

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3217–3229 | 3217

Self-Healing CI/CD Pipelines with Feedback-Loop Automation:

Building Fault-Tolerant CI/CD Systems Using Anomaly Detection

and Automated Rollback Logic

Alekhya Challa1, Mahesh Reddy Konatham2

Submitted: 15/10/2024 Revised: 27/11/2024 Accepted: 06/12/2024

Abstract: Modern continuous integration and delivery (CI/CD) pipelines are crucial for rapid software releases, yet they risk

introducing failures into production. This paper presents a comprehensive study of self-healing CI/CD pipelines that

incorporate feedback-loop automation to achieve fault tolerance. We detail an architecture that integrates real-time anomaly

detection (including machine learning-based techniques) and automated rollback mechanisms into popular CI/CD platforms

(e.g. TeamCity, GitHub Actions, Jenkins). The goal is to minimize production downtime and human intervention by enabling

the pipeline to detect issues and revert to stable states autonomously. Grounded in large-scale industry deployments, our

approach leverages continuous monitoring and intelligent decision-making to reduce mean time to recovery (MTTR) and

improve reliability. We implement the system in a prototype and evaluate it with experiments simulating deployment

anomalies. Results show significantly faster failure detection and recovery. MTTR improved by over 50% as well as high

anomaly detection accuracy and efficient rollbacks. We discuss design trade-offs, such as balancing false positives in detection

versus safety, and highlight how feedback loops can continuously improve pipeline resilience. The findings demonstrate that

self-healing CI/CD pipelines can substantially enhance scalability and reliability of software delivery while minimizing manual

oversight, paving the way for more autonomous DevOps processes.

Keywords: autonomous, CI/CD, MTTR, resilience, comprehensive

1 Introduction

Continuous Integration (CI) and Continuous

Delivery (CD) have become standard practices in

modern software engineering for accelerating

release cycles and maintaining code quality. In CI,

developers frequently merge code changes into a

shared repository, and each change is verified by

automated builds and tests to detect integration

errors early. These series of steps form a pipeline

that produces a new software version as its output.

The widespread adoption of CI/CD platforms like

Jenkins, TeamCity, and GitHub Actions has enabled

organizations to deploy updates at high velocity.

However, with great speed comes the challenge of

reliability, failures introduced by a bad build or

deployment can lead to service outages and

significant business losses.

This paper addresses the problem of building

fault-tolerant CI/CD pipelines that can detect and

recover from failures autonomously. We propose a

self-healing CI/CD pipeline architecture that

incorporates a closed-loop feedback mechanism: the

pipeline continuously monitors its outputs

(application performance, logs, test results), detects

anomalies indicating potential faults, and

automatically triggers remediation (such as rolling

back to a previous stable release) without human

intervention. By applying these ideas to CI/CD, we

aim to minimize production impact from faulty

releases and reduce the mean time to recovery

(MTTR) when incidents occur.

Several large-scale industry players have

implemented elements of such automation. For

example, Netflix’s continuous delivery platform

Spinnaker uses automated canary analysis to

compare metrics between a new deployment

(canary) and the baseline; if the canary shows

significant degradation, Spinnaker automatically

aborts the rollout and reverts traffic to the stable

version. This kind of feedback loop allows issues to

be caught and mitigated before they affect all users.

Commercial solutions such as Harness integrate an

AI/ML engine to perform anomaly detection during

1University of Cincinnati, OH
2San Jose State University, CA

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3217–3229 | 3218

deployments and trigger rollbacks when anomalies

or regressions are detected. These examples

underscore the feasibility and benefits of self-

healing mechanisms in CI/CD at scale.

Despite this progress, designing a generic self-

healing CI/CD system involves open challenges in

anomaly detection accuracy, minimizing false

alarms, rollback strategies, and integration with

existing pipelines. In this work, we contribute a

systematic architecture and implementation for self-

healing CI/CD pipelines with feedback-loop

automation. Our key contributions include:

• Architecture Design

• Anomaly Detection Layer

• Autonomous Feedback Loop

• Implementation & Evaluation

2 Related Work

Early efforts to improve the reliability of release

pipelines can be traced to the DevOps concept of

“fail fast, recover fast.” Traditional CI/CD practices

include extensive automated testing and canary

deployments to catch issues early. Engineers must

often decide whether to halt or roll back a

deployment, leading to delays. This has prompted

research and industry solutions in autonomic

computing, AIOps, and self-healing systems applied

to the software delivery process.

Anomaly detection in CI/CD and DevOps: A

growing body of work applies machine learning to

detect problems in build and deployment pipelines

such as the techniques described in Emily et al.

(2023). Gerber et al. (2024) note that in large CI

environments, a vast amount of performance and

test data is generated with each run, far too much for

humans to analyze within short time spans; hence

ML-based anomaly detection can automatically flag

unusual behavior in the pipeline. Several studies

focus on detecting performance regressions or

abnormal test outcomes during CI. Capizzi et al.

(2020) proposed an anomaly detection system

operating in the staging phase of a DevOps toolchain

to compare new releases with previous ones on key

metrics, aiming to “prevent problems from

appearing in later stages of production”. Their

proof-of-concept showed the feasibility of using

historical baseline data to identify risky releases

before they hit production. Atzberger et al. (2023)

explore NLP techniques for pipeline log analysis

using latent Dirichlet allocation (LDA) to detect

outliers in CI/CD pipeline logs highlighting that

anomalies in build/test logs can forewarn of deeper

issues. Another approach by Fawzy et al. (2023)

introduced a Machine Learning based DevOps

anomaly detection framework, which achieved high

accuracy (~96% accuracy and 93% F1-score) in

identifying deployment anomalies in their

experiments. These works underscore the potential

of AI/ML to bring proactive failure detection to

CI/CD processes.

