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Abstract: Modern continuous integration and delivery (CI/CD) pipelines are crucial for rapid software releases, yet they risk 

introducing failures into production. This paper presents a comprehensive study of self-healing CI/CD pipelines that 

incorporate feedback-loop automation to achieve fault tolerance. We detail an architecture that integrates real-time anomaly 

detection (including machine learning-based techniques) and automated rollback mechanisms into popular CI/CD platforms 

(e.g. TeamCity, GitHub Actions, Jenkins). The goal is to minimize production downtime and human intervention by enabling 

the pipeline to detect issues and revert to stable states autonomously. Grounded in large-scale industry deployments, our 

approach leverages continuous monitoring and intelligent decision-making to reduce mean time to recovery (MTTR) and 

improve reliability. We implement the system in a prototype and evaluate it with experiments simulating deployment 

anomalies. Results show significantly faster failure detection and recovery. MTTR improved by over 50%  as well as high 

anomaly detection accuracy and efficient rollbacks. We discuss design trade-offs, such as balancing false positives in detection 

versus safety, and highlight how feedback loops can continuously improve pipeline resilience. The findings demonstrate that 

self-healing CI/CD pipelines can substantially enhance scalability and reliability of software delivery while minimizing manual 

oversight, paving the way for more autonomous DevOps processes.  

Keywords: autonomous, CI/CD, MTTR, resilience, comprehensive 

1 Introduction  

Continuous Integration (CI) and Continuous 

Delivery (CD) have become standard practices in 

modern software engineering for accelerating 

release cycles and maintaining code quality. In CI, 

developers frequently merge code changes into a 

shared repository, and each change is verified by 

automated builds and tests to detect integration 

errors early. These series of steps form a pipeline 

that produces a new software version as its output. 

The widespread adoption of CI/CD platforms like 

Jenkins, TeamCity, and GitHub Actions has enabled 

organizations to deploy updates at high velocity. 

However, with great speed comes the challenge of 

reliability, failures introduced by a bad build or 

deployment can lead to service outages and 

significant business losses.  

This paper addresses the problem of building 

fault-tolerant CI/CD pipelines that can detect and 

recover from failures autonomously. We propose a 

self-healing CI/CD pipeline architecture that 

incorporates a closed-loop feedback mechanism: the 

pipeline continuously monitors its outputs 

(application performance, logs, test results), detects 

anomalies indicating potential faults, and 

automatically triggers remediation (such as rolling 

back to a previous stable release) without human 

intervention. By applying these ideas to CI/CD, we 

aim to minimize production impact from faulty 

releases and reduce the mean time to recovery 

(MTTR) when incidents occur.  

Several large-scale industry players have 

implemented elements of such automation. For 

example, Netflix’s continuous delivery platform 

Spinnaker uses automated canary analysis to 

compare metrics between a new deployment 

(canary) and the baseline; if the canary shows 

significant degradation, Spinnaker automatically 

aborts the rollout and reverts traffic to the stable 

version. This kind of feedback loop allows issues to 

be caught and mitigated before they affect all users. 

Commercial solutions such as Harness integrate an 

AI/ML engine to perform anomaly detection during 
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deployments and trigger rollbacks when anomalies 

or regressions are detected. These examples 

underscore the feasibility and benefits of self-

healing mechanisms in CI/CD at scale.  

Despite this progress, designing a generic self-

healing CI/CD system involves open challenges in 

anomaly detection accuracy, minimizing false 

alarms, rollback strategies, and integration with 

existing pipelines. In this work, we contribute a 

systematic architecture and implementation for self-

healing CI/CD pipelines with feedback-loop 

automation. Our key contributions include:  

• Architecture Design  

• Anomaly Detection Layer  

• Autonomous Feedback Loop  

• Implementation & Evaluation  

2 Related Work  

Early efforts to improve the reliability of release 

pipelines can be traced to the DevOps concept of 

“fail fast, recover fast.” Traditional CI/CD practices 

include extensive automated testing and canary 

deployments to catch issues early. Engineers must 

often decide whether to halt or roll back a 

deployment, leading to delays. This has prompted 

research and industry solutions in autonomic 

computing, AIOps, and self-healing systems applied 

to the software delivery process.  

Anomaly detection in CI/CD and DevOps: A 

growing body of work applies machine learning to 

detect problems in build and deployment pipelines 

such as the techniques described in Emily et al. 

(2023). Gerber et al. (2024) note that in large CI 

environments, a vast amount of performance and 

test data is generated with each run, far too much for 

humans to analyze within short time spans; hence 

ML-based anomaly detection can automatically flag 

unusual behavior in the pipeline. Several studies 

focus on detecting performance regressions or 

abnormal test outcomes during CI. Capizzi et al. 

(2020) proposed an anomaly detection system 

operating in the staging phase of a DevOps toolchain 

to compare new releases with previous ones on key 

metrics, aiming to “prevent problems from 

appearing in later stages of production”. Their 

proof-of-concept showed the feasibility of using 

historical baseline data to identify risky releases 

before they hit production. Atzberger et al. (2023) 

explore NLP techniques for pipeline log analysis 

using latent Dirichlet allocation (LDA) to detect 

outliers in CI/CD pipeline logs highlighting that 

anomalies in build/test logs can forewarn of deeper 

issues. Another approach by Fawzy et al. (2023) 

introduced a Machine Learning based DevOps 

anomaly detection framework, which achieved high 

accuracy (~96% accuracy and 93% F1-score) in 

identifying deployment anomalies in their 

experiments. These works underscore the potential 

of AI/ML to bring proactive failure detection to 

CI/CD processes.  

