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Abstract— With its many uses in virtual reality, education, training, and other domains, lip-to-speech (LTS) 

synchronization is an essential tool for creating lifelike face animations.  However, existing approaches still struggle to 

create high-fidelity facial animations, particularly when faced with issues like lip jitter and unstable facial motions in 

continuous frame sequences.  To improve LTS models' capacity to precisely reconstruct speech from visual data, this 

study develops a Hybrid Deep Learning model coupled with Conditional Random Field-based Intelligent Chasing 

Optimization (HDL-CRF-ICO).  For the preprocessing stage, the model chooses 100 frames at random, and the 

Structured Similarity Index (SSIM) is used to identify keyframes. Similarity scores are computed by this index, and 

which frames are chosen for additional processing are determined by certain criteria.  The model then makes use of 

sophisticated methods, such as AV features, which improve speech recognition by combining visual information from 

lip movements with audio inputs.  By offering the optimum global solution, the ICO algorithm speeds up convergence, 

and by lowering the error value, it allows the model to produce precise results. Accordingly, the proposed model 

obtained the performance as Bilingual Evaluation Understudy (BLEU) scores of 0.48, Metric for Evaluation of 

Translation with Explicit Ordering (METEOR) scores of 0.30, Recall-Oriented Understudy for Gisting Evaluation 

(ROUGE) scores of 0.53, and Semantic Propositional Image Caption Evaluation (SPICE) scores of 24.9, as well as for 

K-Fold and METEOR with 0.31, SPICE with 25.7, BLEU with 0.49, and ROUGE with 0.54 for training percentage 

using Grid Audio-Visual Speech Corpus dataset. 

 

Keywords - Lip-to-Speech Synchronization, Hybrid Deep Learning, Conditional Random Field (CRF), Intelligent 

Chasing Optimization (ICO), Structured Similarity Index (SSIM), Audio-Visual (AV) Features, Speech Reconstruction 

 

I. INTRODUCTION 

Visual speech recognition (VSR), also known as lip-

reading, is a technology that aims to recognize and 

interpret speech from the movements of a person's lips 

and facial features. It involves using computer vision 

techniques to analyze the visual cues generated by the 

articulation of speech sounds and translating them into 

textual or auditory information. Visual speech 

recognition systems utilize video data, usually captured 

from a camera, and process the facial movements, lip 

shapes, and other visual cues exhibited during speech 

production. These visual cues are then matched with a 

database of phonetic or linguistic models to decipher 

the spoken words.  

 

The technology often employs machine learning 

algorithms to improve its accuracy over time by 

training on large datasets. Speech recognition 

facilitates seamless communication between humans 

and machines. However, the effectiveness of such 

systems diminishes in the presence of background 

noise.  
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To mitigate this, incorporating visual data derived 

from mouth movements and lip configurations can 

ameliorate the impact of acoustic disturbances, 

consequently enhancing the performance of speech 

recognition systems.  

 

The primary focus of this study pertains to lip-reading 

techniques for enhancing speech recognition. The 

majority of related research has predominantly 

cantered on audio-visual speech recognition 

investigations. In VSR systems, the recognition of 

spoken words hinges on the analysis of visual signals 

produced during speech.  

 

For effective speech recognition, pertinent visual 

information is gleaned from the mouth and lip area of 

the face. Consequently, lip-reading systems adopt 

various methodologies; some directly pinpoint the 

speaker's lips, while others first identify the face using 

prior knowledge and subsequently zero in on lip 

localization. Notably, achieving precise lip and face 

localization poses challenges due to factors like sensor 

quality, lighting conditions, background, lip dynamics, 

pose variations, shadows, facial expressions, scaling, 

rotations, and occlusions.  
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The practice of reconstructing spoken text from a 

speaker's lip movements in a soundless movie is 

known as LTS synchronization.  This technique is 

especially useful when there is no audio for a number 

of reasons, such as inadequate recording gear, 

background noise, or transmission problems [1].  The 

new technology known as LTS generation is rapidly 

evolving and has advanced significantly.  In addition to 

giving those who are deaf or speech-impaired a new 

way to communicate, it has a big impact on education.  

LTS creation, for instance, can assist kids with speech 

articulation and vocal expressiveness [2].   