Self-healing and automated remediation: The

concept of self-healing systems in operations has

been advanced in the context of cloud infrastructure

management and Site Reliability Engineering

(SRE). The idea is to implement closed-loop

control: monitoring for incidents, diagnosing root

causes, and automatically executing corrective

actions. Recently, this concept is being extended into

CI/CD pipelines. Hrusto et al. (2022) discuss

optimizing anomaly detection in microservice

systems through continuous feedback from

development teams, which suggests that pipelines

can learn from past incidents (e.g., by incorporating

developers’ feedback on false alarms or failure

causes) to improve future detection. In industry,

several products now offer autonomous CD

capabilities. Netflix’s Spinnaker, as mentioned, can

automatically halt or roll back deployments based on

canary analysis results. Harness, a continuous

delivery platform, features AI-powered continuous

verification that monitors new releases and

automates rollback decisions upon detecting

anomalies in service metrics. Similarly, New Relic’s

AIOps can integrate with GitHub Actions to create

deployment protection rules using anomaly

detection to automatically intercept a deployment if

performance signals degrade, thereby preventing

bad code from promoting to production. These tools

are examples of closed-loop automation where the

feedback from runtime or tests directly controls the

pipeline.

Fault-tolerance in CI/CD: Beyond AI

techniques, the DevOps community has established

best practices for reducing deployment risk, such as

blue-green deployments, canary releases, and

feature flag toggles. Automated rollback is a

fundamental safety net in many deployment

strategies. For instance, AWS CodeDeploy and other

cloud deployment services support automatic

rollback if health checks fail. Our work differs in

that we focus on a generalized pipeline-agnostic

framework that not only triggers rollbacks on

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3217–3229 | 3219

explicit failures but can predict or detect subtle

anomalies (like performance degradation,

increasing error rates, abnormal system metrics) that

precede failures. We also emphasize minimizing

MTTR, a key SRE metric. Prior research by

Google’s DORA team has identified MTTR, change

failure rate, deployment frequency, and lead time as

four key metrics that correlate with software

delivery performance. Our self-healing pipeline

specifically targets improvements in MTTR and

change failure rate by shortening the time between

an issue occurring and being resolved (often without

human intervention).

3 System Architecture

Overview: The proposed system architecture

(illustrated in Figure 1) extends a standard CI/CD

pipeline with two key components: an Anomaly

Detection Layer and an Automated Rollback

Controller. The architecture is designed to be

general-purpose and cloud-native, leveraging

existing CI/CD tools and monitoring systems.

Figure 1 depicts the interactions: code changes flow

through the pipeline stages (build, test, deploy);

once a new version is deployed, telemetry from the

running system is fed into the anomaly detector. If

an anomaly is detected, a feedback signal is sent to

trigger the rollback controller, which orchestrates a

rollback deployment (reverting to the last known

good version or other safe state). This closed-loop

runs continuously, ensuring that the pipeline can

“sense” and “react” to problems in real time. The

architecture consists of the following primary

modules:

• CI/CD Pipeline Core: Source code is built

and integrated, an automated test suite is run, and if

all checks pass, the new build is deployed to

production (or a staging environment preceding

production). We assume any CI/CD platform that

can execute scripts/jobs, such as Jenkins (with

pipelines or Blue Ocean), TeamCity, GitLab/GitHub

Actions, or Tekton on Kubernetes. The pipeline is

instrumented such that deployment steps do not

conclude immediately upon release, but rather

transition into a monitoring phase.

• Monitoring & Telemetry: Once a

deployment occurs, the system collects realtime data

on the application and infrastructure. This includes

metrics such as CPU, memory, response times, error

rates, throughput, logs from applications and

services, and possibly traces or events. Tools like

Prometheus, Grafana, Datadog, ELK/Elastic Stack,

or cloud monitoring services can be leveraged. In

our implementation, for example, we use

Prometheus to scrape application metrics and logs

are aggregated in an ELK stack. This monitoring

provides the raw signals for anomaly detection. As

Red Hat’s team noted, integrating log analytics (e.g.,

Coralogix) with pipeline deployments allows real

time detection of issues with minimal noise.

Fig. 1: High-level architecture of the self-healing CI/CD pipeline. The pipeline (build, test, deploy stages) is

augmented with continuous monitoring and an anomaly detection engine. Feedback from production (metrics

and logs) is analyzed for anomalies; if detected, the system triggers an automated rollback, reverting the

deployment to a stable state. A policy/feedback loop ensures issues are corrected with minimal human

intervention.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3217–3229 | 3220

• Anomaly Detection Engine: This

component consumes the telemetry data and applies

detection logic to identify any abnormal behavior

that could indicate a failed or degrading deployment.

It can run in parallel with the pipeline or as a post-

deployment step. The engine might be deployed as a

service (for instance, a Python microservice

subscribing to a metrics stream, or an on-premises

tool). For integration, one approach is to use pipeline

“gates”. For example, GitHub Actions now supports

deployment protection rules that can call out to an

external service (like New Relic’s AI) to decide

whether to proceed with a deployment. In our

architecture, the anomaly detector signals a boolean

outcome (healthy vs. anomalous) along with a

confidence level or severity assessment.

• Feedback Loop Controller (Policy

Engine): At the heart of the self-healing loop is a

controller that decides and initiates rollback actions.

