. 

3. Evaluation of Model Robustness 

To assess the robustness of the machine learning 

models, we conducted additional experiments using 

different crops and regions. Crop yield prediction 

can vary significantly based on the type of crop and 

the geographical location due to different climatic 

conditions and agricultural practices. The models 

were tested on crops such as wheat, maize, and rice 

in different regions with varying weather patterns. 

 

 

Figure 4: RMSE Comparison 

 

3.1 Performance Across Different Crops 

The performance of the models for different crop 

types was evaluated in Table 8. As expected, 

LSTM performed well across all crop types, 

although the accuracy varied slightly due to the 

different growth patterns of each crop. 

 

Table 8: Performance Across Different Crops 

Crop Type Random Forest MSE SVM MSE LSTM MSE 

Wheat 0.467 0.500 0.410 

Maize 0.485 0.515 0.430 

Rice 0.452 0.478 0.390 



International Journal of Intelligent Systems and Applications in Engineering                         IJISAE, 2020, 8(4), 358–374  |  370 

 

Table 8 demonstrates that LSTM consistently 

outperforms both Random Forest and SVM, though 

slight variations in performance occur across 

different crop types. This is primarily due to the 

distinct growth cycles and environmental 

requirements of each crop, which can affect how 

meteorological and satellite data are utilized for 

yield prediction. 

3.2 Performance Across Different Regions 

Additionally, the models were tested in different 

regions, such as temperate, tropical, and arid zones. 

These regions experience varying weather 

conditions, which influence crop growth. Table 9 

shows the performance of the models in these 

regions. 

 

Table 9: Performance Across Different Regions 

Region 

Random 

Forest 

MSE 

SVM 

MSE 

LSTM 

MSE 

Temperate 0.440 0.470 0.400 

Tropical 0.460 0.495 0.420 

Arid 0.480 0.510 0.430 

 

From Table 9, we observe that the LSTM model 

maintains superior accuracy across all regions, with 

the best performance in temperate regions where 

weather patterns are more predictable. In tropical 

and arid regions, the model’s accuracy is slightly 

reduced due to the greater variability in weather 

conditions, which can be harder to model. 

 

 

Figure 5: Accuracy Comparison 

 

4. Limitations and Future Directions 

Despite the promising results, there are several 

limitations to the proposed methodology. One 

limitation is the availability and quality of data. 

While meteorological data and satellite imagery are 

increasingly available, their resolution and 

coverage may vary depending on the region, which 

can affect the accuracy of the predictions. 

Additionally, cloud cover and atmospheric 

conditions can sometimes obscure satellite 

imagery, leading to incomplete or unreliable data. 

Another limitation is the computational complexity 

of deep learning models like LSTM, which require 

significant computational resources for training, 

especially when dealing with large datasets and 

high-resolution satellite imagery. Optimizing these 

models to improve training efficiency and reduce 

computational costs is an area of ongoing research. 

Future work should focus on enhancing data 

quality by incorporating additional data sources 

such as soil moisture sensors, satellite-based 

thermal data, and crop-specific models. Moreover, 

further research can explore hybrid models that 

combine the strengths of machine learning and 

physical crop models to improve prediction 
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accuracy in more complex agricultural 

environments. 

In conclusion, the proposed methodology 

demonstrates that machine learning models, 

particularly LSTM networks, can effectively 

predict crop yield by integrating meteorological 

data and satellite imagery. The results show that 

LSTM outperforms traditional models like Random 

Forest and SVM in terms of prediction accuracy, 

highlighting its ability to capture temporal 

dependencies in weather patterns and crop growth. 

Combining both meteorological and satellite data 

provides a comprehensive approach that enhances 

prediction accuracy and allows for real-time 

monitoring of crop health and yield. While there 

are still challenges to be addressed, such as data 

availability and computational efficiency, this 

methodology shows great promise in advancing 

precision agriculture and improving food security 

globally. 

5. Conclusion and Future Scope 

The primary objective of this study was to explore 

the potential of machine learning models for 

predicting crop yields by integrating 

meteorological data and satellite imagery. The 

research presented a comprehensive methodology 

that leverages three key machine learning 

algorithms: Random Forest (RF), Support Vector 

Machines (SVM), and Long Short-Term Memory 

(LSTM) networks. These models were trained and 

evaluated using a variety of meteorological and 

satellite-derived features, such as temperature, 

precipitation, NDVI (Normalized Difference 

Vegetation Index), and soil moisture, to predict the 

crop yield for different crop types and regions. 