 

LTS technology is also necessary for in-person 

communication in daily life, particularly with the 

growth of video conferencing and virtual meetings. 

Among the difficulties is accurately recognizing 

conversations when voice signals are difficult to 

capture, such as in loud environments.  Lip-to-speech 

technology can be helpful in a variety of settings, 

including loud events, busy shopping centers, and quiet 

video chats [3].  Consequently, the increasing demand 

for this technology underscores its potential to improve 

communication in circumstances when the voice is 

unclear or absent.  An active research topic at the 

intersection of computer vision and speech processing 

is voice-driven lip synchronization. 

 

The aim of this discipline is to generate face 

animations that accurately correspond to spoken text 

and facial images or videos [4].  It may be used in a 

variety of domains, including virtual reality, 

healthcare, digital entertainment, and distant learning.  

Despite the technology's early use in virtual presenters 

and intelligent customer service, there are still 

significant problems with lip-sync accuracy and 

naturalness [5] [6].  LTS synthesis, which involves 

predicting the relevant speech from a sequence of 

images of talking faces, is an essential stage in the 

development of LTS.  This approach has a variety of 

applications, including dubbing silent movies, assisting 

patients who are mute, and restoring voice for video 

conferencing in loud environments [7]. Most currently 

available lip-reading and audio-visual speech 

recognition methods assume that the lips be visible and 

unhindered.  However, in practice, this assumption is 

not accurate since the speaker's lips can easily be 

blocked by hands or microphones [8], which lowers 

performance.  Due to the high sensitivity of 

contemporary audiovisual speech recognition systems 

to lip occlusion, error rates might occasionally increase 

[9].  In Lip to Speech or LTS synthesis, an encoder-

decoder structure is employed.  The encoder extracts 

the linguistic information and voice characteristics of a 

talking video, while the decoder converts the 

associated audio [7]. 

 

Current systems often have significant issues, despite 

advancements in deep learning techniques.  One of the 

earliest lip-sync systems was Video Rewrite, which 

mapped phonemes to mouth shapes and blended them 

onto a target video.  Though they offer more general 

solutions, modern methods like PC-AVS [10] and 

GCAVT [11] still have a lot of problems.  These 

approaches often separate pose and emotion, but they 

lose the speaker's uniqueness, leading to uneven face 

boundaries and poor visual quality [12].  One of the 

several elements that contributes to the challenges in 

LTS creation is variation in pronunciation.  Since 

multiple pronunciations of the same word might have 

different meanings, accurate LTS synthesis can be 

difficult. The HDL-CRF-ICO model is proposed to 

address the issues highlighted in the LTS 

synchronization section and generate text 

appropriately. This optimizes error reduction and 

effectively integrates advanced audio-visual elements 

to improve LTS synchronization. As a result, issues 

like lip occlusion and speech variability are 

successfully addressed, improving the accuracy of 

speech reconstruction from visual input.  

The rest of this paper is constructed as follows: Section 

II provides an overview of the related work. The 

proposed approach for LTS synchronization is 

explained in Section III. And Section IV ultimately 

includes experimental results and performance 

assessments. In Section V, close the paper with the 

summary of the results. 

 

II. RELATED WORK 

By using data augmentation techniques to generate 

more data samples for classification model generation, 

He, Y., et al. [13] created improved AVSR models.  

Traditional methods were combined with more modern 

approaches, such as generative adversarial networks 

(GANs).  After training the models using enhanced 

data from well-known datasets to validate their 

methods, they tested the models using the original 

data.  Experimental results showed that the 

augmentation strategy and the proposed AVSR model 

improved performance in noisy datasets.  However, 

advanced GAN models for visual and auditory 

modalities were not included in the AVSR model.  For 

the first time in the Chinese LTS synthesis area, Yang, 

Q., et al. [2] presented the sentence-level lip-to-speech 

synthesis architecture FA-GAN. 

 

The sophisticated speech-driven lip synchronization 

model VividWav2Lip was created by Liu, L., et al. [6].  