Self-healing and automated remediation: The 

concept of self-healing systems in operations has 

been advanced in the context of cloud infrastructure 

management and Site Reliability Engineering 

(SRE). The idea is to implement closed-loop 

control: monitoring for incidents, diagnosing root 

causes, and automatically executing corrective 

actions. Recently, this concept is being extended into 

CI/CD pipelines. Hrusto et al. (2022) discuss 

optimizing anomaly detection in microservice 

systems through continuous feedback from 

development teams, which suggests that pipelines 

can learn from past incidents (e.g., by incorporating 

developers’ feedback on false alarms or failure 

causes) to improve future detection. In industry, 

several products now offer autonomous CD 

capabilities. Netflix’s Spinnaker, as mentioned, can 

automatically halt or roll back deployments based on 

canary analysis results. Harness, a continuous 

delivery platform, features AI-powered continuous 

verification that monitors new releases and 

automates rollback decisions upon detecting 

anomalies in service metrics. Similarly, New Relic’s 

AIOps can integrate with GitHub Actions to create 

deployment protection rules using anomaly 

detection to automatically intercept a deployment if 

performance signals degrade, thereby preventing 

bad code from promoting to production. These tools 

are examples of closed-loop automation where the 

feedback from runtime or tests directly controls the 

pipeline.  

Fault-tolerance in CI/CD: Beyond AI 

techniques, the DevOps community has established 

best practices for reducing deployment risk, such as 

blue-green deployments, canary releases, and 

feature flag toggles. Automated rollback is a 

fundamental safety net in many deployment 

strategies. For instance, AWS CodeDeploy and other 

cloud deployment services support automatic 

rollback if health checks fail. Our work differs in 

that we focus on a generalized pipeline-agnostic 

framework that not only triggers rollbacks on 
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explicit failures but can predict or detect subtle 

anomalies (like performance degradation, 

increasing error rates, abnormal system metrics) that 

precede failures. We also emphasize minimizing 

MTTR, a key SRE metric. Prior research by 

Google’s DORA team has identified MTTR, change 

failure rate, deployment frequency, and lead time as 

four key metrics that correlate with software 

delivery performance. Our self-healing pipeline 

specifically targets improvements in MTTR and 

change failure rate by shortening the time between 

an issue occurring and being resolved (often without 

human intervention).  

3 System Architecture  

Overview: The proposed system architecture 

(illustrated in Figure 1) extends a standard CI/CD 

pipeline with two key components: an Anomaly 

Detection Layer and an Automated Rollback 

Controller. The architecture is designed to be 

general-purpose and cloud-native, leveraging 

existing CI/CD tools and monitoring systems. 

Figure 1 depicts the interactions: code changes flow 

through the pipeline stages (build, test, deploy); 

once a new version is deployed, telemetry from the 

running system is fed into the anomaly detector. If 

an anomaly is detected, a feedback signal is sent to 

trigger the rollback controller, which orchestrates a 

rollback deployment (reverting to the last known 

good version or other safe state). This closed-loop 

runs continuously, ensuring that the pipeline can 

“sense” and “react” to problems in real time. The 

architecture consists of the following primary 

modules:  

• CI/CD Pipeline Core: Source code is built 

and integrated, an automated test suite is run, and if 

all checks pass, the new build is deployed to 

production (or a staging environment preceding 

production). We assume any CI/CD platform that 

can execute scripts/jobs, such as Jenkins (with 

pipelines or Blue Ocean), TeamCity, GitLab/GitHub 

Actions, or Tekton on Kubernetes. The pipeline is 

instrumented such that deployment steps do not 

conclude immediately upon release, but rather 

transition into a monitoring phase. 

• Monitoring & Telemetry: Once a 

deployment occurs, the system collects realtime data 

on the application and infrastructure. This includes 

metrics such as CPU, memory, response times, error 

rates, throughput, logs from applications and 

services, and possibly traces or events. Tools like 

Prometheus, Grafana, Datadog, ELK/Elastic Stack, 

or cloud monitoring services can be leveraged. In 

our implementation, for example, we use 

Prometheus to scrape application metrics and logs 

are aggregated in an ELK stack. This monitoring 

provides the raw signals for anomaly detection. As 

Red Hat’s team noted, integrating log analytics (e.g., 

Coralogix) with pipeline deployments allows real 

time detection of issues with minimal noise.  

 

 

Fig. 1: High-level architecture of the self-healing CI/CD pipeline. The pipeline (build, test, deploy stages) is 

augmented with continuous monitoring and an anomaly detection engine. Feedback from production (metrics 

and logs) is analyzed for anomalies; if detected, the system triggers an automated rollback, reverting the 

deployment to a stable state. A policy/feedback loop ensures issues are corrected with minimal human 

intervention. 
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• Anomaly Detection Engine: This 

component consumes the telemetry data and applies 

detection logic to identify any abnormal behavior 

that could indicate a failed or degrading deployment. 

It can run in parallel with the pipeline or as a post-

deployment step. The engine might be deployed as a 

service (for instance, a Python microservice 

subscribing to a metrics stream, or an on-premises 

tool). For integration, one approach is to use pipeline 

“gates”. For example, GitHub Actions now supports 

deployment protection rules that can call out to an 

external service (like New Relic’s AI) to decide 

whether to proceed with a deployment. In our 

architecture, the anomaly detector signals a boolean 

outcome (healthy vs. anomalous) along with a 

confidence level or severity assessment.  

• Feedback Loop Controller (Policy 

Engine): At the heart of the self-healing loop is a 

controller that decides and initiates rollback actions. 

