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Abstract: This paper presents a novel framework for hyperspectral image classification, using deep learning
techniques to achieve high classification accuracy. The proposed approach integrates convolutional neural
networks (CNN) with improved clustering and feature fusion strategies, outperforming traditional methods. By
integrating an optimized architecture and clustering strategy, the proposed method effectively addresses the
challenges of integrating high-dimensional data and spectral-spatial features. Experiments performed on
standard datasets show the superiority of the proposed model, achieving an overall accuracy (OA) of 99.10% for
the Indian Pines dataset and 99.09% for the University of Pavia dataset, outperforming other state-of-the-art
classifiers such as O-CNN, E-CNN and SVM. These results prove the effectiveness of the model in accurately

capturing spatial-spectral features, making it suitable for erspectral data analysis tasks.
pturing spatial-spectral feat king it suitable for hyperspectral dat. lysis task
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1. INTRODUCTION

Hyperspectral imagery (HSI) is widely
used in remote sensing for its ability to capture
hundreds of spectral channels in a single
scene. However, accurate classification of HSI
requires robust techniques to extract features
from the image. This has been a challenging
task due to factors such as the large amount of
data, mixed pixels, and limited training
samples. Over the years, various classification
methods, including spectral domain classifiers
like support vector machines (SVMs), random
forest (RF), and multinomial logistic
regression (MLR), have shown improvements
in understanding HSI scenes.

Recent advancements in technology have
introduced more promising approaches for
HSI classification. Techniques such as
morphological profiles (MPs), Markov random
fields (MRFs), and sparsity signal-based
methods have been introduced to leverage
spatial and contextual properties for a better
understanding of the image scenes. These
methods aim to combine spectral and spatial
information for classification. For instance,
joint sparse models combine information from

Research Scholar,SGGSIE&T
Supervisor, SGGSIE&T

neighboring pixels to enhance classification
performance.

In the domain of computer vision, deep
learning, particularly convolutional neural
networks (CNNs), has gained significant
interest for its outstanding performance in
various tasks like face recognition, object
detection, and video classification. CNNs can
automatically learn feature representations
from raw images through convolutional
blocks, making them superior to traditional
rule-based feature extraction methods. This
feature extraction capability has led to the
application of many CNN models for HSI
classification. Researchers have employed
CNNs to extract nonlinear and invariant deep
features from raw HSI data and avoid
overfitting through various strategies. Other
works have combined CNNs with dimension
reduction methods to extract spectral-spatial
features, constructed hierarchical CNN
structures for high-level deep feature learning,
and designed specific CNN frameworks for
learning both spectral and spatial features.

Although CNNs have shown success in
feature extraction for HSI classification, there
has been limited exploration of multiple
feature learning for this purpose. Multiple
feature learning aims to simultaneously learn
multiple types of features to achieve more
representative feature extraction for image
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processing tasks. In this paper, we propose an
enhanced framework that combines CNN and
multiple feature learning. We extract initial
geometrical feature maps using four widely
used attribute filters to capture spatial
characteristics and local spatial correlations in
the original image. These initial feature maps,
along with the original image, are fed into the
CNN with different inputs corresponding to
different initial features. The CNN extracts
representative  features, which are then
concatenated to form a joint feature map
representing both spectral and contextual
properties of HSI. This joint feature map is
used in subsequent layers to determine the
final labels of HSI pixels.

The proposed CNN consists of proper
convolutional layers, a pooling layer for
spatial invariance, a concatenating layer to
exploit rich information, and a rectified linear
unit (ReLU) function to  accelerate
convergence. As HSI often suffers from
limited training samples, we designed a
relatively shallow but effective network to
avoid overfitting. The framework benefits
from multiple inputs corresponding to various

2. METHODS

200@4x%4 Pooling 2x2 RelU

image features and concurrently exploits
spectral and spatial contextual information.
Despite limited training samples, the proposed
network remains robust and efficient.

The novelty of this work lies in the
integration of multi-threading into a CNN-
based framework, which allows the creation of
common feature maps that capture rich spatial-
spectral information. Using attribute profiles
and a shallow but efficient CNN architecture,
the proposed method addresses the challenges
of limited training samples and achieves state-
of-the-art classification performance on
reference datasets.

The rest of the paper is organized as
follows: Section 2 presents the detailed
mechanism of the designed CNN and the
proposed framework. In Section 3, we provide
experimental — results and  discussions,
investigating various factors influencing the
results. Finally, Section 4 concludes the paper
and offers remarks on the contributions of the
proposed approach.