A cross-attention mechanism for improved audio-

visual feature fusion, an optimized network topology 

with Squeeze-and-Excitation (SE) residual blocks, and 

the inclusion of the Code Former facial restoration 

network for post-processing are its three primary 

contributions.  Extensive experiments on a diverse 

dataset of different languages and face types showed 

promising results, with 85% of participants assessing 

the animations as more realistic than existing 

techniques.  However, the model struggled to capture 

emotion-related facial movement characteristics since 

there were no advanced emotion networks like 

normalizing flows or vector quantization models. 

 

The FastLips end-to-end neural AVTTS model was 

developed by Lenglet, M., et al. [14] using the 

FastSpeech2 architecture.  They demonstrated that 

FastLips generated lip animations of superior quality 

as compared to the baseline AVTacotron2.  The model 

highlighted the advantages of early differentiation 
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between aural and visual modalities, which promotes 

more successful asynchronous actions, in order to 

predict lip motions.  However, the model's inability to 

leverage the FastLips architecture for expressive 

audiovisual synthesis proved a limitation.  

Furthermore, visual cues like eye blinks and head nods 

were not included in the visual variance adapter. 

 

Lu, J., et al. [15] conducted a novel task called 

automated voice-over (AVO), which aims to produce 

speech in real time using a quiet, pre-recorded film.  

Unlike traditional speech synthesis, AVO not only 

produces natural-sounding speech but also ensures 

perfect lip-speech synchronization.  A logical approach 

to handle AVO is to condition speech rendering on the 

temporal evolution of the lip sequences in the video.  

However, the model's inability to use visual input 

limited its ability to achieve flawless lip-speech 

synchronization and fine-grained duration control. 

 

Passos, L.A., et al. [16] combined Graph Neural 

Networks with canonical correlation analysis (CCA-

GNN) to develop a novel multimodal self-supervised 

architecture for energy-efficient audio-visual (AV) 

speech augmentation.  The technique was built on a 

state-of-the-art CCA-GNN that maximized the 

correlation between pairs of augmented views of the 

same input in order to learn representative embeddings 

and embellish disconnected features.  Reducing 

duplicate information and eliminating augmentation-

variant information while preserving augmentation-

invariant data was the key idea.  The lack of a 

physiologically realistic neuronal architecture and 

memory processes in the model hindered effective 

channel-to-channel and cross-channel interactions 

inside convolutional neural networks. 

 

A novel audio-visual speech recognition architecture 

was presented by Li, J., et al. [17]. It combined audio 

and visual input utilizing unified cross-modal attention 

and temporal concatenation.  The resulting sequence 

was then put into a unified Conformer encoder.  They 

proposed an additional synchronization-aware loss 

optimization to increase the system's robustness in 

audiovisual out-of-synch conditions.  A manual 

attention alignment method was also developed, which 

improved computation efficiency and identification 

accuracy.  Through the resolution of synchronization 

issues, this technique significantly enhanced 

audiovisual speech recognition. 

 

The focus of He, Y., et al. [18] was on applying a 

novel multimodal generative adversarial network 

(GAN)-based AVSR architecture for artificial 

intelligence in the Internet of Things (IoT).  The study 

looked into both traditional and GAN-based techniques 

to increase the accuracy of AVSR classification.  But 

when the AVSR architecture was applied to a range of 

IoT devices, significant problems including privacy 

security and the need for low-latency data processing 

surfaced.  A number of issues needed to be fixed 

before the AVSR architecture could be successfully 

used in real-world IoT applications. 

 

III. METHODOLOGY 

The Proposed HDL-CRF-ICO architecture is used in 

the study to identify LTS synchronization.  Both audio 

and video data from the Grid Audio-Visual Speech 

Corpus dataset are used as model inputs.  The most 

pertinent frames are chosen from the movie to record 

significant lip movements in the first preprocessing 

step.  To aid with more precise feature extraction, these 

frames are enhanced to lower noise and improve 

picture quality.  ResNet-101 is used to detect complex 

patterns in lip movements, and frames are chosen to 

extract visual information.   

 

Additionally, DLib's landmark identification technique 

is used to recognize facial landmarks, particularly 

those from the chin and lower face. Because they 

highlight important regions like the chin and the 

corners of the lips, these landmarks are essential for 

comprehending the facial dynamics of speech.  The 

energy distribution in the audio stream is analyzed 

using statistical indicators like spectral centroid, 

spectral bandwidth, and spectral contrast on the audio 

side. This provides information about the speaker's 

traits and speech rhythm.  The speaker's voice tone and 

characteristics may also be ascertained with the use of 

statistical descriptors such as mean, variance, 

skewness, and kurtosis. Vulture and Harris Hawks 

Optimization are used to improve the retrieved 

characteristics and concatenate them into a single 

vector in order to maximize performance.   