This could be implemented as conditional logic in 

the pipeline script or as a webhook that triggers a 

separate rollback pipeline. The policy engine uses 

the anomaly detection outcome to take action. For 

instance, if an anomaly is confirmed with high 

confidence, the policy might automatically trigger a 

rollback to the previous version and mark the current 

release as failed. If confidence is medium or the 

impact is uncertain, it might pause the pipeline and 

request a manual approval (fail-safe for potential 

false positives).  

• Rollback Mechanism: The actual 

execution of a rollback depends on the deployment 

environment. Common strategies include:  

• Redeployment of previous known-good 

version: The pipeline can store  

artifacts of the last successful build. Rollback simply 

means deploying that artifact (or re-tagging a 

container image to “stable”) and restarting services.  

• Infrastructure level rollback: In 

Kubernetes, one can use deployment  

revision history to roll back to a prior ReplicaSet, or 

use Spinnaker to automatically roll back a failed 

canary by redirecting traffic to baseline.  

• Feature toggles: If using feature flags, an 

automated rollback might involve toggling off a 

newly enabled feature that is causing an issue.  

The rollback module in our architecture abstracts 

these details. It could call kubectl rollout undo on a 

cluster, or trigger a Jenkins job that deploys the 

previous build, etc. The key is that this is automated 

and fast. Our implementation on Kubernetes 

achieved rollback initiation within seconds of 

detection, and full restoration of the previous 

version in under 2 minutes. 

• Knowledge Base & Learning: While not 

strictly required, an extension of the architecture 

includes a knowledge base that stores incidents, 

anomalies detected, and actions taken. Over time, 

this can feed back into improving the models (for 

ML-based detectors) or refining policies. For 

example, if an anomaly was detected and turned out 

to be a false alarm, developers can label it, and the 

system will adjust thresholds or model parameters 

(similar to the continuous feedback approach in 

Hrusto et al.).  

• Security considerations: The feedback 

loop should be secured to prevent unauthorized or 

erroneous triggers. Since rollbacks can impact 

production state, authentication and sanity checks 

are necessary. In our implementation, the anomaly 

detector’s decision is verified by a checksum of 

recent metrics to avoid rollback due to a transient 

metric spike. Additionally, role-based access control 

in the CI/CD tool is used so that only the automated 

service account can trigger the rollback stage.  

3.1 Anomaly Detection Layer  

The Anomaly Detection Layer is responsible for 

identifying irregular behavior in the CI/CD pipeline 

or the newly deployed software that may indicate a 

failure or risk. High detection accuracy and low 

latency are critical here. The goal is to detect issues 

as quickly as possible but also accurately to avoid 

false alarms that trigger needless rollbacks. This 

layer can utilize a combination of approaches:  

• Rule-based thresholds: The simplest 

form, often used in traditional monitoring, where 

static thresholds are set on metrics. For example, 

“CPU usage > 90%” or “error rate > 5%” for a 

sustained period could flag an anomaly. While 

straightforward, static rules can be too rigid or 

generate false positives if not tuned per 

environment.  

• Statistical anomaly detection: More 

adaptive techniques look at deviations from normal 

patterns. For instance, control chart methods or z-

score analysis can flag if a metric deviates by several 

standard deviations from its historical mean. The 

DevOps literature suggests statistical detection can 

catch issues without hard thresholds (Cherkasova et 
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al., 2009 used statistical learning for performance 

anomalies in enterprise apps). These methods 

require a baseline of normal operation data.  

• Machine learning-based detection: The 

state-of-the-art leverages ML, including both 

supervised and unsupervised techniques:  

o Unsupervised learning: Since many 

pipeline anomalies are novel, unsupervised methods 

like clustering or autoencoders are popular. For 

example, an autoencoder can be trained on metrics 

from many successful deployments; during a new 

deployment, if the reconstruction error of the 

metrics exceeds a threshold, it signals an anomaly. 

Gerber et al. (2024) implement a multivariate time-

series anomaly detector to spot performance issues 

in CI pipelines using an unsupervised approach. 

Their system learns normal behavior of resource 

metrics and flags high anomaly scores during CI 

runs.  

o Supervised learning: If a history of 

failures is available, one can train classifiers to 

recognize patterns preceding failures. For instance, 

a random forest or neural network could be trained 

on past deployment telemetry labeled as good or bad 

outcome. However, supervised approaches are 

limited by the availability of labeled failure data and 

risk overfitting to known failure modes.  

• Log analysis with NLP: Logs from build 

or runtime can contain error messages or stack traces 

indicative of problems. Techniques like the 

mentioned LDA model by Atzberger et al. or more 

recent transformer-based models can learn typical 

log ”topics” or sequences. If a new deployment’s 

logs contain unusual clusters of messages (e.g., a 

spike in exceptions or timeouts not seen in baseline), 

the system flags it. In our prototype, we 

implemented a simple log anomaly detector using 

keyword frequency comparison against a baseline  

• Change point detection: Another 

approach used in canary analysis (e.g., Netflix’s 

Kayenta) is to statistically compare metrics between 

the new version and either the previous version or a 

parallel baseline. Significant degradation (change 

beyond confidence bounds) in any key metric is an 

anomaly trigger. This approach was used in our 

canary test scenario: we deployed the new version to 

a small subset of users and compared its error rate 

and latency distribution to the stable version; a non-

overlapping 95% confidence interval triggered an 

automatic rollback.  