Concat Layer 9@4x20 Softmax Layer

200@4x4 Pooling 2x2 RelU
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Fig 1. Describe the structure of the proposed framework. The initial step is to extract some HSI
features, followed by some CNN blocks. For each set of features (total test set), individual CNN
blocks are used to learn representative feature maps. These feature maps are then merged with a
connection layer. The weights and biases of each block are refined by backpropagation in the
network. The output of the network for each pixel is a vector containing class membership
probabilities, with C units corresponding to the C classes defined in the hyperspectral dataset. The
core principles of this proposed framework will be developed in more detail in the following sections.

2.1. Extraction of Feature Maps
Morphological profiles (MPs) are utilized to
characterize spatial contextual information,
representing structural variability in images

[27]. However, features obtained from a
specific MP cannot model other geometrical
characteristics. To address this limitation and
simultaneously model various geometrical
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characteristics for feature extraction in HSI
classification, attribute profiles (APs) were
introduced in the work of [28]. APs offer
interesting properties in HSI processing and
can be used to generate an extended AP
(EAP). APs serve as a generalized form of
MPs and are obtained by applying a criterion
T to an image through morphological attribute
filters (AFs) [28]. AFs are connected operators
that process the image by merging connected
components instead of individual pixels. When
the operators are applied to regions, the
attribute results are compared to a pre-defined
reference value. Based on whether the
criterion is met (i.e., if the attribute results are
larger than the reference value), the region is
either preserved or removed from the image.
In the case of removal, the values in the
eliminated region are set to the -closest
grayscale value of the adjacent region.
Additionally, thinning or thickening may be
applied based on whether the merged region
has a lower or greater gray level, respectively.
Afterward, an AP can be constructed by
directly applying a sequence of thinning and
thickening AFs to the image, using a set of
specific criteria. This can be achieved by
utilizing n morphological thickening (¢T) and
n thinning (¢T) operators, resulting in the
construction of an AP from the image f as
follows:

AP(f)=,0T(f), oT (f), .., dT(E), £, oT(f
), s ©T (1), T( T), Eq.l.

Typically, the operators (thickening or
thinning) in image processing are associated
with common criteria like area, volume,
diagonal box, and standard deviation.
Depending on the chosen operators, the image
can be transformed into an extensive or anti-
extensive form. For the purpose of this paper,
our focus is on measuring the effectiveness of
multiple feature learning using the proposed
CNN, rather than achieving absolute
performance maximization. Therefore, we
only extract attribute profiles (APs) based on
four different criteria (i.e., area, standard
deviation, moment of inertia, and length of the
diagonal) as the diverse feature maps for the
classification tasks. Each AP feature is named
according to its corresponding criterion. More
information on the various APs can be found
in [27].

2.2. Proposed CNN

CNNs are designed to extract representative
features from different types of data through
multiple non-linear transformation
architectures [29]. The features learned by a
CNN are generally more reliable and effective
compared to rule-based features. In this paper,
we focus on HSI classification using directed
acyclic graphs (DAG), where the layers are
not limited to sequential chaining. In HSI
classification, a neural network can map input
HSI pixels to output pixel labels, and this
function is composed of a sequence of simple
blocks called layers. The basic layers in a
CNN are as follows:

Mathematically, an individual neuron is
computed by taking a vector of inputs x and
applying an operator with a weight filter f and
bias b:

a=o(fx+b) Eq.2

Here, o(*) represents a nonlinear function
known as an activation function. In a
convolutional layer, each neuron is associated
with a specific spatial location (i, j) relative to
the input image. The output ai,j, which
corresponds to the given input, can be defined
as follows:

ai,j = o((F ® X)i,j + b) Eq.3

In a network, the kernel function F utilizes
learned weights, while X represents either the
input or the layer. The convolution operator @
is applied. Normally, networks include at least
one layer of the activation function. Two
commonly used activation functions are the
sigmoid function and the ReLU function.
Comparatively, the ReLU function is regarded
as more effective than the sigmoid function in
facilitating the training procedure's
convergence [29]. The ReLU function is
defined as follows:

o(x) = max(0, x) Eq. 4

Another crucial layer type is pooling, which
acts as a down-sampling function. The two
most common pooling methods are max-
pooling and mean-pooling. The pooling
function divides the input feature map into
rectangular regions and produces the
maximum or mean value for each of these sub-
regions. Consequently, this helps reduce
computational complexity.
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In the top layer, a softmax function is typically
applied to obtain a probability distribution as
an output, where each unit represents the
probability of class membership. Following
this principle, this paper introduces different
features from the raw image into their
respective CNN blocks, and the network is
fine-tuned using backpropagation.