A CNN-BiLSTM classifier, which generates logical 

captions by processing both audio and visual input, is 

the result of this development.  Lastly, depending on 

the lip movements, the produced subtitles match the 

video material. In Figure 1, the suggested framework is 

schematically illustrated. 

 

A total of 34,000 phrases from the Grid Audio-Visual 

Speech Corpus dataset was used as the input data.  

Thirty-four talkers, each giving 1,000 sentences, 

deliver these sentences. Frame selection and frame 

enhancement are the two steps in the pre-processing 

phase, which receives the raw input data.  One hundred 

frames are chosen at equal intervals from every video 

as part of the frame selection procedure. Assume, ff1, 

ff2,….ffr   [28] be the frames extracted from the videos 

and among which the selected frames (keyframes) are 

extracted using the similarity measure, namely SSIM 

and pretrained based similarity measure. Assume the 

two consecutive frames as ff1 and ff2. 
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Figure 1. Diagrammatic Illustration of the HDL-CRF-ICO Model 

 

Between these two frames, ff1 and ff2, calculate the 

SSIM value.  Conversely, a similarity measure value 

based on pretrained data is calculated for the two 

successive frames and.  The pretrained based similarity 

measure and the SSIM measure are also calculated by 

taking into account two consecutive frames for every 

frame that was recorded from the video.  As a result, 

an average measure value is computed using the 

pretrained score value and SSIM. The frames with the 

average value are then chosen. Using these average 

values, the similarity must be checked once more; if it 

is greater than 1.5, the corresponding frames can be 

chosen as keyframes. This process is repeated until all 

of the keyframes have been chosen. As a result, the 

enhanced pre-processed output has a dimension of, 

which is mathematically denoted as: 

 

 
 

To improve the effectiveness of LTS systems, audio-

visual (AV) capabilities—which integrate audio 

information with visual cues from lip movements—are 

crucial.  While advanced models like ResNet-101, 

which can identify intricate patterns in lip dynamics, 

are employed to extract visual information, DLib is 

utilized to locate landmarks on the chin and lower face.  

To decode the energy distribution and characteristics 

of the speaker's voice, the audio side looks at features 

including spectral centroid, spectral bandwidth, 

spectral contrast, and other spectrum descriptors like 

mean, variance, skewness, kurtosis, and frequency. 

The HDL-CRF-ICO framework efficiently processes 

audio-visual information and maximizes model 

performance to enable precise lip-to-speech 

synchronization.  The model effectively synchronizes 

auditory and visual inputs by extracting features using 

Conv3D, BiLSTM, and CRF layers.  The dimensions 

[Nx100x52x52x6] are the first parameters the video 

input layer uses to define the number of channels and 

batch size.  Three Conv3D layers handle the input after 

that, with activation and max-pooling functions 

coming after each layer.  These layers gradually reduce 

the input size [Nx100x2700] in order to concentrate on 

identifying patterns.  The flattened layer is the result of 

processing the gathered attributes.  BiLSTM and 

dropout layers receive the flattened video features as 

input, and by capturing both forward and backward 

temporal associations, they provide an output with 

dimensions [Nx256]. In parallel, audio features having 

an initial input dimension of [Nx395x1] are processed 

using BiLSTM layers.  To prevent overfitting, a 

dropout layer is added to the AV features while 

keeping their size constant.  The audio and video 

characteristics are concatenated, reshaped, and sent to 

the CRF layer for further processing to produce the 

output dimensions [Nx512].  This stage ensures 

optimal feature extraction and integration for 

synchronization.  Dense layers then use the processed 

information to forecast the output class probabilities.  