This could be implemented as conditional logic in

the pipeline script or as a webhook that triggers a

separate rollback pipeline. The policy engine uses

the anomaly detection outcome to take action. For

instance, if an anomaly is confirmed with high

confidence, the policy might automatically trigger a

rollback to the previous version and mark the current

release as failed. If confidence is medium or the

impact is uncertain, it might pause the pipeline and

request a manual approval (fail-safe for potential

false positives).

• Rollback Mechanism: The actual

execution of a rollback depends on the deployment

environment. Common strategies include:

• Redeployment of previous known-good

version: The pipeline can store

artifacts of the last successful build. Rollback simply

means deploying that artifact (or re-tagging a

container image to “stable”) and restarting services.

• Infrastructure level rollback: In

Kubernetes, one can use deployment

revision history to roll back to a prior ReplicaSet, or

use Spinnaker to automatically roll back a failed

canary by redirecting traffic to baseline.

• Feature toggles: If using feature flags, an

automated rollback might involve toggling off a

newly enabled feature that is causing an issue.

The rollback module in our architecture abstracts

these details. It could call kubectl rollout undo on a

cluster, or trigger a Jenkins job that deploys the

previous build, etc. The key is that this is automated

and fast. Our implementation on Kubernetes

achieved rollback initiation within seconds of

detection, and full restoration of the previous

version in under 2 minutes.

• Knowledge Base & Learning: While not

strictly required, an extension of the architecture

includes a knowledge base that stores incidents,

anomalies detected, and actions taken. Over time,

this can feed back into improving the models (for

ML-based detectors) or refining policies. For

example, if an anomaly was detected and turned out

to be a false alarm, developers can label it, and the

system will adjust thresholds or model parameters

(similar to the continuous feedback approach in

Hrusto et al.).

• Security considerations: The feedback

loop should be secured to prevent unauthorized or

erroneous triggers. Since rollbacks can impact

production state, authentication and sanity checks

are necessary. In our implementation, the anomaly

detector’s decision is verified by a checksum of

recent metrics to avoid rollback due to a transient

metric spike. Additionally, role-based access control

in the CI/CD tool is used so that only the automated

service account can trigger the rollback stage.

3.1 Anomaly Detection Layer

The Anomaly Detection Layer is responsible for

identifying irregular behavior in the CI/CD pipeline

or the newly deployed software that may indicate a

failure or risk. High detection accuracy and low

latency are critical here. The goal is to detect issues

as quickly as possible but also accurately to avoid

false alarms that trigger needless rollbacks. This

layer can utilize a combination of approaches:

• Rule-based thresholds: The simplest

form, often used in traditional monitoring, where

static thresholds are set on metrics. For example,

“CPU usage > 90%” or “error rate > 5%” for a

sustained period could flag an anomaly. While

straightforward, static rules can be too rigid or

generate false positives if not tuned per

environment.

• Statistical anomaly detection: More

adaptive techniques look at deviations from normal

patterns. For instance, control chart methods or z-

score analysis can flag if a metric deviates by several

standard deviations from its historical mean. The

DevOps literature suggests statistical detection can

catch issues without hard thresholds (Cherkasova et

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3217–3229 | 3221

al., 2009 used statistical learning for performance

anomalies in enterprise apps). These methods

require a baseline of normal operation data.

• Machine learning-based detection: The

state-of-the-art leverages ML, including both

supervised and unsupervised techniques:

o Unsupervised learning: Since many

pipeline anomalies are novel, unsupervised methods

like clustering or autoencoders are popular. For

example, an autoencoder can be trained on metrics

from many successful deployments; during a new

deployment, if the reconstruction error of the

metrics exceeds a threshold, it signals an anomaly.

Gerber et al. (2024) implement a multivariate time-

series anomaly detector to spot performance issues

in CI pipelines using an unsupervised approach.

Their system learns normal behavior of resource

metrics and flags high anomaly scores during CI

runs.

o Supervised learning: If a history of

failures is available, one can train classifiers to

recognize patterns preceding failures. For instance,

a random forest or neural network could be trained

on past deployment telemetry labeled as good or bad

outcome. However, supervised approaches are

limited by the availability of labeled failure data and

risk overfitting to known failure modes.

• Log analysis with NLP: Logs from build

or runtime can contain error messages or stack traces

indicative of problems. Techniques like the

mentioned LDA model by Atzberger et al. or more

recent transformer-based models can learn typical

log ”topics” or sequences. If a new deployment’s

logs contain unusual clusters of messages (e.g., a

spike in exceptions or timeouts not seen in baseline),

the system flags it. In our prototype, we

implemented a simple log anomaly detector using

keyword frequency comparison against a baseline

• Change point detection: Another

approach used in canary analysis (e.g., Netflix’s

Kayenta) is to statistically compare metrics between

the new version and either the previous version or a

parallel baseline. Significant degradation (change

beyond confidence bounds) in any key metric is an

anomaly trigger. This approach was used in our

canary test scenario: we deployed the new version to

a small subset of users and compared its error rate

and latency distribution to the stable version; a non-

overlapping 95% confidence interval triggered an

automatic rollback.

The anomaly detector in our system is

implemented as a hybrid. We combine thresholds for

critical metrics (e.g., any instance crash or a specific

service returning >10% errors triggers immediate

alarm). Specifically, we used an Isolation Forest

model to analyze a vector of metrics (CPU, memory,

request rate, error rate, DB response time, etc.)

collected over a short window after deployment. The

model, trained on data from successful deployments,

produces an anomaly score. If the score exceeds a

learned threshold, the deployment is classified as

anomalous. To further improve accuracy, we

incorporate a policy of double confirmation: the

anomaly must be persistent for a few consecutive

intervals or be detected by more than one method

(e.g., both a threshold and the ML model) before

triggering rollback. This reduces noise from

transient fluctuations.