2.3. CNN Architecture

HSI typically contains numerous spectral
bands, and a HSI classifier usually takes the
entire image as input, which sets it apart from
common classification problems. Recognizing
the significance of spatial contextual
information for HSI classification, we opt for a
three-dimensional structure of the HSI pixel as
input to the CNN model we built. Given a HSI
cube X € RM*N*L, where M * N represents
the image size and L indicates the number of
spectral channels, we use a K * K * B format
structure as input for a test pixel xi (where i is
the index of the test pixel). Here, K * K is a
fixed neighborhood size, and B represents the
dimension of the input features. For instance,
in the original image cube, B equals the
number of spectral channels L. In this study,
after extracting T attribute profile features
(e.g., area, standard deviation, length of
diagonal, and moment of inertia), each
attribute can be represented as At €
RMxNxBt, where t =1, 2, ...T. At denotes the
tth attribute of X, and Bt indicates the number
of spectral channels of At. For each pixel in
At, a K * K * Bt neighborhood region patch is
selected as input for the corresponding model.

Each convolutional layer utilizes a four-
dimensional convolution of W * W * B* F,
where W * W represents the kernel size of the
convolutional layer, B is the dimension of the
input variable, and F denotes the number of
kernels in each convolutional layer. For
example, for a 2 * 2*200 * 50 convolutional
layer with an input size of 5 * 5 * 200, the
output in the DAG will be in a format of 4 * 4
* 50, which will then be used as the input for
the next layer.

The proposed network's three-dimensional
input format results in a high dimensionality,
potentially reaching several hundreds (K * K *
B). This increased dimensionality can pose an
overfitting risk during the training process. To
address this issue, the proposed network
incorporates the ReLU activation function.

The ReLU wused in this study is a
straightforward nonlinear function that assigns
0 or 1 based on whether the neuron's input is
positive or negative. It has been demonstrated
that ReLU can significantly enhance network
performance in various scenarios [30].

For classification using the learned
representative features, the proposed network
employs the softmax operator in its top layer.
Softmax is a probabilistic-based classification
model that measures the correlation between
an output value and a reference value through
a probability score. It's worth noting that, in
the CNN architecture, softmax can be applied
across spectral channels for all spatial
locations in a convolutional manner [31].
Given the three-dimensional input (K * K *
B), the probability that the input belongs to
class c is calculated as follows: [probability
formula].

Ply=c)=

eank

Z}g_l 2exmnb

Eq. 5

To achieve the necessary probability
distribution using the softmax operator, the
number of kernels in the last layer should be
set equal to the number of classes defined in
the HSI dataset. The entire training process of
the network can be viewed as optimizing
parameters to minimize a loss function, which
measures the discrepancy between the
network's outputs and the ground truth values
for the training dataset. Let yi=1, ..., c, ..., C
represent the target ground truth value
corresponding to the test pixel xi, and p(yi) be
the output class membership distribution with i
as the index of the test pixel. The multi-class
hinge loss employed in this study is expressed
as follows:

L= ?:1225:127”“95 01-p@i=c)) Eq6

Ultimately, the prediction label is determined
by selecting the argument that minimizes the
value of the loss function:

yi = argminL ¢ Eq.7
3. RESLTS AND DISCUSSION

The proposed framework underwent testing
using two benchmark HSI datasets. Section
3.1 introduces these datasets and provides
details about their class information. In
Section 3.2, the specific network architectures
applied in this study and other relevant
information for the experimental evaluation
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are presented. The experimental results for all
the classifiers are outlined in Section 3.3,
while Section 3.4 focuses on additional
experiments that influenced the classification
outcomes.

In this research, both the original features and
four attribute features derived from four
attribute filters (area, moment of inertia, length

200@4x%4 Pooling 2x2

of diagonal, and standard deviation) are
utilized as inputs to the proposed network. The
parameters for each attribute profile criterion
are set as defaults, as described in [28]. The
attribute features extracted in this study have
parameters set as described in [27, 31]. All the
scripts were executed in Google Colab. Figure
2 depicts the architecture of the classifier.

200@2%2 9@4x%4 Softmax Layer

Fig 2. The architecture of classifier.

3.1 Description of the Data

In this paper, two benchmark datasets [32] are
employed to assess the efficacy of the
proposed framework.

