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Abstract: This research presents a machine learning-based approach for the automatic detection of kidney stones using CT
scan images, aiming to enhance diagnostic accuracy and reduce the reliance on manual interpretation by radiologists. Kidney
stones, if left undiagnosed, can lead to severe complications such as infections, renal failure, or urinary tract blockages. The
study utilized a labeled dataset of CT images categorized as normal and stone-affected, which underwent preprocessing, feature
extraction, and classification using various machine learning models, including Support Vector Machine (SVM), Random
Forest, Decision Tree, Naive Bayes, and K-Nearest Neighbors (KNN). Among these, SVM achieved the highest accuracy of
93%, followed closely by Random Forest at 91%, demonstrating their effectiveness in correctly identifying kidney stone cases.
The proposed system shows strong potential in assisting healthcare professionals by improving diagnostic efficiency, reducing

errors, and enabling timely medical intervention.
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1. INTRODUCTION

Kidney stones, medically known as nephrolithiasis,
have been a persistent urological condition affecting
humans for centuries. Historical evidence of kidney
stones dates back to ancient civilizations such as
Egypt, India, and Greece, where early physicians
documented symptoms and developed rudimentary
surgical methods to treat the condition. Over time,
medical advancements have led to more
sophisticated and less invasive diagnostic and
treatment methods. Today, kidney stones are
recognized as a common and serious health issue
that, if left untreated, can result in complications
such as severe pain, urinary tract infections, kidney
damage, and even renal failure. The growing
prevalence of kidney stones, driven by factors such
as dietary habits, dehydration, and genetic
predisposition, has emphasized the importance of
timely and accurate diagnosis [8].

Modern  imaging technologies, particularly
Computed Tomography (CT), have become the gold
standard for detecting kidney stones due to their high
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resolution and ability to identify even the smallest
stones that might be missed by traditional X-rays or
ultrasound [9]. However, while CT scans provide
detailed images, their manual interpretation by
radiologists is time-consuming, subject to fatigue,
and can lead to diagnostic errors or inconsistencies.
Misinterpretations may result in either missing the
presence of stones or recommending unnecessary
surgeries, both of which can adversely affect patient
outcomes and increase healthcare costs (Figure 1).

Figure 1: Detection of Kidney Stones in CT Scan
Images

In response to these challenges, there has been a
significant shift towards incorporating machine
learning (ML) and artificial intelligence (Al) into
medical image analysis. Machine learning, a subset
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of Al, uses algorithms to identify patterns in data and
make predictions or decisions without being
explicitly programmed. In the context of kidney
stone detection, ML algorithms can be trained on
large datasets of CT images to automatically
recognize and classify stones with high accuracy.
This research explores the development of a
machine learning-based diagnostic system using
several algorithms including Decision Tree,
Random Forest, Naive Bayes, Support Vector
Machine (SVM), and K-Nearest Neighbors (KNN).
Among these, the Random Forest algorithm
demonstrated the highest accuracy in classifying CT
images, showcasing its potential as a reliable tool for
clinical application [10-12].

Currently, the integration of ML into radiological
practices is still in its early stages, but it holds
tremendous promise. Automated Kkidney stone
detection systems can significantly reduce the
workload on radiologists, lower the chances of
human error, and ensure faster, more accurate
diagnoses. These systems can also be scaled and
deployed in remote or resource-limited settings
where access to expert radiologists may be limited.
Looking to the future, the continued advancement of
ML and deep learning techniques will likely lead to
the development of fully autonomous diagnostic
platforms [13]. These platforms could not only
detect kidney stones but also assess their
composition, predict the likelihood of recurrence,
recommend personalized treatment plans, and
monitor treatment efficacy over time. Such
innovations represent a major leap forward in

urological care, promising improved patient
outcomes, streamlined clinical workflows, and more
efficient use of healthcare resources.