The results from the experiments demonstrated that 

LSTM outperforms both Random Forest and SVM 

models in terms of prediction accuracy. The 

performance of the models was assessed using key 

evaluation metrics, including Mean Squared Error 

(MSE), Mean Absolute Error (MAE), and Root 

Mean Squared Error (RMSE), with LSTM 

consistently delivering the lowest error values 

across all metrics. This highlights the effectiveness 

of LSTM in capturing the temporal dependencies in 

the data, which is crucial for crop yield prediction. 

By considering both meteorological data and 

satellite imagery, LSTM networks were able to 

model the complex relationships between weather 

patterns, vegetation health, and crop growth stages, 

leading to more accurate and robust predictions. 

The integration of satellite imagery, specifically the 

NDVI and soil moisture data, proved to be valuable 

in enhancing prediction accuracy. Satellite imagery 

offers high spatial and temporal resolution data, 

which is essential for monitoring crop health at 

large scales. The combination of satellite data with 

meteorological inputs provided a comprehensive 

dataset, capturing both environmental conditions 

and the actual state of the crops. The feature 

importance analysis revealed that NDVI, a key 

satellite-derived index, plays a central role in crop 

yield prediction, emphasizing the significance of 

remote sensing data in precision agriculture. 

Furthermore, the performance of the models was 

evaluated across different crops (wheat, maize, and 

rice) and regions (temperate, tropical, and arid 

zones). In all cases, LSTM showed superior 

performance, although slight variations were 

observed across different crops and regions. These 

variations are primarily due to the distinct growth 

cycles and climatic requirements of each crop type. 

Additionally, the region-specific factors, such as 

weather variability and the availability of 

meteorological data, influenced the model's 

performance, particularly in tropical and arid 

regions. Despite these variations, LSTM remained 

the most reliable model for crop yield prediction, 

highlighting its adaptability to different crops and 

environments. 

One of the key strengths of this approach is its 

ability to provide real-time predictions. The 

proposed methodology can be deployed in 

operational systems to monitor crop health and 

forecast yields continuously. By incorporating real-

time meteorological data and satellite imagery, the 

models can provide timely information to farmers 

and agricultural planners, enabling them to make 

informed decisions regarding irrigation, 

fertilization, pest control, and harvesting schedules. 

This can significantly improve crop management 

practices, reduce resource waste, and ultimately 

increase food production efficiency. 

In conclusion, the integration of machine learning, 

meteorological data, and satellite imagery offers a 

promising solution for improving the accuracy and 

scalability of crop yield prediction. This 

methodology enhances our understanding of how 

environmental variables interact with crop 

development, providing a more holistic approach to 

yield forecasting. The proposed approach has the 

potential to support precision agriculture, improve 
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food security, and optimize resource management 

in the face of climate change and growing global 

food demand. However, there are several avenues 

for further development to make this approach 

more accurate, efficient, and applicable to a 

broader range of agricultural contexts. 

Future Scope 

While the proposed methodology offers significant 

improvements in crop yield prediction, several 

challenges and opportunities remain for future 

work. These challenges primarily stem from data 

quality, model scalability, and the need for 

continuous improvement in machine learning 

algorithms. The future scope of this research lies in 

refining the methodology, integrating additional 

data sources, and addressing the limitations 

identified in this study. Below are key areas for 

future research and development: 

1. Incorporation of Additional Data Sources 

One of the limitations of this study is the reliance 

on meteorological data and satellite imagery as the 

primary input sources for crop yield prediction. 

While these data sources are highly valuable, they 

do not provide a complete picture of the factors that 

influence crop yield. Future work could explore the 

integration of additional data sources, such as soil 

data (e.g., soil texture, pH, and nutrient content), 

irrigation practices, crop management data, and 

real-time sensor data from IoT devices. This would 

allow the models to incorporate more detailed and 

localized information about crop conditions, 

improving prediction accuracy. 

Soil data, for instance, plays a critical role in 

determining the water retention capacity and 

nutrient availability, both of which directly 

influence crop growth. Combining this with 

satellite imagery and meteorological data could 

create a more comprehensive dataset for machine 

learning models. Similarly, incorporating data from 

IoT sensors that monitor soil moisture, 

temperature, and pH levels can provide real-time 

updates on crop health, enabling more accurate 

yield predictions. By utilizing a wider range of 

data, the model can provide more localized and 

precise forecasts, tailored to the specific conditions 

of each farm. 