1) The Indian Pines dataset was
generated using the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor,
which captured imagery over a location in
northwest Indiana, USA. The dataset consists
of 220 spectral bands spanning wavelengths
from 0.2 to 2.4 pm. Each band comprises 145
* 145 pixels with a spatial resolution of 20
meters. The dataset contains 16 labeled

classes, and during the experiments, 20 water
absorption bands were excluded depicted in
figure 3(a) and 3(b).

2) The University of Pavia, Italy,
provided the Reflective Optics System
Imaging Spectrometer (ROSIS) dataset. It was
collected over the region in northern Italy and
consists of 610 * 610 pixels with a spatial
resolution of 1.3 meters per pixel. The dataset
comprises nine labeled ground truths and
includes 103 bands for the experiments after
eliminating water absorption bands depicted in
figure 3(c) and 3(d).

Fig.3.(a) False color
composite of Indian
Pines dataset

Each of the two datasets is divided into two
subsets: a training set and a test set. The
specifics regarding the number of subsets can

Fig.3.(b) groundtruth of
Indian Pines dataset

Fig.3.(c) False color Fig.3.(d) False color
composite of Pavia composite of Pavia
dataset dataset

be found in Tables 1 and 2. During the training
process of each Convolutional Neural Network
(CNN) block, 90% of the training pixels are
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utilized to learn the filter parameters for that
block, while the remaining 10% form the
validation set. The training set is responsible
for adjusting the neural network's weights,
while the validation set plays a crucial role in
providing an unbiased evaluation of the

model's fit to the training data. This unbiased
evaluation is especially important when tuning
hyperparameters. The test set, on the other
hand, is exclusively used to assess the
performance of a fully-trained CNN model.

Table 1. Class Information for Indian Pines Data Set.

No. Class Color Train Test
1 Alfalfa e 5 41
2 Corn-notill ] 143 1285
3 Corn-mintill I 83 747
4 Corn [ ] 24 213
5 Grass-pasture - 48 435
6 Grass-trees e 73 657
7 Grass-pasture-mowed 3 25
8 Hay-windrowed e 48 430
9 Oats 2 18
10 Soybean-notill 97 875
11 Soybean-mintill I 245 2210
12 Soybean-clean _ 59 534
13 Wheat I 20 185
14 Woods [ ] 126 1139
15 Buildings-Grass-Trees-Drives [ 39 347
16 Stone-Steel-Towers [ 9 84

Total 1024 9225

Table 2. Class Information for Pavia Data Set.

No. Class Train Test
1 Asphalt 199 6432
2 Meadows 559 18,090
3 Gravel 63 2036
4 Trees 92 2972
5 Metal Sheets 40 1305
6 Bare soil 151 4878
7 Bitumen 40 1290
8 Bricks 110 3572
9 Shadows 28 919

Total 1282 41,494

3.2. Experimental Setup and CNN Design

The CNN blocks were designed with a
consistent architecture for different features.
Each block consists of three convolutional
layers, pooling layers, ReLU layers, and
concatenating layers. Specific details about the
network structure can be found in Tables 3 and

4. The input images are normalized to the
range of [-1, 1]. In each convolutional layer,
200 kernels are empirically set. The input
neighborhood size for each feature is 5 * 5 for
the Indian Pines dataset, and 7 * 7 for the
University of Pavia dataset.
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For the CNN models, a learning rate of 0.01 is
used, and the training process is run for 100

epochs for the Indian Pines and University of

Pavia datasets. The batch size is set to 10. To
ensure the robustness of the proposed
framework, the results are quantitatively

validated using overall accuracy (OA),
average accuracy (AA), and the Kappa
coefficient (k) as performance metrics. Each
reported result is an average of ten repeated
experiments with randomly selected training
samples.

Table 3. Network Architecture for Indian Pines Data Set.

Convolution: 4*20*200*16

Batch Normalization

Relu

Max Pooling : 2*2

11*11%32

11*11%32

11*11%32
5*5%32

Table 4. Network Structure for University of Pavia Data Set.