2. REVIEW OF LITERATURE

Several studies in recent years have explored the
application of machine learning techniques for the
automated detection of kidney stones using CT scan
images, aiming to enhance diagnostic accuracy and
reduce the dependency on manual interpretation.
Early research by [1] demonstrated the potential of
support vector machines (SVM) and decision trees
in achieving high accuracy in Kkidney stone
classification. In paper [2] further investigated
traditional classifiers like KNN and ANN, noting
their efficiency and relatively low computational
requirements. With the advancement of deep
learning, [3] employed convolutional neural
networks (CNN), achieving superior results in
complex image analysis tasks. Paper [4] proposed a
hybrid model combining Random Forest and SVM,
which  improved diagnostic  precision and
robustness. Authors in paper [5] focused on
automated feature extraction to aid in early
detection, with SVM emerging as the most effective
algorithm. More recently, [6] compared traditional
ML models with deep learning approaches,
concluding that deep learning offered better
performance in terms of accuracy and
generalization. Collectively, these studies highlight
a progressive trend toward leveraging Al and
machine learning for reliable, efficient, and scalable
kidney stone detection from medical imaging.

Table 1. Review of literature for machine learning based kidney stone detection algorithms

Ref. Year Methodology Dataset Algorithms | Key Findings
No Used
[1] 2018 Applied supervised | CT images from | SVM, Achieved 91%
machine  learning  for | hospitals in Japan | Decision accuracy; SVM
kidney stone detection Tree performed best in
terms of precision
[2] 2019 Proposed an image | Open-access KNN, ANN | KNN showed better
segmentation and image classification  with
classification model database less computational
time
[3] 2020 Developed a deep learning- | 1000+ CT images | CNN CNN achieved over
based diagnostic tool (collected dataset) 95% accuracy in
classifying stone
presence
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[4] 2021 Used hybrid ML model for | Hospital-acquired | Random Hybrid approach
detection and localization | CT datasets Forest + | improved both
SVM sensitivity and
specificity
[5] 2022 Implemented  automated | CT scan dataset | Naive SVM  outperformed
feature  extraction  for | (500 images) Bayes, SVM | others; early
diagnosis detection success rate
increased
[6] 2023 Compared traditional ML | 2000 labeled CT | Random Deep learning
and deep learning models images Forest, outperformed
CNN, traditional ML in
XGBoost complex image cases
3. PROBLEM FORMULATION scan images of human Kidneys, specifically
The manual interpretation of CT images for developed to support research in medical image

detecting kidney stones relies heavily on the
expertise of radiologists and can present several
challenges. This deductive process is not only time-
consuming but also susceptible to human error,
which may lead to limited diagnostic accuracy and
delays in initiating appropriate treatment. Factors
such as fatigue, subtle variations in image quality,
and the presence of very small or atypically located
stones can result in missed or incorrect diagnoses.
Therefore, there is a critical need for an approach
that enhances the efficiency, speed, and reliability of
kidney stone detection in CT scans [14].
Implementing an automated system powered by
machine learning can significantly reduce
dependency on manual interpretation, minimize
diagnostic errors, and ensure more consistent and
accurate assessments, ultimately supporting better
clinical decision-making and improved patient

outcomes.
4. DATASET

The CT Kidney Dataset used in this study is a
curated collection of computed tomography (CT)

analysis, particularly for the segmentation and
classification of kidney-related conditions. This
dataset comprises a total of 4,114 CT images,
categorized into two primary classes: Normal and
Stone. It includes 3,274 images labeled as 'Stone’,
representing kidneys affected by kidney stones, and
840 images labeled as 'Normal’, which depict
healthy kidneys without any signs of calculi. The
dataset provides high-resolution images suitable for
training and testing machine learning algorithms
aimed at enhancing the accuracy of kidney stone
detection. Developed in 2024 by Ramoliya Fenil, an
Al enthusiast and student at Nirma University,
Ahmedabad, Gujarat, India, the dataset is intended
exclusively for academic and research purposes in
the domain of medical imaging. Its class imbalance
reflects the real-world scenario where cases of
kidney stones are more prevalent in clinical imaging
datasets [15]. This dataset plays a critical role in
enabling the development of automated diagnostic
systems by offering a reliable and labeled source of
kidney CT scans for algorithm training and
validation.

Figure 2: Normal and Stone kidney CT scan images
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The dataset includes two classes: Normal, consisting
of CT images of healthy kidneys without any
abnormalities, and Stone, comprising images that

show the presence of kidney stones as shown in
figure 2.