The anomaly detector in our system is 

implemented as a hybrid. We combine thresholds for 

critical metrics (e.g., any instance crash or a specific 

service returning >10% errors triggers immediate 

alarm). Specifically, we used an Isolation Forest 

model to analyze a vector of metrics (CPU, memory, 

request rate, error rate, DB response time, etc.) 

collected over a short window after deployment. The 

model, trained on data from successful deployments, 

produces an anomaly score. If the score exceeds a 

learned threshold, the deployment is classified as 

anomalous. To further improve accuracy, we 

incorporate a policy of double confirmation: the 

anomaly must be persistent for a few consecutive 

intervals or be detected by more than one method 

(e.g., both a threshold and the ML model) before 

triggering rollback. This reduces noise from 

transient fluctuations.  

In terms of performance, our anomaly detection 

layer operates with low overhead. The detection 

decision is typically available within a few seconds 

to minutesnof deployment in our tests. This means 

the “window of exposure” for a bad deployment is 

small. Contrast this with a manual detection scenario 

where, say, engineers might notice an issue after 

several minutes or only when alerts page them; the 

automated detector is much faster.  

Crucially, the detection accuracy of our system 

was high. We evaluated it by replaying historical 

deployment data with known outcomes (some 

releases deliberately injected with faults). The 

detector achieved >95% precision and 100% recall 

on this test set – meaning it caught all failure cases 

and had very few false alarms. This aligns with 

results reported by Fawzy et al. (96% accuracy, 

100% recall in their DevOps anomaly framework). 

High recall (no missed failures) is especially 

important for safety – a missed anomaly could mean 

a faulty release stays in production, undermining the 

whole purpose. We chose to tolerate a slightly lower 

precision (some false positives) as the cost of an 

unnecessary rollback is typically much lower than 

the cost of not rolling back a bad deployment. Still, 

keeping false positives low is important to avoid 

“flapping” (repeated rollbacks and redeploys). Our 

use of confirmation windows and combining signals 

is aimed at this balance.  
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3.2 Feedback Loop and Rollback Logic  

Once an anomaly is flagged by the detection layer, 

the system enters the feedback loop phase, wherein 

it decides on and carries out corrective actions. The 

core of this is the automated rollback logic, which is 

orchestrated by the Feedback Loop Controller (or 

policy engine) mentioned in the architecture.  

Feedback Loop Mechanism: In control 

systems terms, our pipeline implements a closed 

feedback loop for deployment correctness. The 

output of the system is fed back into the to adjust 

future outputs (via rollback or halting). As soon as 

the anomaly detector signals a problem, the 

feedback controller evaluates pre-defined policies:  

• Immediate rollback policy: If the anomaly is 

severe, the policy is to trigger an immediate rollback 

to last stable version. This is done without waiting 

for human approval, to minimize MTTR. Our 

system logs the event and sends notifications to 

developers that an automatic rollback occurred and 

why.  

• Graceful degradation policy: If the issue is less 

clear-cut, the controller might initiate a partial 

mitigation. For example, it could scale down the 

deployment of the new version while continuing to 

monitor. Or it could enable a feature-flag kill switch 

for a new feature while keeping the release in place. 

This buys time for more observation or for a human 

to intervene if needed.  

• Manual confirmation policy: In some setups, 

organizations may prefer a human in the loop for 

production changes. In such cases, the feedback loop 

can be configured to pause the pipeline and await 

manual approval to rollback. However, this 

increases response time and is recommended only if 

false positives are a significant concern. In high-

criticality systems (e.g., financial transactions), one 

might require a human to verify before rollback to 

avoid oscillations.  

We found that in most cases, an aggressive 

immediate rollback policy for clear anomalies 

provides the best protection and seldom needs to be 

overridden. Teams that have adopted similar 

approaches report much faster incident resolution – 

e.g., MTTR reductions of 50-60% due largely to 

automatic rollback triggering as soon as an anomaly 

is detected, rather than waiting for engineers to 

react.  

Automated Rollback Execution: The rollback 

controller interfaces with the deployment system to 

perform the rollback. In our Jenkins-based 

prototype, we implemented the rollback as a 

separate Jenkins pipeline job that can be triggered 

via the Jenkins API. When the controller decides to 

rollback, it calls this API (using an authenticated 

token) with parameters identifying which 

service/application to roll back. The rollback job 

then:  

•  Retrieves the artifact (build) ID of the last 

known good deployment.  

• Initiates deployment of that artifact to the 

environment. For Kubernetes, this meant updating 

the image tag back to the previous version and 

letting the orchestration revert pods.  

• Verifies that the rollback deployment is healthy with 

smoke test or health checks. 

• Marks the problematic version as rolled back. 

This entire sequence was coded to execute in a 

matter of a few minutes. In our tests, the detection-

to-rollback sequence often completed in ~2–3 

minutes. This is a dramatic improvement over a 

manual scenario where detection might take 10+ 

minutes and rollback another 10, totaling 20+ 

minutes of impact. Our automated pipeline’s MTTR 

(from issue to fully recovered state) was typically 

under 5 minutes.  

It is worth noting that CI/CD platforms support 

such rollback hooks natively or via plugins. For 

instance, Spinnaker provides an “automated 

rollback” stage that can be configured to run upon 

pipeline failures. Tekton pipelines can include an 

“except” step to perform rollback if a post-deploy 

check fails. GitHub Actions (with New Relic) can 

block a release from progressing to production if 

anomalies are detected – effectively a preventative 

rollback (the new version is never fully scaled out). 

We leveraged these ideas by designing our pipeline 

as a series of stages where the final stage is 

contingent on a “health check” outcome. If health 

check fails, the pipeline automatically executes the 

rollback stage.  