Convolution: 4*20*200*9
BN
ReLU
Max Pooling : 2*2
3.3. Result and discussion
3.3.1. Indian Pines Data set results

Evaluation Metrics

The evaluation process employs the confusion
matrix as the primary quantitative measure,
including overall accuracy (OA), average
accuracy (AA), and statistical Kappa (k)
coefficients, to gauge the performance of the

5%5%64
5%5%64
5*5%64
2*%2%64

proposed network against alternative methods.
OA quantifies the ratio of correctly classified
test samples to the total number of test
samples, while AA represents the mean
accuracy across all classes. The kappa
coefficient assesses the level of agreement
between the classification maps generated by

Confusion Matrix - Indian Pines

True Label

Stone-Steel Towers

Com-notil - ¢
Grass-pasture

Grass pasture-mowed - ¢

Hay-windrowed - ©

outs- o

the model under consideration and the
provided ground truth.

ean-noil

o
soybeanmintl - ©

Soyb
Buldings-GrassTrees Drives - ©

Predicted Label

Fig.4 Confusion matrix for Indian Pines data

Table 5 displays the classification outcomes
achieved by different classifiers for the Indian
Pines dataset, and Figure 5 provides the

corresponding maps. It can be

observed that

all CNN-based models exhibit commendable
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performance, with the proposed method
showing notable improvements on this dataset.

Regarding O-CNN[41], the original image is
used as input for the network. To validate the
effectiveness of the proposed mechanism,
spatial contextual features are extracted and
combined as input for E-CNN. While E-
CNN[41], achieves more accurate results than
O-CNN, it falls short of surpassing the
proposed method. The superior performance
achieved by the proposed framework is likely
attributed to the joint utilization of spatial-
spectral information, resulting in reduced
"salt-and-pepper" noise in the classification

In comparison to O-CNN, the proposed
method shows improvements of 2.3% in OA.
Similar conclusions can be drawn when
comparing the proposed method with E-CNN,
particularly for classes with similar labels, as
evident from Table 5. For example, the
proposed method outperforms E-CNN by
5.18%, and as compared to SVM proposed
method outperforms E-NN by 14.32%
accuracy. Additionally, the proposed method
excels at preserving discontinuities in the
classification maps. Moreover, CNN methods
do not require predefined parameters, unlike
pixel-level extraction methods.

maps.

Table 5. Classification Results (%) of University of Indian Pine Data Set.

ClassNo. O-CNN E-CNN SVM Proposed
1 89.74£0.01 94.63+5.21 33.81+0.05 100 £ 0.00
2 85.01 £0.12 89.90+1.71 74.99 +0.03 96.76 + 0.56
3 86.41£0.26 89.97+1.25 68.86+0.02 99.57 + 0.66
4 96.19+0.02 97.65+1.07 47.57+0.04 99.15+0.91
5 88.19+0.01 97.06+1.07 85.29 +0.03 99.86+0.11
6 88.16 £0.02 99.33+0.41 95.77+£0.03 99.51 +£0.34
7 71.20 + 60.00 = 0.24

87.50+£0.04 10.24 100 £ 0.00
8 100£0.00 99.86+0.19 98.56+0.01 99.90+0.19
9 66.67 + 30.00 £ 0.08

88.23+0.16 11.11 93.34+5.44
10 89.35+0.01 92.78+1.41 75.45+0.02 99.43+£0.19
11 93.71+0.03 95.70+1.34 82.14+0.01 99.38 +0.20
12 93.63£0.23 80.56+3.29 61.31+0.01 98.58 £ 0.39
13 100 +£0.00 99.68 £0.43 95.14+0.02 99.89 +0.22
14 97.99+0.04 98.53+£1.03 94.19+0.02 99.84 +0.13
15 88.92+0.01 90.72+2.67 53.91+0.04 100 +0.00
16 95.29+0.01 91.90+5.80 80.95=+0.05 97.14+£0.95
OA 91.62 £0.01 93.92+0.91 79.60 + 0.01 99.10 + 0.06
AA 91.78 £ 0.01 91.01+0.93 71.12+0.01 98.90 + 0.30
Kappa 90.45+0.01 93.06+1.04 76.66=0.01 98.98 + 0.0
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Fig. 5 (a) Classification
maps of the Indian Pines
dataset O-
CNN(OA=91.62)

dataset O-
ENN(OA=93.92)

3.3.2. Pavia Data set classification
Evaluation Metrics

The evaluation process employs the confusion
matrix as the primary quantitative measure,
including overall accuracy (OA), average
accuracy (AA), and statistical Kappa (k)
coefficients, to gauge the performance of the
proposed network against alternative methods.

Fig. 5 (b) Classification
maps of the Indian Pines

Fig. 5 (c¢) Classification
maps of the Indian Pines
dataset SVM (OA=79.60)

Fig. 5 (d) Classification
maps of the Indian Pines
dataset Proposed
(0A=99.10)

OA quantifies the ratio of correctly classified
test samples to the total number of test
samples, while AA represents the mean
accuracy across all classes. The kappa
coefficient assesses the level of agreement
between the classification maps generated by
the model under consideration and the
provided ground truth.