In terms of performance, our anomaly detection

layer operates with low overhead. The detection

decision is typically available within a few seconds

to minutesnof deployment in our tests. This means

the “window of exposure” for a bad deployment is

small. Contrast this with a manual detection scenario

where, say, engineers might notice an issue after

several minutes or only when alerts page them; the

automated detector is much faster.

Crucially, the detection accuracy of our system

was high. We evaluated it by replaying historical

deployment data with known outcomes (some

releases deliberately injected with faults). The

detector achieved >95% precision and 100% recall

on this test set – meaning it caught all failure cases

and had very few false alarms. This aligns with

results reported by Fawzy et al. (96% accuracy,

100% recall in their DevOps anomaly framework).

High recall (no missed failures) is especially

important for safety – a missed anomaly could mean

a faulty release stays in production, undermining the

whole purpose. We chose to tolerate a slightly lower

precision (some false positives) as the cost of an

unnecessary rollback is typically much lower than

the cost of not rolling back a bad deployment. Still,

keeping false positives low is important to avoid

“flapping” (repeated rollbacks and redeploys). Our

use of confirmation windows and combining signals

is aimed at this balance.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3217–3229 | 3222

3.2 Feedback Loop and Rollback Logic

Once an anomaly is flagged by the detection layer,

the system enters the feedback loop phase, wherein

it decides on and carries out corrective actions. The

core of this is the automated rollback logic, which is

orchestrated by the Feedback Loop Controller (or

policy engine) mentioned in the architecture.

Feedback Loop Mechanism: In control

systems terms, our pipeline implements a closed

feedback loop for deployment correctness. The

output of the system is fed back into the to adjust

future outputs (via rollback or halting). As soon as

the anomaly detector signals a problem, the

feedback controller evaluates pre-defined policies:

• Immediate rollback policy: If the anomaly is

severe, the policy is to trigger an immediate rollback

to last stable version. This is done without waiting

for human approval, to minimize MTTR. Our

system logs the event and sends notifications to

developers that an automatic rollback occurred and

why.

• Graceful degradation policy: If the issue is less

clear-cut, the controller might initiate a partial

mitigation. For example, it could scale down the

deployment of the new version while continuing to

monitor. Or it could enable a feature-flag kill switch

for a new feature while keeping the release in place.

This buys time for more observation or for a human

to intervene if needed.

• Manual confirmation policy: In some setups,

organizations may prefer a human in the loop for

production changes. In such cases, the feedback loop

can be configured to pause the pipeline and await

manual approval to rollback. However, this

increases response time and is recommended only if

false positives are a significant concern. In high-

criticality systems (e.g., financial transactions), one

might require a human to verify before rollback to

avoid oscillations.

We found that in most cases, an aggressive

immediate rollback policy for clear anomalies

provides the best protection and seldom needs to be

overridden. Teams that have adopted similar

approaches report much faster incident resolution –

e.g., MTTR reductions of 50-60% due largely to

automatic rollback triggering as soon as an anomaly

is detected, rather than waiting for engineers to

react.

Automated Rollback Execution: The rollback

controller interfaces with the deployment system to

perform the rollback. In our Jenkins-based

prototype, we implemented the rollback as a

separate Jenkins pipeline job that can be triggered

via the Jenkins API. When the controller decides to

rollback, it calls this API (using an authenticated

token) with parameters identifying which

service/application to roll back. The rollback job

then:

• Retrieves the artifact (build) ID of the last

known good deployment.

• Initiates deployment of that artifact to the

environment. For Kubernetes, this meant updating

the image tag back to the previous version and

letting the orchestration revert pods.

• Verifies that the rollback deployment is healthy with

smoke test or health checks.

• Marks the problematic version as rolled back.

This entire sequence was coded to execute in a

matter of a few minutes. In our tests, the detection-

to-rollback sequence often completed in ~2–3

minutes. This is a dramatic improvement over a

manual scenario where detection might take 10+

minutes and rollback another 10, totaling 20+

minutes of impact. Our automated pipeline’s MTTR

(from issue to fully recovered state) was typically

under 5 minutes.

It is worth noting that CI/CD platforms support

such rollback hooks natively or via plugins. For

instance, Spinnaker provides an “automated

rollback” stage that can be configured to run upon

pipeline failures. Tekton pipelines can include an

“except” step to perform rollback if a post-deploy

check fails. GitHub Actions (with New Relic) can

block a release from progressing to production if

anomalies are detected – effectively a preventative

rollback (the new version is never fully scaled out).

We leveraged these ideas by designing our pipeline

as a series of stages where the final stage is

contingent on a “health check” outcome. If health

check fails, the pipeline automatically executes the

rollback stage.

Integration with Incident Management: The

feedback loop doesn’t end with the technical

rollback. We also integrate with incident

management by having the pipeline or controller

open a ticket/alert whenever an auto-rollback

happens. This ensures that the development team is

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3217–3229 | 3223

aware of the issue and can conduct a root cause

analysis in hindsight. It’s important that self-healing

not lead to a false sense of security – developers

should treat an auto-rollback as a high-priority

incident that just so happened to be mitigated

automatically. In our setup, a message is sent to the

team’s Slack channel and an issue is opened in Jira

with logs and metrics attached (using webhook

integrations), whenever a rollback is triggered.