Figure 3. Normal kidney CT scan image histogram Vs Stone histogram

Figures 3 represent the histogram analysis of CT
images from the Normal and Stone classes,
respectively. A histogram provides a graphical
representation of the distribution of pixel intensities
within an image, which is useful for understanding
the contrast and texture characteristics of different
kidney conditions. In Figure 3 (Left), Normal
Histogram, the intensity values are more uniformly
distributed, indicating smoother textures and fewer
dense regions typically found in healthy kidney
images. In contrast, Figure 3 (Right), Stone
Histogram, displays a distinct variation in intensity
values, often with sharper peaks, reflecting the
presence of dense, calcified regions associated with
kidney stones. This contrast in pixel distribution
plays a vital role in enabling machine learning
algorithms to distinguish between normal and
affected kidneys during the classification process.

5. PROPOSED
METHODOLOGY

RESEARCH

The research methodology for this study involves
several key steps aimed at developing a machine
learning-based model for kidney stone detection
from CT scan images. Initially, a publicly available
dataset of CT scans, categorized into conditions such
as normal kidneys and those with stones, will be
collected and pre-processed. This will include
cleaning, normalizing, and segmenting the images,
followed by the extraction of relevant features such
as texture and shape. Traditional machine learning
algorithms like KNN, Naive Bayes, SVM, Random
Forest, and Decision Trees will then be trained on
the processed data to create the detection model. The
model's performance will be evaluated using metrics
such as accuracy, precision, recall, and F1 score to
ensure its effectiveness in classifying kidney stones.

1. Data Collection: This study will utilize a
publicly available dataset from Kaggle, which
includes tagged CT scan images of Kkidneys
showcasing various conditions such as Kkidney
stones, cysts, tumors, and normal kidneys. The
dataset provides a diverse and comprehensive
collection of labeled images, representing the full
spectrum of potential abnormalities found in kidney
scans. This dataset will be crucial for training and
validating the machine learning models, offering a
solid foundation for analysis. The dataset can be
easily accessed via a provided link for retrieval.

2. Data Preprocessing: Prior to applying
machine learning algorithms, the CT scan images
will undergo several essential preprocessing steps.
These steps include cleaning the images to remove
any noise, normalizing pixel values for consistent
image quality, and segmenting the regions of interest
(such as the kidneys and stones). Additional image
processing techniques, such as enhancing the
contrast, converting images to black and white
(grayscale), and resizing images to standardized
dimensions, will also be applied. These
preprocessing actions are crucial for improving the
clarity and accuracy of subsequent analyses,
ensuring that the images are ready for effective
machine learning application.

3. Feature  Extraction and Image
Classification: Once the images are pre-processed,
the next step will be to identify and extract key
features that are indicative of Kkidney stones.
Traditional machine learning methods, such as
KNN, Naive Bayes, SVM, Random Forest, and
Decision Trees, will be employed to extract these
features and classify images based on their
characteristics. These algorithms rely on manually
extracted features like texture, shape, size, and
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intensity rather than the automatic feature learning
of Convolutional Neural Networks (CNNSs). For
example, KNN classifies images based on the
proximity of feature vectors, Naive Bayes
establishes a linear relationship between extracted
features and class labels, and SVM identifies the
optimal hyperplane to separate classes. Random
Forest and Decision Trees use ensemble and
hierarchical decision-making methods to classify
kidney stones, focusing on various aspects of the
image's features.

4. Model Training: The training of machine
learning models involves teaching the algorithm to
recognize patterns and make predictions based on
the data. In this study, after collecting and
preprocessing the dataset, the images will be
transformed into feature vectors representing
essential characteristics such as shape, texture, and
size. Machine learning algorithms such as KNN,
Naive Bayes, SVM, Random Forest, and Decision
Trees will be trained on this data. During training,
the model will learn to map the extracted features to
their corresponding labels (e.g., "Normal" or
"Stone™) by minimizing a loss function, which
quantifies the difference between the model’s
predictions and actual labels. The training process
will be iterative, adjusting the model parameters to
improve accuracy and generalization. After training,
the model will be capable of classifying new CT
scan images to determine whether they show normal
kidneys or those with kidney stones.