The final output layer generates results with size 

[Nx40], which represent the anticipated classes for 

LTS synchronization. The HDL-CRF-ICO model's 

architecture is depicted in Figure 2. 
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Figure 2. The HDL-CRF-ICO model's architecture 

 

The suggested hybrid deep learning model detects lip-

to-speech synchronization and generates text from 

video by using CNN [22] feature extraction and BI-

LSTM training based on AV characteristics.  The 

CNN-BiLSTM model uses a set of convolution layers, 

including a kernel, Rectified Linear Unit (ReLU), max 

pooling, and fully connected layers, to categorize the 

video frames.  The convolution layer is the primary 

component in charge of learning the frame's features, 

extracting features from the source frame, and 

preserving the connection between pixels by applying 

small blocks of source data. 

 

IV. EXPERIMENT RESULTS 

The Grid Audio-Visual Speech Corpus dataset is 

subjected to a number of evaluation criteria in order to 

evaluate the synchronization process of LTS using the 

HDL-CRF-ICO model. These results are then 

succinctly described in the following sections. The 

Grid Corpus is a large audiovisual collection [27] 

designed for speech perception computational and 

behavioral studies. Its 34 talkers provide 1,000 

sentences apiece, for a total of 34,000 phrases spoken. 

The phrases have a certain structure, such "put red at 

G9 now." High-quality wav audio at a 25 kHz sample 

rate is organized by talker in the audio 25k.zip file, 

while word-level temporal alignments for each talker 

are included in alignments.zip.   

 

4.1 Performance Evaluation 

The evaluation of the proposed HDL-CRF-ICO model 

is accessed using the matrices BLEU, METEOR, 

ROUGE, and SPICE. 

BLEU: One of the most popular measures for 

assessing image captioning models is the Bilingual 

Evaluation Understudy (BLEU). Its first purpose was 

to evaluate translations automatically. The foundation 

of BLEU is the co-occurrence of n-gram analysis 

between the reference and the prediction. 

METEOR: Some of the shortcomings of the BLEU 

statistic are attempted to be addressed by statistics for 

Evaluation of Translation with Explicit Ordering 

(METEOR). Along with finding matching words, 

METEOR calculates a harmonic mean using accuracy 

and recall values for unigram matches. 

ROUGE: The amount of overlapping phrase sequences 

and word pairs in the generated captions is measured 

using Recall-Oriented Understudy for Gisting 

Evaluation (ROUGE). There are four variations of this 

metric: ROUGE-N, ROUGE-L, ROUGE-W, and 

ROUGE-S. 

SPICE: Instead of employing the n-gram technique, 

Semantic Propositional Image Caption Evaluation 

(SPICE) creates a scene graph from the reference and 

prediction sentences. The Stanford Scene Graph Parser 

serves as the basis for the pre-trained model of the 

SPICE. 

 

4.2 Performance Analysis 

The Grid Audio-Visual Speech Corpus dataset is used 

for the performance analysis, which is based on the 

number of epochs on Training Percentage and K-Fold. 

Using a number of metrics, including BLEU, 

METEOR, ROUGE, and SPICE, Figure 3 shows the 

performance of the proposed HDL-CRF-ICO model 

with respect to the training % on the Grid Audio-

Visual Speech Corpus dataset.  Through 100, 200, 300, 

400, and 500 epochs, the model's performance is 

assessed with a constant training percentage of 90%.  

The BLEU score of the HDL-CRF-ICO model is 0.49 

at epoch 100 and steadily declines across the epochs.  

Specifically, for epochs 200, 300, 400, and 500, the 

BLEU values are 0.29, 0.34, 0.40, and 0.04, 

respectively. The METEOR score is 0.20 at epoch 100 

and increases to 0.24 at epoch 200.  It remains at 0.26 



International Journal of Intelligent Systems and Applications in Engineering  IJISAE, 2024, 12(2), 834–843 | 839  

in epochs 300 and 400 and rises to 0.31 in epoch 500.  

The ROUGE score, which is 0.38 in epoch 100, 

increases to 0.45 in epoch 200, 0.46 in epoch 300, 0.48 

in epoch 400, and 0.54 in epoch 500.  The 

corresponding SPICE scores for epochs 100, 200, 300, 

and 500 are 17.29, 18.87, 22.71, 23.40, and 25.68. 