Integration with Incident Management: The 

feedback loop doesn’t end with the technical 

rollback. We also integrate with incident 

management by having the pipeline or controller 

open a ticket/alert whenever an auto-rollback 

happens. This ensures that the development team is 
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aware of the issue and can conduct a root cause 

analysis in hindsight. It’s important that self-healing 

not lead to a false sense of security – developers 

should treat an auto-rollback as a high-priority 

incident that just so happened to be mitigated 

automatically. In our setup, a message is sent to the 

team’s Slack channel and an issue is opened in Jira 

with logs and metrics attached (using webhook 

integrations), whenever a rollback is triggered.  

Preventing feedback oscillation: A classic 

challenge in feedback control is oscillation – e.g., 

the pipeline deploys version A (bad), auto-rollbacks 

to version B (good), but then perhaps tries version A 

again (if not blocked, or if a new commit auto-

triggers it), causing a loop. We address this by 

automatically blocking the bad version from 

redeployment until it’s fixed. This was done by 

tagging the build as “blocked” in the CI system. For 

GitOps-style deployments, one could automate a 

revert of the commit that introduced the bad version. 

Essentially, the feedback loop includes a memory of 

recent bad states to avoid repeating them. This aligns 

with best practices: an automated rollback should 

ideally stop the pipeline from continually 

redeploying the same failing release.  

4 Implementation & Experimentation  

To validate our approach, we implemented a self-

healing CI/CD pipeline prototype and conducted 

experiments in a controlled environment. This 

section describes the implementation details, the 

experimental setup, and the scenarios used to 

evaluate performance metrics.  

CI/CD Platform: We chose Jenkins as the 

primary CI/CD orchestrator for our prototype due to 

its widespread use and flexibility (Groovy pipeline 

scripts). The pipeline was configured as follows:  

• Build stage: Jenkins pulls the latest code from a Git 

repository (we used a microservices demo 

application) and builds Docker images for each 

service. If build or unit tests fail, the pipeline aborts 

as usual.  

• Test stage: Jenkins then deploys the new images to 

a staging environment (Kubernetes cluster) and runs 

an integration test suite. This includes API endpoint 

testing, regression tests, and basic performance tests. 

Only if these pass does the pipeline proceed to the 

next stage.  

• Deploy stage (Canary release): The pipeline 

deploys the new version to production in a canary 

mode – e.g., 5% of traffic directed to new pods, 95% 

still on old version. We used an Istio service mesh to 

split traffic. Jenkins marks this step as “in progress” 

and does not automatically proceed to completion; 

instead, it invokes the Monitoring/Detection job and 

waits for its result.  

Monitoring & Detection Implementation: We 

deployed Prometheus and Grafana for monitoring 

metrics from the application. Key metrics like HTTP 

request rate, error count (HTTP 5xx), latency 

percentiles, and resource usage were collected at 15-

second intervals. Logs from the microservices were 

shipped to an Elasticsearch cluster, and we set up a 

lightweight log parser service. The anomaly 

detection logic was implemented in a Python service 

(separate from Jenkins for modularity). This service 

provides a REST API that Jenkins can call:  

• Jenkins calls /health-check endpoint with the 

deployment ID.  

• The detection service then analyzes the last 1-2 

minutes of metrics and logs for that deployment. It 

uses the Isolation Forest model (trained offline on 

past successful deployment data) to compute an 

anomaly score from the metrics. It also checks log 

anomaly heuristics (e.g., whether ERROR logs/min 

exceed a baseline).  

• The service responds with a decision: GREEN (no 

anomaly) or RED (anomaly detected), along with a 

confidence level and reason code (e.g., “high error 

rate” or “performance regression”).  

We integrated New Relic APM as well to 

experiment with their anomaly alerts. New Relic’s 

alerts were configured to detect any significant error 

rate or throughput drop and could send webhook 

notifications. While New Relic’s GitHub Action 

gate was available, we simulated similar gating in 

Jenkins by simply having the pipeline wait for our 

detection service decision.  

Automated Rollback Implementation: On 

Jenkins, we created a separate pipeline job called 

“RollbackDeploy”. This job takes a parameter (the 

service or deployment ID to roll back) and performs 

the rollback steps:  

• Determine the last stable build artifact for that 

service (recorded in a Jenkins file or artifact 

repository; we stored the Docker image tag of the 

last successful deployment).  

• Deploy that artifact to production, essentially 

undoing the canary. In Kubernetes, this meant 
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scaling up pods of the old version and scaling down 

the new version to zero, then removing the new 

version entirely.  

• Run a quick smoke test on the services to ensure the 

old version is serving correctly.  

• Send notifications (Slack message and email) that 

rollback was executed for deployment X, including 

the reason (which Jenkins passes as a parameter 

from the detection result).  

The main pipeline structured such that after deploying the canary, it called the detection API:  

 

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

 

 

Code Snippet 1: This pseudocode shows that if a 

“RED” (anomaly) is returned, the pipeline triggers 

the rollback job and then fails the build (to indicate 

the deployment was bad) We mark the build with a 

description so it’s visible in Jenkins UI that an auto-

rollback occurred. The timeout ensures that if the 

detection service doesn’t respond within 5 minutes, 

the pipeline doesn’t hang indefinitely (fallback to 

manual check in worst case). For TeamCity users, a 

similar approach could be done using TeamCity’s 

build failure conditions or a custom script. TeamCity 

can call REST APIs or scripts after deployment 

steps. GitHub Actions could use the new 

Deployment Protection rule as discussed, or simply 

have a step that runs a script to decide pass/fail after 

deployment.  

5 Experimental Scenarios:  

We designed a set of test scenarios to evaluate the 

system:  

1. Successful Deployment: Deploy a new 

version that behaves well. Expectation: anomaly 

detector returns green, no rollback, pipeline 

completes normally.  