5. Model Evaluation: To assess the model's
performance, a variety of key metrics will be used,
including accuracy, precision, recall, and F1 score.
These metrics will provide a comprehensive
evaluation of the model's ability to accurately
identify kidney stones, minimize false positives, and
ensure reliable diagnoses. Accuracy will measure
the overall correctness of the model, while precision
and recall will assess its ability to detect kidney
stones and avoid false negatives. The F1 score will
offer a balanced view, combining both precision and
recall to give a more complete understanding of the
model's performance. These evaluation metrics will
be crucial in determining the effectiveness and
reliability of the developed model in practical
applications.

6. PERFORMANCE EVALUATION

The performance evaluation phase of this study
involved multiple steps to ensure the reliability and
accuracy of the machine learning models in

classifying CT scan images as either containing
kidney stones or being normal. Initially, label
encoding was applied to convert categorical labels
into numerical format, allowing compatibility with
machine learning algorithms. The feature matrix (X)
was constructed by removing non-informative
columns like "Label" and "Image Name," while the
target vector (y) was derived from the encoded
"Label" column. A class distribution analysis was
performed prior to model training to detect any
imbalances that could bias the results. The dataset
was then split into training and test sets using an 80-
20 ratio, with stratified sampling ensuring equal
representation of both classes. Once trained, the
models were tested on the unseen test set, and their
predictions were evaluated using metrics such as
accuracy, precision, recall, and Fl-score. A
confusion matrix and a classification report were
also generated to further interpret the models’
strengths and weaknesses in identifying Kkidney
stones accurately.

6.1 Label Encoding

The categorical labels were converted into numeric
values to make them compatible with machine
learning algorithms. A dictionary was created to
map each category to a unique index, and the dataset
labels were transformed based on this mapping.

6.2 Feature Matrix and Target Vector
Preparation

. The feature matrix (X) was created by
excluding the "Label" and "Image Name" columns
from the dataset, leaving only the relevant features
for model input.

. The target vector (y) was derived from the
"Label" column, which contained the encoded
category labels.

6.3 Class Distribution Analysis

Before splitting the data, the distribution of classes
was analyzed to ensure that each class was
represented proportionally. This step helped identify
any potential imbalances in the dataset, ensuring that
all categories were appropriately included for model
training.

6.4 Data Splitting
The dataset was divided into training and test sets
using an 80-20 split, with 80% used for training and
20% reserved for testing. Stratified sampling was
applied to preserve the class distribution across both
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sets, ensuring a fair evaluation of the model's
performance.

6.5 Prediction and Evaluation

. Predictions were made on the test set
(X _test), and the accuracy of the model was
computed.

. A confusion matrix was generated to
visualize the model's performance, showing how
well it classified each category in the test set.

o A detailed classification report, including
precision, recall, and F1-score, was created to
evaluate the model's performance for each class,

providing insights into how effectively the model
detected kidney stones versus normal images.

6.6 Evaluation Metrics

This matrix allows for the calculation of several
performance metrics, such as accuracy, precision,
recall, and F1-score, which provide insights into
how well the model distinguishes between kidney
stones and normal kidney images. The model's
ability to accurately identify stones (TP), avoid false
alarms (FP), and correctly classify normal images
(TN) are crucial factors in evaluating its overall
effectiveness (Table 2).

Table 2: Performance evaluation metrics for kidney stone classification

Evaluation Metrics Methods

Accuracy TP +TN /TP +TN+FP +FN

Precision TP /TP +FP

Recall (Sensitivity) TP /TP +FN

F1-Score 2x (Precision x Recall) / (Precision + Recall)

6.7 Confusion Matrix

The performance of a kidney stone detection model
can be evaluated using a confusion matrix, which
compares the actual classification of CT scan images
with the model’s predictions. The matrix consists of
two rows and two columns, representing the
categories "Stone" and “"Normal." The four
components of the confusion matrix are:

. True Positive (TP): The model correctly
identifies an image as containing kidney stones
when it actually contains kidney stones.

. False Positive (FP): The model incorrectly
classifies an image as containing kidney stones
when it is actually a normal image.