Figure 4 illustrates the metrics that are utilized to 

evaluate the performance of the proposed HDL-CRF-

ICO model with K-Fold on the Grid Audio-Visual 

Speech Corpus dataset: BLEU, METEOR, ROUGE, 

and SPICE.  A consistent 10-fold test is used to assess 

the model's performance over 100, 200, 300, 400, and 

500 epochs.  The HDL-CRF-ICO model's BLEU score 

starts at epoch 500 at 0.48 and gradually decreases 

across the epochs.  Specifically, the BLEU values are 

0.35, 0.42, 0.46, and 0.48 for epochs 100, 200, 300, 

and 400, respectively. 

 

  

BLEU METEOR 

  

ROUGE SPICE 

  
Figure 3. Performance analysis with training percentage using the Grid Audio-Visual Speech Corpus dataset 

 

The METEOR score is 0.17 at epoch 100, 0.21 at epoch 200, 0.24 at epoch 300, 0.26 at epoch 400, and 0.30 at epoch 

500.  The rough score for Epoch 100 is 0.40, for Epoch 200 it is 0.45, for Epoch 300 it is 0.46, for Epoch 400 it is 0.51, 

and for Epoch 500 it is 0.53. The comparable SPICE scores for epochs 100, 200, 300, 400, and 500 are 10.62, 17.85, 

19.97, 20.84, and 24.93, respectively.  90% of the data is used for training, with the remaining 10% going toward 

testing, according to the training percentage.The model performs better when more training data is used.  The model 

continues to be trained for the designated number of epochs, with more training resulting in better performance. Epoch 

100 also denotes that the model has been trained for 100 iterations.  As a result, the findings show that the HDL-CRF-

ICO model performs better as the number of epochs increases. 

 

  

BLEU METEOR 

  

ROUGE SPICE 

 
 

Figure 4. Performance analysis with K-Fold using the Grid Audio-Visual Speech Corpus dataset 
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4.3 Comparative Analysis 

The Grid Audio-Visual Speech Corpus Dataset was 

utilized to evaluate the proposed HDL-CRF-ICO 

model, as shown in Figure 5.  It’s remarkable BLEU 

score of 0.49 outperformed several existing methods.  

Specifically, HDL-CRF-ICO performed better than 

HDL-CRF-AVOA (0.46), HDL-CRF-HHO (0.48), 

FAGAN (0.44), VividWav2Lip (0.37), CCA-GNN 

(0.41), and UCMA (0.45).  With a METEOR score of 

0.30, the HDL-CRF-ICO model performed noticeably 

better than the other method.  It performed 19% better 

than FAGAN, VividWav2Lip, and CCA-GNN, 4% 

better than UCMA, 3% better than HDL-CRF-AVOA, 

and 1% better than HDL-CRF-HHO. HDL-CRF-

AVOA scored 0.52, HDL-CRF-HHO scored 0.53, 

UCMA scored 0.51, VividWav2Lip scored 0.45, and 

FAGAN and CCA-GNN both scored 0.50. These were 

the results for the ROUGE measure.  The HDL-CRF-

ICO model had the highest ROUGE score of 0.54, 

outperforming all other methods.  Finally, with a score 

of 25.7 on the SPICE test, the HDL-CRF-ICO model 

fared better than alternative strategies.  The scores for 

HDL-CRF-AVOA, HDL-CRF-HHO, CCA-GNN, 

UCMA, and FAGAN were 24.1, 25.3, 22.7, 23.9, and 

16.8, respectively.  The score for VividWav2Lip was 

19.5. 

Figure 6 illustrates how the Grid Audio-Visual Speech 

Corpus Dataset was used to compare the suggested 

HDL-CRF-ICO model to existing techniques.  The 

HDL-CRF-ICO model outperformed a number of 

current methods with an exceptional BLEU score of 

0.48.  It fared better than the HDL-CRF-AVOA and 

HDL-CRF-HHO models, which both received scores 

of 0.48; FAGAN, which received a score of 0.41; 

VividWav2Lip, which received a score of 0.36; CCA-

GNN, which received a score of 0.39; and UCMA, 

which received a score of 0.45.   

The HDL-CRF-ICO model significantly outperformed 

the other approaches, scoring 0.30 on the METEOR 

scale.  Additionally, it outperformed UCMA by 19%, 

FAGAN by 12%, VividWav2Lip by 43%, CCA-GNN 

by 34%, HDL-CRF-AVOA by 3%, and HDL-CRF-

HHO by 3%. 