2. Immediate Failure: Deploy a version with 

an obvious bug (e.g., one service crashes on startup 

or returns HTTP 500 for all requests). Expectation: 

Within one monitoring interval, error rate spikes or 

a service is down – detector flags red. Rollback 

should trigger quickly. We measure detection time 

and rollback time.  

3. Performance Degradation: Deploy 

 a  version  that  subtly 

 degrades performance (we introduced a 

deliberate 2x latency increase in one service by 

adding a sleep in code). Not outright failing, but 

violates our SLOs. Expectation: Detector uses 

latency metric and possibly increased CPU usage to 

flag anomaly within a couple of minutes (once 

enough requests have been sampled). Rollback 

triggers, preventing prolonged slow response for 

users.  

4. False Positive Check: We simulate a 

scenario close to threshold to see if the system 

falsely triggers. For example, a deployment with a 

temporary spike in errors right at startup (perhaps 

due to cache warming) that self-resolves. 

Expectation: Our double-confirmation logic should 

ideally ignore this transient issue and avoid rollback. 

stage(’Canary Analysis’) {  

timeout(time: 5, unit: ’MINUTES’) {  

def result = httpRequest url: "http://anomaly−detector/ 

health−check?deployId=${env.BUILD ID}"  

if (result.content == "RED") {  

currentBuild.description = "Anomaly detected − auto rollback" build job: 

’RollbackDeploy’, parameters: [string(name: ’ deployId’, value: env.BUILD  

ID)] error("Anomaly detected. Rolled back deployment ${env.  

BUILD ID}.")  

}  

}  

}  
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If it does rollback mistakenly, that indicates 

precision issues.  

5. Multiple Rapid Deployments: We also 

tested how the system handles consecutive 

deployments. E.g., deploy version 1 (bad, rolls 

back), then immediately deploy version 2 (good). 

The pipeline should correctly rollback 1, and allow 

2 to proceed. This tested the “blocked bad version” 

memory – version 1 should not redeploy.  

We instrumented the system to log all relevant 

timings: detection time from deployment start, time 

to initiate rollback, and time to complete rollback. 

We also logged whether the anomaly was true or 

false, and collected metrics on how many 

deployments were auto-rolled back versus how 

many proceeded.  

The test environment was set to mimic 

production scale moderately: the microservices app 

had ~5 services, each scaled to multiple instances. 

We generated synthetic traffic using Locust to 

simulate users, ensuring that our metrics were 

realistic (so performance issues would manifest).  

6 Results & Evaluation  

We evaluated the system on the metrics of detection 

accuracy, response time (latency to rollback), and 

overall impact on reliability (e.g., MTTR and 

change failure rate). Table 1 summarizes the 

outcomes across our test scenarios:  

As shown, the self-healing pipeline dramatically 

improves recovery times. In the immediate failure 

scenario, MTTR was reduced from roughly 15 

minutes (best-case manual detection via alerts) 

down to about 3 minutes with automation. In all test 

failure cases, the system successfully executed 

rollbacks well before a human likely would have 

intervened. This translates directly into less 

downtime. For example, at a cost of $14k/minute of 

downtime, saving 10+ minutes per incident could 

mean over $140k saved in a single critical incident 

for a large enterprise.  

Table 1: Comparison of pipeline outcomes with and without self-healing automation. 

Scenario Outcome without Self-Healing Outcome with Self-Healing 

Immediate Failure Failure noticed after ~5 min by 

monitoring. Manual rollback 

completed at ~15 min (MTTR ~15). 

Users faced errors for that duration.  

 

Anomaly auto-detected in 30 seconds; 

rollback initiated immediately and completed 

by 3 min. MTTR ~3 min, minimal user 

impact.  

 

Perf Degradation Degradation may go undetected until 

user complaints or SLO alerts (e.g. 10-

20 min); prolonged poor performance. 

 

Anomaly detected in ~3 

Min. Automatic rollback in 5 min. 

Performance restored. Few users impacted 

 

Transient Spike 

(FP test) 

Likely ignored by on-call until 

confirmed; if reacted, could be 

a false alarm causing unneces- 

sary intervention. 

No rollback triggered. System observed 

recovery after spike. Deployment successful 

MTTR (average) 30 minutes (assumes 10m 

detect + 20m manual fix on 

average for incidents). 

~10 minutes (median) 

across all incidents, with 

many resolved in <5 min. 

 

 

Detection Accuracy: Out of 20 test deployments 

(including 6 injected failure cases and 4 

performance issues), the anomaly detector correctly 

identified all 10 problematic deployments (no false 

negatives). There were 2 cases where the system 

triggered a rollback for issues that were not severe 
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(false positives). In one case, a microservice 

deployment caused a momentary blip in latency 

which auto-recovered, but our threshold was slightly 

too sensitive and initiated a rollback. After analysis, 

we adjusted the policy to require the condition to 

persist for >30 seconds. After this tweak, the false 

positive did not recur. The effective precision in our 

tests was ~83% initially (10/12 true positives) and 

improved to 100% in later runs after adjustments. 

These results are in line with Fawzy et al.’s report of 

87.5% precision – indicating that some tuning is 

needed to eliminate benign anomalies from 

triggering the loop.  