Preventing feedback oscillation: A classic

challenge in feedback control is oscillation – e.g.,

the pipeline deploys version A (bad), auto-rollbacks

to version B (good), but then perhaps tries version A

again (if not blocked, or if a new commit auto-

triggers it), causing a loop. We address this by

automatically blocking the bad version from

redeployment until it’s fixed. This was done by

tagging the build as “blocked” in the CI system. For

GitOps-style deployments, one could automate a

revert of the commit that introduced the bad version.

Essentially, the feedback loop includes a memory of

recent bad states to avoid repeating them. This aligns

with best practices: an automated rollback should

ideally stop the pipeline from continually

redeploying the same failing release.

4 Implementation & Experimentation

To validate our approach, we implemented a self-

healing CI/CD pipeline prototype and conducted

experiments in a controlled environment. This

section describes the implementation details, the

experimental setup, and the scenarios used to

evaluate performance metrics.

CI/CD Platform: We chose Jenkins as the

primary CI/CD orchestrator for our prototype due to

its widespread use and flexibility (Groovy pipeline

scripts). The pipeline was configured as follows:

• Build stage: Jenkins pulls the latest code from a Git

repository (we used a microservices demo

application) and builds Docker images for each

service. If build or unit tests fail, the pipeline aborts

as usual.

• Test stage: Jenkins then deploys the new images to

a staging environment (Kubernetes cluster) and runs

an integration test suite. This includes API endpoint

testing, regression tests, and basic performance tests.

Only if these pass does the pipeline proceed to the

next stage.

• Deploy stage (Canary release): The pipeline

deploys the new version to production in a canary

mode – e.g., 5% of traffic directed to new pods, 95%

still on old version. We used an Istio service mesh to

split traffic. Jenkins marks this step as “in progress”

and does not automatically proceed to completion;

instead, it invokes the Monitoring/Detection job and

waits for its result.

Monitoring & Detection Implementation: We

deployed Prometheus and Grafana for monitoring

metrics from the application. Key metrics like HTTP

request rate, error count (HTTP 5xx), latency

percentiles, and resource usage were collected at 15-

second intervals. Logs from the microservices were

shipped to an Elasticsearch cluster, and we set up a

lightweight log parser service. The anomaly

detection logic was implemented in a Python service

(separate from Jenkins for modularity). This service

provides a REST API that Jenkins can call:

• Jenkins calls /health-check endpoint with the

deployment ID.

• The detection service then analyzes the last 1-2

minutes of metrics and logs for that deployment. It

uses the Isolation Forest model (trained offline on

past successful deployment data) to compute an

anomaly score from the metrics. It also checks log

anomaly heuristics (e.g., whether ERROR logs/min

exceed a baseline).

• The service responds with a decision: GREEN (no

anomaly) or RED (anomaly detected), along with a

confidence level and reason code (e.g., “high error

rate” or “performance regression”).

We integrated New Relic APM as well to

experiment with their anomaly alerts. New Relic’s

alerts were configured to detect any significant error

rate or throughput drop and could send webhook

notifications. While New Relic’s GitHub Action

gate was available, we simulated similar gating in

Jenkins by simply having the pipeline wait for our

detection service decision.

Automated Rollback Implementation: On

Jenkins, we created a separate pipeline job called

“RollbackDeploy”. This job takes a parameter (the

service or deployment ID to roll back) and performs

the rollback steps:

• Determine the last stable build artifact for that

service (recorded in a Jenkins file or artifact

repository; we stored the Docker image tag of the

last successful deployment).

• Deploy that artifact to production, essentially

undoing the canary. In Kubernetes, this meant

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3217–3229 | 3224

scaling up pods of the old version and scaling down

the new version to zero, then removing the new

version entirely.

• Run a quick smoke test on the services to ensure the

old version is serving correctly.

• Send notifications (Slack message and email) that

rollback was executed for deployment X, including

the reason (which Jenkins passes as a parameter

from the detection result).

The main pipeline structured such that after deploying the canary, it called the detection API:

1

2

3

4

5

6

7

8

9

10

Code Snippet 1: This pseudocode shows that if a

“RED” (anomaly) is returned, the pipeline triggers

the rollback job and then fails the build (to indicate

the deployment was bad) We mark the build with a

description so it’s visible in Jenkins UI that an auto-

rollback occurred. The timeout ensures that if the

detection service doesn’t respond within 5 minutes,

the pipeline doesn’t hang indefinitely (fallback to

manual check in worst case). For TeamCity users, a

similar approach could be done using TeamCity’s

build failure conditions or a custom script. TeamCity

can call REST APIs or scripts after deployment

steps. GitHub Actions could use the new

Deployment Protection rule as discussed, or simply

have a step that runs a script to decide pass/fail after

deployment.

5 Experimental Scenarios:

We designed a set of test scenarios to evaluate the

system:

1. Successful Deployment: Deploy a new

version that behaves well. Expectation: anomaly

detector returns green, no rollback, pipeline

completes normally.

2. Immediate Failure: Deploy a version with

an obvious bug (e.g., one service crashes on startup

or returns HTTP 500 for all requests). Expectation:

Within one monitoring interval, error rate spikes or

a service is down – detector flags red. Rollback

should trigger quickly. We measure detection time

and rollback time.

3. Performance Degradation: Deploy

 a version that subtly

 degrades performance (we introduced a

deliberate 2x latency increase in one service by

adding a sleep in code). Not outright failing, but

violates our SLOs. Expectation: Detector uses

latency metric and possibly increased CPU usage to

flag anomaly within a couple of minutes (once

enough requests have been sampled). Rollback

triggers, preventing prolonged slow response for

users.