 

  

BLEU METEOR 

  

ROUGE SPICE 

  
Figure 5. Comparative Analysis with training percentage using the Grid Audio-Visual Speech Corpus Dataset 

 

The following were the outcomes of the optimum models and current methodologies for the ROUGE metric:  HDL-

CRF-HHO scored 0.51, UCMA and HDL-CRF-AVOA both scored 0.49, VividWav2Lip scored 0.48, FAGAN scored 

0.50, and CCA-GNN scored 0.30.  Outperforming all other models, the HDL-CRF-ICO model had the highest ROUGE 

score of 0.53.  Lastly, the HDL-CRF-ICO model outperformed other approaches with a score of 24.9 on the SPICE 

measure.  HDL-CRF-AVOA scored 22.9, HDL-CRF-HHO scored 24.7, UCMA scored 20.9, VividWav2Lip scored 

19.2, CCA-GNN scored 19.4, and FAGAN scored 20.4. 
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BLEU METEOR 

  

ROUGE SPICE 

  
Figure 6. Comparative Analysis with K-Fold using the Grid Audio-Visual Speech Corpus Dataset 

 

4.4 Comparative Result and Discussion 

The HDL-CRF-ICO model's comparison with other 

current approaches is examined in this section.  This 

study considers the following methods: CCA-GNN 

[16], FAGAN [2], VividWav2Lip [6], and UCMA 

[17].  Despite the advantages of each of these 

techniques, it is challenging to successfully coordinate 

lip motions due to their shortcomings.  The FAGAN 

model has low attention accuracy and does not 

integrate facial expressions, normalizing fluxes, and 

vector quantization approaches.   

 

Table 1. Comparative Discussion of the HDL-CRF-ICO model 
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BLEU 0.44 0.37 0.41 0.45 0.46 0.48 0.49 

METEOR 0.25 0.25 0.25 0.30 0.30 0.31 0.31 

ROUGE 0.50 0.45 0.50 0.51 0.52 0.53 0.54 

SPICE 16.8 19.5 22.7 23.9 24.1 25.3 25.7 

K
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o
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=
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BLEU 0.41 0.36 0.39 0.45 0.46 0.46 0.48 

METEOR 0.26 0.17 0.20 0.24 0.29 0.29 0.30 

ROUGE 0.50 0.30 0.48 0.49 0.49 0.51 0.53 

SPICE 20.4 19.2 19.4 20.9 22.9 24.7 24.9 

 
 

 

The interactions among convolutional neural networks 

affect the performance of the CCA-GNN model, 

however the VividWav2Lip model is unable to manage 

this complexity.  Moreover, the UCMA model requires 

a significant amount of computing work to train. The 

suggested HDL-CRF-ICO model solves these 

problems and outperforms the others on a variety of 

metrics for recognizing different lip movements.  The 

suggested model outperforms the existing techniques, 

as seen in Table 1.  

 

V. CONCLUSION 

During the preprocessing stage, the suggested HDL-

CRF-ICO model selects 100 randomly selected frames 

from each video.  After that, keyframes are chosen for 

further processing based on SSIM-calculated similarity 

scores, with certain thresholds determining which 

frames are chosen.  The method significantly improves 

lip-to-speech synchronization by combining AV 

feature extraction with Conditional Random Fields and 

Intelligent Chasing Optimization.  This recently 

created method effectively addresses the shortcomings 
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of existing systems, such as uneven facial boundaries 

and poor visual quality, by increasing the accuracy and 

efficiency of lip-to-speech synthesis.  By analyzing 

both audio and visual data, the model yields better 

performance measures and offers a more detailed 

understanding of speech dynamics. For the TP, the 

HDL-CRF-ICO model showed remarkable 

performance with BLEU scores of 0.48, METEOR 

scores of 0.30, ROUGE scores of 0.53, and SPICE 

scores of 24.9, and for K-Fold and METEOR with 

0.31, SPICE with 25.7, BLEU with 0.49, and ROUGE 

with 0.54.  These findings show how beneficial it may 

be for communication, assistive technology, and 

multimedia content production.  The HDL-CRF-ICO 

method improves synthesized speech quality and 

bridges communication barriers, paving the way for 

future research and development in lip-to-speech 

synchronization and related fields. 
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