Rollback Success and Safety: All automated 

rollbacks executed successfully and restored the 

system to a healthy state. There were no instances of 

rollback failure in our tests – partly because our 

application is stateless between versions. We 

measured the rollback execution time (from trigger 

to stable state): it ranged from ~60 seconds (for a 

simple service) to ~3 minutes (for a multi-service 

rollback). The longer cases involved waiting for 

containers to terminate and start up. Still, this is a 

short window. Importantly, users in canary scenario 

were mostly unaffected because only a small 

percentage saw errors before the canary was pulled 

out. In a full deployment scenario, a portion of users 

would see errors until rollback kicked in. But even 

then, a 2-3 minute window of degraded service is far 

better than 15-30 minutes.  

Impact on Deployment Frequency: One 

concern could be whether adding this feedback loop 

slows down the pipeline or reduces throughput of 

deployments (since it introduces a monitoring hold). 

In our evaluation, the overhead of the health check 

stage was small – we added a 2-minute canary 

observation period. In high-velocity environments, 

this could marginally reduce deployment frequency. 

However, considering the trade-off, this is usually 

acceptable: a slight delay to verify each deployment 

can prevent hours of outages. Organizations like 

Netflix routinely run 5-10 minute canary 

evaluations, which is deemed worth the safety. Our 

pipeline still easily handled multiple deployments 

per day per service with the feedback loop in place.  

Scalability: We also assessed how the system 

scales with more services and metrics. We simulated 

doubling the number of metrics and found the 

detection service (Isolation Forest) handled it 

without noticeable performance degradation (thanks 

to its linear complexity in number of samples, and 

we keep window size constant). The monitoring 

stack (Prometheus) was more taxed, but that can be 

scaled horizontally. We are confident the approach 

scales to large microservice fleets by distributing 

monitoring and perhaps running multiple anomaly 

detector instances (one per service or cluster). The 

architecture can be federated – e.g., each team’s 

pipeline can run its own detection instance, all 

feeding into a central policy engine if needed.  

Reliability: We must consider the reliability of 

the pipeline itself – introducing more components 

(detectors, controllers) means more things that could 

fail. During tests, we introduced a fault where the 

anomaly detector service was down. In that case, our 

Jenkins pipeline’s timeout kicked in after 5 minutes 

and defaulted to marking the deployment as failed 

(since it couldn’t get a green signal). This is a safe 

fail-closed strategy. It results in perhaps an 

unnecessary rollback or at least a halted deployment, 

but that’s safer than pushing a change with no 

verification. Once the detector was back up, 

deployments resumed normally. This test highlights 

that the self-healing system should itself be 

monitored – meta-monitoring to ensure the detector 

and feedback loop are functioning. In production, 

we’d run these components in a highly available 

manner (multiple instances, etc.).  

Overall, the evaluation demonstrates clear benefits 

of self-healing CI/CD pipelines:  

• MTTR was significantly reduced, aligning with 

claims that teams see 50%+ faster fixes due to 

automated rollbacks.  

• Detection of issues was more accurate and earlier 

than traditional monitoring alone, improving the 

change failure rate (since many issues were 

mitigated before they impacted users, one could say 

the effective failure rate visible to users dropped).  

• The system handled both obvious failures and subtle 

regressions, showing the versatility of an ML-

enhanced approach.  

• False positives, while not zero initially, were 

manageable and did not cause major disruption (a 

brief unnecessary rollback is far less costly than a 

missed incident).  

• There was minimal human intervention needed in 

our tests. Developers mainly looked at the reports 

after the fact, and in one case to adjust a threshold. 

No human had to directly fix or roll back an issue in 
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real-time, which indicates a significant reduction in 

on-call workload and stress.  

In the next section, we discuss some insights, 

limitations, and practical considerations gleaned 

from this work, as well as how this approach can be 

adopted in real-world largescale deployments.  

7 Discussion  

The experimental results validate that self-healing 

CI/CD pipelines can greatly enhance reliability and 

reduce downtime. In this section, we discuss the 

broader implications of these findings, lessons 

learned, and remaining challenges in deploying such 

systems in production environments at scale.  

Industry Impact: As organizations strive for 

faster deployments (multiple times a day) while 

maintaining high availability, the approach of 

integrating automated feedback loops is likely to 

become a DevOps best practice. Already, as noted, 

industry tools are evolving in this direction (e.g., 

Harness, Spinnaker, New Relic’s AIOps 

integration). Our research provides an empirical 

foundation for these trends, demonstrating 

quantitatively how metrics like MTTR and 

deployment failure impact improve. Reducing 

MTTR has not just technical but business 

implications: for many companies, cutting average 

recovery time from half an hour to a few minutes 

directly translates to savings in revenue and 

customer trust. Moreover, there is an effect on the 

development process – with reliable automated 

rollback, teams can deploy more fearlessly 

(knowing the system will “catch” them if something 

goes wrong). This can increase deployment 

frequency, a hallmark of high-performing DevOps 

organizations.  

Scalability and Organizational Adoption: One 

question is how well a self-healing pipeline scales in 

a large organization with many teams and services. 

Our architecture is modular, so teams could deploy 

detectors tuned to their service’s metrics. However, 

managing and maintaining many ML models could 

be challenging. A centralized platform team might 

provide “anomaly detection as a service” for all 

pipelines. Cloud providers might even incorporate 

these capabilities at the platform level (for example, 

a cloud deployment service that automatically 

monitors and rolls back). On the organizational side, 

adopting self-healing requires trust in automation. 

Culturally, some teams may be hesitant to let the 

pipeline make decisions that were traditionally 

human. Thus, a phased adoption could be used: start 

in lower environments (staging) with auto-

remediation to build confidence, then gradually 

increase automation in production as the models 

prove reliable.  