4. False Positive Check: We simulate a

scenario close to threshold to see if the system

falsely triggers. For example, a deployment with a

temporary spike in errors right at startup (perhaps

due to cache warming) that self-resolves.

Expectation: Our double-confirmation logic should

ideally ignore this transient issue and avoid rollback.

stage(’Canary Analysis’) {

timeout(time: 5, unit: ’MINUTES’) {

def result = httpRequest url: "http://anomaly−detector/

health−check?deployId=${env.BUILD ID}"

if (result.content == "RED") {

currentBuild.description = "Anomaly detected − auto rollback" build job:

’RollbackDeploy’, parameters: [string(name: ’ deployId’, value: env.BUILD

ID)] error("Anomaly detected. Rolled back deployment ${env.

BUILD ID}.")

}

}

}

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3217–3229 | 3225

If it does rollback mistakenly, that indicates

precision issues.

5. Multiple Rapid Deployments: We also

tested how the system handles consecutive

deployments. E.g., deploy version 1 (bad, rolls

back), then immediately deploy version 2 (good).

The pipeline should correctly rollback 1, and allow

2 to proceed. This tested the “blocked bad version”

memory – version 1 should not redeploy.

We instrumented the system to log all relevant

timings: detection time from deployment start, time

to initiate rollback, and time to complete rollback.

We also logged whether the anomaly was true or

false, and collected metrics on how many

deployments were auto-rolled back versus how

many proceeded.

The test environment was set to mimic

production scale moderately: the microservices app

had ~5 services, each scaled to multiple instances.

We generated synthetic traffic using Locust to

simulate users, ensuring that our metrics were

realistic (so performance issues would manifest).

6 Results & Evaluation

We evaluated the system on the metrics of detection

accuracy, response time (latency to rollback), and

overall impact on reliability (e.g., MTTR and

change failure rate). Table 1 summarizes the

outcomes across our test scenarios:

As shown, the self-healing pipeline dramatically

improves recovery times. In the immediate failure

scenario, MTTR was reduced from roughly 15

minutes (best-case manual detection via alerts)

down to about 3 minutes with automation. In all test

failure cases, the system successfully executed

rollbacks well before a human likely would have

intervened. This translates directly into less

downtime. For example, at a cost of $14k/minute of

downtime, saving 10+ minutes per incident could

mean over $140k saved in a single critical incident

for a large enterprise.

Table 1: Comparison of pipeline outcomes with and without self-healing automation.

Scenario Outcome without Self-Healing Outcome with Self-Healing

Immediate Failure Failure noticed after ~5 min by

monitoring. Manual rollback

completed at ~15 min (MTTR ~15).

Users faced errors for that duration.

Anomaly auto-detected in 30 seconds;

rollback initiated immediately and completed

by 3 min. MTTR ~3 min, minimal user

impact.

Perf Degradation Degradation may go undetected until

user complaints or SLO alerts (e.g. 10-

20 min); prolonged poor performance.

Anomaly detected in ~3

Min. Automatic rollback in 5 min.

Performance restored. Few users impacted

Transient Spike

(FP test)

Likely ignored by on-call until

confirmed; if reacted, could be

a false alarm causing unneces-

sary intervention.

No rollback triggered. System observed

recovery after spike. Deployment successful

MTTR (average) 30 minutes (assumes 10m

detect + 20m manual fix on

average for incidents).

~10 minutes (median)

across all incidents, with

many resolved in <5 min.

Detection Accuracy: Out of 20 test deployments

(including 6 injected failure cases and 4

performance issues), the anomaly detector correctly

identified all 10 problematic deployments (no false

negatives). There were 2 cases where the system

triggered a rollback for issues that were not severe

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3217–3229 | 3226

(false positives). In one case, a microservice

deployment caused a momentary blip in latency

which auto-recovered, but our threshold was slightly

too sensitive and initiated a rollback. After analysis,

we adjusted the policy to require the condition to

persist for >30 seconds. After this tweak, the false

positive did not recur. The effective precision in our

tests was ~83% initially (10/12 true positives) and

improved to 100% in later runs after adjustments.

These results are in line with Fawzy et al.’s report of

87.5% precision – indicating that some tuning is

needed to eliminate benign anomalies from

triggering the loop.

Rollback Success and Safety: All automated

rollbacks executed successfully and restored the

system to a healthy state. There were no instances of

rollback failure in our tests – partly because our

application is stateless between versions. We

measured the rollback execution time (from trigger

to stable state): it ranged from ~60 seconds (for a

simple service) to ~3 minutes (for a multi-service

rollback). The longer cases involved waiting for

containers to terminate and start up. Still, this is a

short window. Importantly, users in canary scenario

were mostly unaffected because only a small

percentage saw errors before the canary was pulled

out. In a full deployment scenario, a portion of users

would see errors until rollback kicked in. But even

then, a 2-3 minute window of degraded service is far

better than 15-30 minutes.

Impact on Deployment Frequency: One

concern could be whether adding this feedback loop

slows down the pipeline or reduces throughput of

deployments (since it introduces a monitoring hold).

In our evaluation, the overhead of the health check

stage was small – we added a 2-minute canary

observation period. In high-velocity environments,

this could marginally reduce deployment frequency.

However, considering the trade-off, this is usually

acceptable: a slight delay to verify each deployment

can prevent hours of outages. Organizations like

Netflix routinely run 5-10 minute canary

evaluations, which is deemed worth the safety. Our

pipeline still easily handled multiple deployments

per day per service with the feedback loop in place.