2. Improvement in Data Quality and Resolution 

The quality and resolution of meteorological data 

and satellite imagery are crucial for the success of 

crop yield prediction models. While the datasets 

used in this study provide valuable insights, they 

often come with limitations in terms of spatial and 

temporal resolution. For example, satellite imagery 

may have cloud cover or other obstructions that 

prevent accurate data collection, particularly in 

tropical regions. Similarly, meteorological data 

may have gaps or inconsistencies, especially in 

areas with limited weather stations. 

To overcome these challenges, future work could 

focus on improving data resolution by utilizing 

higher-resolution satellite imagery and more 

frequent weather data. Advances in satellite 

technology, such as the launch of new high-

resolution Earth observation satellites, will provide 

more accurate and frequent imagery, enabling 

better monitoring of crop conditions. Additionally, 

the integration of alternative data sources, such as 

drones and unmanned aerial vehicles (UAVs), 

could offer higher-resolution, localized data for 

precision farming applications. 

3. Model Optimization and Efficiency 

While the LSTM model has shown promising 

results, it can be computationally expensive, 

particularly when dealing with large datasets and 

high-resolution satellite imagery. The training time 

and resource requirements of deep learning models 

like LSTM can be a bottleneck, especially in real-

time applications. Future research should focus on 

optimizing the computational efficiency of these 

models to make them more accessible and practical 

for real-time crop yield prediction. 

Several techniques can be employed to optimize 

LSTM models, including pruning, quantization, 

and the use of transfer learning. Pruning involves 

removing redundant neurons or weights in the 

neural network to reduce its size and computational 

cost. Quantization reduces the precision of the 

model's weights, which can significantly lower 

memory and processing requirements. Transfer 

learning involves pre-training models on large 

datasets and fine-tuning them for specific 

applications, which can reduce training time and 

improve performance. Additionally, the use of 

hardware accelerators, such as Graphics Processing 

Units (GPUs) and Tensor Processing Units (TPUs), 

can further enhance the efficiency of LSTM 

models. 
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4. Multi-Step Yield Prediction 

In this study, crop yield prediction was performed 

on a short-term basis, providing forecasts for a 

single growing season or harvest cycle. However, 

long-term yield prediction, which considers 

multiple growing seasons, could provide valuable 

insights for agricultural planning and resource 

management. Multi-step yield prediction models 

would allow for forecasting crop yields over 

several seasons, taking into account both 

immediate and long-term weather patterns and 

environmental conditions. 

To achieve this, future research could explore the 

use of sequence-to-sequence models, which are 

capable of making predictions over multiple time 

steps. These models could leverage historical data 

to forecast crop yields not only for the current 

season but also for future seasons, helping farmers 

and policymakers plan for long-term agricultural 

trends. 

5. Incorporation of Climate Change Scenarios 

One of the most pressing challenges in modern 

agriculture is the impact of climate change on crop 

production. Rising temperatures, changing 

precipitation patterns, and increasing frequency of 

extreme weather events are expected to affect crop 

yields in the coming decades. Future crop yield 

prediction models should account for climate 

change scenarios to provide more accurate 

forecasts under future environmental conditions. 

Incorporating climate change data into the machine 

learning models would involve using climate 

projections from global climate models (GCMs) as 

additional input features. These projections would 

provide estimates of future temperature, rainfall, 

and other meteorological variables under different 

greenhouse gas emission scenarios. By training the 

models on both historical and future climate data, 

the models would be able to predict how crop 

yields may change in response to climate change 

and provide valuable insights for climate 

adaptation strategies in agriculture. 

6. Real-Time Decision Support Systems 

The proposed methodology can be further 

developed into a real-time decision support system 

for farmers, agricultural planners, and 

policymakers. Such a system would provide timely 

crop yield predictions and real-time updates on 

crop health, enabling farmers to make informed 

decisions about irrigation, fertilization, pest 

control, and harvesting schedules. The system 

could also provide early warning signals for 

potential crop failures due to adverse weather 

conditions, allowing for timely interventions. 

Future work could focus on integrating the crop 

yield prediction models with real-time monitoring 

systems, such as IoT-based sensors, drone imaging, 

and weather forecasting platforms. This would 

allow for continuous updates and predictions based 

on current data, creating a dynamic system that 

evolves with changing environmental conditions. 

Moreover, the integration of decision support tools 

would allow stakeholders to simulate different 

agricultural scenarios, optimizing resource use and 

improving yield outcomes. 
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