Tuning and False Positives: As seen in our 

tests, tuning the anomaly detection to minimize false 

positives is crucial. Too sensitive and you rollback 

unnecessarily (which could disrupt users with 

constant deployments, or waste CI resources); too 

lax and you miss issues. Techniques to address this 

include:  

• Continual learning: The system should 

learn from each false positive. For instance, our 

knowledge base could store, “deployment X was 

rolled back but later deemed healthy,” and the model 

could be adjusted or that specific pattern recognized 

as benign in the future.  

• Multi-factor analysis: Combining multiple 

signals helps ensure that only genuine broad-impact 

issues trigger rollbacks. In our false positive case, 

metrics spiked but error logs did not; a multi-factor 

rule could have caught that discrepancy.  

Limits of Anomaly Detection: Not all failures 

manifest clearly in metrics. Some bugs might be 

logical errors producing incorrect results without 

immediate metric anomalies. Our system wouldn’t 

catch those unless there are automated tests in 

production or specific alerts. Extending anomaly 

detection to business-level metrics or data quality 

might be needed for full coverage.  

Rollback Strategies and Advanced 

Remediation: We primarily focused on rollbacks to 

a previous version. In practice, remediation might 

take other forms:  

• Roll-forward fixes: Sometimes pushing a 

quick fix forward is preferable to rolling back (e.g., 

if the bug is trivial and a rollback would cause other 

complications). A sophisticated system might allow 

an automated “fix forward” if a known solution is 

available (perhaps via a repository of one-line fixes 

or toggling off a feature).  

• Selective rollback (canary reversal): If a 

deployment involves multiple microservices, it 

might be that only one service needs rollback. Our 

design can handle that – the anomaly detection 

ideally pinpoints which service’s metrics are off. In 

microservice architectures, a partial rollback is often 

better than full cluster rollback.  
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Generalization to Other CI/CD Tools: While our 

implementation used Jenkins, the concepts translate 

to other platforms:  

• GitHub Actions: can implement anomaly 

detection gating with the new Deployment 

Protection rules. One could create a GitHub Action 

that queries metrics (using e.g. Datadog or New 

Relic API) after deploy and sets an output that fails 

the job if anomaly. There are already community 

Actions starting to do this.  

• GitLab CI: has a feature called “Metrics 

reports” and canary analysis integration. It could 

similarly integrate an anomaly check stage.  

• TeamCity: though primarily a CI server, it 

can run CD pipelines with scripts. A TeamCity build 

step could call a detection service and, based on 

output, either proceed or fail the build (failing the 

build would prevent promotion to next 

environment).  

Observed Challenges: One challenge we faced 

was metric noise. In highly dynamic environments, 

distinguishing a deployment-induced anomaly from 

background fluctuations is hard. We mitigated this 

by using canary deployments and by smoothing 

metrics. But this might need more advanced time-

series analysis in very noisy systems. Another 

challenge is training data availability for ML. If a 

system has had few failures, there may not be much 

data to learn from. Unsupervised methods alleviate 

this, but they learn “normal” rather than “failure” 

and might not catch every failure type if it doesn’t 

manifest as a big deviation. Interestingly, an 

autonomous pipeline raises questions like: who is 

responsible if the automation makes a wrong call? 

In our case, an unnecessary rollback is low risk but 

imagine an automated system deciding to keep or 

rollback a change that has business implications. 

Organizations need to set policies on what the 

automation is allowed to do.  

8 Conclusions  

Continuous integration and delivery pipelines are 

the lifeblood of modern software deployment, but 

they must be resilient to failures to truly enable rapid 

innovation. In this paper, we presented a 

comprehensive approach to building self-healing 

CI/CD pipelines that integrate feedback-loop 

automation for fault tolerance. By combining real-

time anomaly detection with automated rollback 

logic, our system can detect deployment issues 

quickly and recover from them with minimal or no 

human intervention. The proposed architecture was 

implemented using widely available tools (Jenkins, 

Prometheus, etc.) and evaluated in scenarios 

reflective of large-scale industry deployments.  

The results demonstrate that such self-healing 

mechanisms can significantly improve reliability 

metrics: we observed substantial reductions in mean 

time to recovery and minimized the impact of faulty 

releases on end-users. Our pipeline autonomously 

handled failures that would have caused prolonged 

outages in traditional setups, aligning with reports of 

improved MTTR (50% or more faster incident 

resolution) in organizations adopting similar 

automation. Importantly, these benefits were 

achieved while maintaining high accuracy in 

detection – thanks to the incorporation of machine 

learning models and careful policy design to reduce 

false positives.  

We grounded our design in real-world practices 

and prior research. Concepts like Netflix’s 

automated canary analysis and Harness’s AI-driven 

rollback were generalized into a tool-agnostic 

framework. We also built upon academic works in 

DevOps anomaly detection to ensure our techniques 

are state-of-the-art. The outcome is a pipeline that 

exemplifies the ideal of “fail fast, recover faster,” 

effectively turning the mantra of continuous 

delivery into a robust, closed-loop control system 

for software quality.  

In conclusion, self-healing CI/CD pipelines 

represent a significant advancement in the pursuit of 

reliable, scalable, and efficient software delivery. By 

reducing reliance on human intervention and 

leveraging feedback-loop automation, organizations 

can achieve fault-tolerant delivery pipelines that 

keep systems running smoothly even when the 

unexpected happens. We encourage DevOps teams 

and researchers alike to build on these findings – 

integrating anomaly detection, learning algorithms, 

and automated remediation – to further realize the 

vision of truly resilient continuous delivery. The 

synergy of DevOps and AI (often dubbed AIOps) is 

poised to transform how we build and ship software, 

and self-healing pipelines are a key manifestation of 

that transformation.  
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