Scalability: We also assessed how the system

scales with more services and metrics. We simulated

doubling the number of metrics and found the

detection service (Isolation Forest) handled it

without noticeable performance degradation (thanks

to its linear complexity in number of samples, and

we keep window size constant). The monitoring

stack (Prometheus) was more taxed, but that can be

scaled horizontally. We are confident the approach

scales to large microservice fleets by distributing

monitoring and perhaps running multiple anomaly

detector instances (one per service or cluster). The

architecture can be federated – e.g., each team’s

pipeline can run its own detection instance, all

feeding into a central policy engine if needed.

Reliability: We must consider the reliability of

the pipeline itself – introducing more components

(detectors, controllers) means more things that could

fail. During tests, we introduced a fault where the

anomaly detector service was down. In that case, our

Jenkins pipeline’s timeout kicked in after 5 minutes

and defaulted to marking the deployment as failed

(since it couldn’t get a green signal). This is a safe

fail-closed strategy. It results in perhaps an

unnecessary rollback or at least a halted deployment,

but that’s safer than pushing a change with no

verification. Once the detector was back up,

deployments resumed normally. This test highlights

that the self-healing system should itself be

monitored – meta-monitoring to ensure the detector

and feedback loop are functioning. In production,

we’d run these components in a highly available

manner (multiple instances, etc.).

Overall, the evaluation demonstrates clear benefits

of self-healing CI/CD pipelines:

• MTTR was significantly reduced, aligning with

claims that teams see 50%+ faster fixes due to

automated rollbacks.

• Detection of issues was more accurate and earlier

than traditional monitoring alone, improving the

change failure rate (since many issues were

mitigated before they impacted users, one could say

the effective failure rate visible to users dropped).

• The system handled both obvious failures and subtle

regressions, showing the versatility of an ML-

enhanced approach.

• False positives, while not zero initially, were

manageable and did not cause major disruption (a

brief unnecessary rollback is far less costly than a

missed incident).

• There was minimal human intervention needed in

our tests. Developers mainly looked at the reports

after the fact, and in one case to adjust a threshold.

No human had to directly fix or roll back an issue in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3217–3229 | 3227

real-time, which indicates a significant reduction in

on-call workload and stress.

In the next section, we discuss some insights,

limitations, and practical considerations gleaned

from this work, as well as how this approach can be

adopted in real-world largescale deployments.

7 Discussion

The experimental results validate that self-healing

CI/CD pipelines can greatly enhance reliability and

reduce downtime. In this section, we discuss the

broader implications of these findings, lessons

learned, and remaining challenges in deploying such

systems in production environments at scale.

Industry Impact: As organizations strive for

faster deployments (multiple times a day) while

maintaining high availability, the approach of

integrating automated feedback loops is likely to

become a DevOps best practice. Already, as noted,

industry tools are evolving in this direction (e.g.,

Harness, Spinnaker, New Relic’s AIOps

integration). Our research provides an empirical

foundation for these trends, demonstrating

quantitatively how metrics like MTTR and

deployment failure impact improve. Reducing

MTTR has not just technical but business

implications: for many companies, cutting average

recovery time from half an hour to a few minutes

directly translates to savings in revenue and

customer trust. Moreover, there is an effect on the

development process – with reliable automated

rollback, teams can deploy more fearlessly

(knowing the system will “catch” them if something

goes wrong). This can increase deployment

frequency, a hallmark of high-performing DevOps

organizations.

Scalability and Organizational Adoption: One

question is how well a self-healing pipeline scales in

a large organization with many teams and services.

Our architecture is modular, so teams could deploy

detectors tuned to their service’s metrics. However,

managing and maintaining many ML models could

be challenging. A centralized platform team might

provide “anomaly detection as a service” for all

pipelines. Cloud providers might even incorporate

these capabilities at the platform level (for example,

a cloud deployment service that automatically

monitors and rolls back). On the organizational side,

adopting self-healing requires trust in automation.

Culturally, some teams may be hesitant to let the

pipeline make decisions that were traditionally

human. Thus, a phased adoption could be used: start

in lower environments (staging) with auto-

remediation to build confidence, then gradually

increase automation in production as the models

prove reliable.

Tuning and False Positives: As seen in our

tests, tuning the anomaly detection to minimize false

positives is crucial. Too sensitive and you rollback

unnecessarily (which could disrupt users with

constant deployments, or waste CI resources); too

lax and you miss issues. Techniques to address this

include:

• Continual learning: The system should

learn from each false positive. For instance, our

knowledge base could store, “deployment X was

rolled back but later deemed healthy,” and the model

could be adjusted or that specific pattern recognized

as benign in the future.

• Multi-factor analysis: Combining multiple

signals helps ensure that only genuine broad-impact

issues trigger rollbacks. In our false positive case,

metrics spiked but error logs did not; a multi-factor

rule could have caught that discrepancy.

Limits of Anomaly Detection: Not all failures

manifest clearly in metrics. Some bugs might be

logical errors producing incorrect results without

immediate metric anomalies. Our system wouldn’t

catch those unless there are automated tests in

production or specific alerts. Extending anomaly

detection to business-level metrics or data quality

might be needed for full coverage.

Rollback Strategies and Advanced

Remediation: We primarily focused on rollbacks to

a previous version. In practice, remediation might

take other forms:

• Roll-forward fixes: Sometimes pushing a

quick fix forward is preferable to rolling back (e.g.,

if the bug is trivial and a rollback would cause other

complications). A sophisticated system might allow

an automated “fix forward” if a known solution is

available (perhaps via a repository of one-line fixes

or toggling off a feature).