. True Negative (TN): The model correctly
identifies an image as normal when it is indeed
normal.

. False Negative (FN): The model
incorrectly classifies an image as normal when it
actually contains kidney stones.

7. RESULT AND ANALYSIS

To assess the performance of various machine
learning models in classifying CT scan images as
either containing kidney stones or not, several
evaluation metrics were calculated, including
Accuracy, Precision, Recall, and F1 Score. These
metrics offer valuable insights into each model's
ability to correctly identify true positives and true
negatives while minimizing false positives and false
negatives. The table below summarizes the
performance of the evaluated models, which include
K-Nearest Neighbors (KNN), Naive Bayes, Support
Vector Machine (SVM), Random Forest, and
Decision Tree classifiers (Table 3).

Table 3: Performance Comparison of Machine Learning Models for Kidney Stone Detection Using CT

Scan Images
Model Accuracy (%) | Precision Recall (%) | F1 Score
(%) (%)
Random Forest (RF) 91 89 90 89
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Support Vector Machine (SVM) 93 90 91 91
Decision Tree (DT) 86 84 83 83
Naive bayes (NB) 84 82 80 81
K-Nearest Neighbors (KNN) 81 79 77 78

The evaluation of various machine learning models
for kidney stone detection based on CT scan images
reveals notable differences in their performance
across key metrics such as accuracy, precision,
recall, and F1 score. Among the models tested, the
Support Vector Machine (SVM) demonstrated the
highest overall performance with an accuracy of
93%, a precision of 90%, recall of 91%, and an F1

score of 91% as shown in table 3. This suggests that
SVM was the most effective in correctly identifying
both positive (stone) and negative (normal) cases
with minimal errors. Random Forest (RF) followed
closely, achieving 91% accuracy and comparable
precision and recall scores, indicating its robustness
and ability to handle complex data distributions.

Performance evaluation of Kidney
Stone Classification Algorithms

100
) I I I I I
0
RF SVM DT NB KNN

m Accuracy (%) m Precision (%)

Recall (%) = F1 Score (%)

Figure 3: Performance Comparison of Machine Learning Models for Kidney Stone Detection Using CT
Scan Images

On the other hand, traditional models such as
Decision Tree (DT), Naive Bayes (NB), and K-
Nearest Neighbors (KNN) showed moderate to
lower performance. Decision Tree achieved 86%
accuracy, but slightly lower recall and F1 score
values, indicating a tendency to misclassify some
instances. Naive Bayes, while simpler, maintained a
respectable 84% accuracy, benefiting from its
efficiency in handling categorical data but lagging in
recall. KNN, with the lowest scores 81% accuracy
and a 77% recall suggests limitations in handling the
complexity of CT scan image data for kidney stone
detection as shown in figure 3. Overall, the results
highlight that more sophisticated models like SVM
and Random Forest offer greater diagnostic
reliability in this medical imaging task.

8. CONCLUSION

In this study, various machine learning models were
employed to detect kidney stones from CT scan

images, aiming to automate and enhance the
diagnostic process. The methodology involved data
preprocessing, feature extraction, model training,
and evaluation using performance metrics such as
accuracy, precision, recall, and F1-score. The
experimental results demonstrated that the Support
Vector Machine (SVM) model achieved the highest
overall performance with an accuracy of 93%,
precision of 90%, recall of 91%, and an F1-score of
91%, making it the most reliable among the tested
models. Random Forest also performed strongly,
with an accuracy of 91% and balanced scores across
other metrics, indicating its suitability for complex
classification tasks in medical imaging. Other
models such as Decision Tree, Naive Bayes, and K-
Nearest Neighbors (KNN) showed moderate
effectiveness, with accuracies of 86%, 84%, and
81% respectively. While these models were less
precise than SVM and Random Forest, they still
provided useful insights into the classification
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process and may be applicable in less resource-
intensive environments. Overall, the results validate
the potential of machine learning, particularly SVM
and Random Forest, in supporting radiologists with
faster, more accurate Kidney stone detection. This
can ultimately lead to earlier interventions, reduced
diagnostic errors, and better clinical outcomes for
patients suffering from urological conditions.
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