• Selective rollback (canary reversal): If a

deployment involves multiple microservices, it

might be that only one service needs rollback. Our

design can handle that – the anomaly detection

ideally pinpoints which service’s metrics are off. In

microservice architectures, a partial rollback is often

better than full cluster rollback.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3217–3229 | 3228

Generalization to Other CI/CD Tools: While our

implementation used Jenkins, the concepts translate

to other platforms:

• GitHub Actions: can implement anomaly

detection gating with the new Deployment

Protection rules. One could create a GitHub Action

that queries metrics (using e.g. Datadog or New

Relic API) after deploy and sets an output that fails

the job if anomaly. There are already community

Actions starting to do this.

• GitLab CI: has a feature called “Metrics

reports” and canary analysis integration. It could

similarly integrate an anomaly check stage.

• TeamCity: though primarily a CI server, it

can run CD pipelines with scripts. A TeamCity build

step could call a detection service and, based on

output, either proceed or fail the build (failing the

build would prevent promotion to next

environment).

Observed Challenges: One challenge we faced

was metric noise. In highly dynamic environments,

distinguishing a deployment-induced anomaly from

background fluctuations is hard. We mitigated this

by using canary deployments and by smoothing

metrics. But this might need more advanced time-

series analysis in very noisy systems. Another

challenge is training data availability for ML. If a

system has had few failures, there may not be much

data to learn from. Unsupervised methods alleviate

this, but they learn “normal” rather than “failure”

and might not catch every failure type if it doesn’t

manifest as a big deviation. Interestingly, an

autonomous pipeline raises questions like: who is

responsible if the automation makes a wrong call?

In our case, an unnecessary rollback is low risk but

imagine an automated system deciding to keep or

rollback a change that has business implications.

Organizations need to set policies on what the

automation is allowed to do.

8 Conclusions

Continuous integration and delivery pipelines are

the lifeblood of modern software deployment, but

they must be resilient to failures to truly enable rapid

innovation. In this paper, we presented a

comprehensive approach to building self-healing

CI/CD pipelines that integrate feedback-loop

automation for fault tolerance. By combining real-

time anomaly detection with automated rollback

logic, our system can detect deployment issues

quickly and recover from them with minimal or no

human intervention. The proposed architecture was

implemented using widely available tools (Jenkins,

Prometheus, etc.) and evaluated in scenarios

reflective of large-scale industry deployments.

The results demonstrate that such self-healing

mechanisms can significantly improve reliability

metrics: we observed substantial reductions in mean

time to recovery and minimized the impact of faulty

releases on end-users. Our pipeline autonomously

handled failures that would have caused prolonged

outages in traditional setups, aligning with reports of

improved MTTR (50% or more faster incident

resolution) in organizations adopting similar

automation. Importantly, these benefits were

achieved while maintaining high accuracy in

detection – thanks to the incorporation of machine

learning models and careful policy design to reduce

false positives.

We grounded our design in real-world practices

and prior research. Concepts like Netflix’s

automated canary analysis and Harness’s AI-driven

rollback were generalized into a tool-agnostic

framework. We also built upon academic works in

DevOps anomaly detection to ensure our techniques

are state-of-the-art. The outcome is a pipeline that

exemplifies the ideal of “fail fast, recover faster,”

effectively turning the mantra of continuous

delivery into a robust, closed-loop control system

for software quality.

In conclusion, self-healing CI/CD pipelines

represent a significant advancement in the pursuit of

reliable, scalable, and efficient software delivery. By

reducing reliance on human intervention and

leveraging feedback-loop automation, organizations

can achieve fault-tolerant delivery pipelines that

keep systems running smoothly even when the

unexpected happens. We encourage DevOps teams

and researchers alike to build on these findings –

integrating anomaly detection, learning algorithms,

and automated remediation – to further realize the

vision of truly resilient continuous delivery. The

synergy of DevOps and AI (often dubbed AIOps) is

poised to transform how we build and ship software,

and self-healing pipelines are a key manifestation of

that transformation.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3217–3229 | 3229

References

[1] Atzberger D (2023) Detecting Outliers in

CI/CD Pipeline Logs using LDA, ENASE 2023 -

NLP approach for log anomaly detection

[2] Capizzi A (2020) Anomaly Detection in

DevOps Toolchain, SEAA - Staging environment

anomaly detection to prevent production issues

[3] Fawzy AH (2023) Framework for

automatic detection of anomalies in DevOps. King

[4] Saud Univ 2023 - Achieved 96% detection

accuracy with ML

[5] Gerber D (2024) Unsupervised Anomaly

Detection in Continuous Integration Pipelines,

ENASE 2024 - ML-based detection of performance

issues in CI

[6] Hrusto A (2022) Optimization of anomaly

detection in a microservice system through

continuous feedback. IEEE/ACM Workshop

[7] Harness, Io (2023) Continuous Delivery

Platform, 2023 - Features AI/ML engine for

continuous verification and automatic rollback

[8] (2023) Boosting CI/CD Effectiveness with

RedHat and Coralogix, On using Tekton pipelines

with feedback loops and automatic rollbacks

[9] (2023) New Relic, GitHub Actions

Deployment Protection Rules with AIOps, Anomaly

detection gates to prevent bad deployments

[10] Tech BN (2018) Automated Canary

Analysis at Netflix with Kayenta, 2018 Describes

Netflix’s canary and rollback process

[11] Emily D (2023). Transforming CI/CD

deployment pipelines with emerging AI techniques