Confusion Matrix - Pavia University

Asphalt 1900 o

Meadows

Gravel - o o saz2

Trees o 0 ] 895

Metal Sheets o 0

True Label

Bare Soil - o 0

Bricks - o 0

Shadows -

o

401

o

3000

1508 ] 0 o =

1000
1105 o

6  presents

Asphalt -

Meadows

Gravel -

etal Sheets -

=
Predicted Label

Bare Soil -

Btumen -

Bricks -

Shadows -

Fig.6 Confusion matrix for University of Pavia data

the

class-specific

proposed method over other algorithms in

classification accuracies for the University of
Pavia image, while Figure 7 displays the
representative classification maps. The results
clearly demonstrate the superiority of the

terms of OA, AA, and Kappa. When evaluated
using the University of Pavia dataset, the
proposed method achieves remarkable
accuracy improvements. Inspecting the
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classification maps, it is evident that O-CNN
and E-CNN exhibit more scattered noisy
points compared to the proposed method. In
contrast, the proposed method -effectively
eliminates these noisy artifacts and delivers
smoother  classification  results  while
preserving clear boundaries without blurring
depicted in figure 7.

In comparison to E-CNN, the proposed
method shows improvements of 1.12% in OA.
Similar conclusions can be drawn when

comparing the proposed method with E-CNN,
particularly for classes with similar labels, as
evident from Table 6. For example, the
proposed method outperforms SVM by 5.15%,
and as compared to O-CNN proposed method
outperforms by 1% accuracy. Additionally, the
proposed method excels at preserving
discontinuities in the classification maps.
Moreover, CNN methods do not require
predefined parameters, unlike pixel-level
extraction methods.

Table 6. Classification Results (%) of University of Pavia Data Set.

ClassNo. O-CNN E-CNN SVM Proposed
1 98.75 +0.01 99.36 + 0.47 94.65+0.01 99.29 + 0.56
2 99.35 +0.01 99.96 + 0.03 98.12 +0.01 99.97 +0.02

3 91.83 +£0.03 97.89 +1.05 76.84 + 0.04 91.68 £2.31
4 93.00 + 0.02 90.51 +3.52 92.91 +0.03 98.48 + 0.64

5 98.57 +0.01 96.88 +3.45 99.30 + 0.01 100 £ 0.00
6 99.68 +0.01 99.40 + 0.45 87.84 +0.02 99.79 +0.27
7 99.70 + 0.01 99.18 +0.76 85.92 +0.02 98.60 + 1.08
8 96.56 + 0.02 97.99 + 1.72 89.92 +0.01 97.87 +0.63
? 93.65+0.03 78.24 + 12.68 99.76 + 0.01 99.41 + 0.47
0A 98.09 +0.01 98.25 + 0.42 93.94+0.01 99.09 + 0.03
AA 96.79 = 0.01 95.49 + 1.44 91.69 + 0.01 98.34 +0.18
Kappa 97.47 +0.01 97.68 +0.57 91.93+0.01 98.80 + 0.05

Fig. 7 (b) Classification
maps of the Indian Pines

dataset O-
ENN(OA=98.25)

Fig. 7 (a) Classification
maps of the Indian Pines
dataset O-
CNN(0OA=98.09)

3.3.3 The Influence of the Number of
Training Iterations

The number of training epochs plays a crucial
role in CNN-based methods. Figure 8
illustrates how the training error changes with

Fig. 7 (c) Classification
maps of the Indian Pines
dataset SVM
(0OA=93.94)

Fig.7 (d) Classification
maps of the Indian Pines
dataset Proposed
(0A=99.09)

varying epochs across all three datasets.
During the network training process,
backpropagation is used to minimize the

training objective=— Z?’:tl Y. log (p;c), which
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is computed as the sum of logarithms of
prediction probabilities for each class.

The "error" term is also calculated during
training by error = Z?I:tlz P;.(argmaxp; =
c), where, training samples denoted by N; and

P;. representing the sum of prediction
probabilities for pixels x;belonging to their
respective c;pclasses. This assessment proves
to be helpful in evaluating the model. ReLU’s
presence can expedite network convergence
and enhance overall training efficiency [29].

. error ohjective
).k wrain 3
0.4 il o
0z i
0t ]
0 50 00 i 50 [0
epochs epochs
a) Indian Pines
. error , objective
0.4
1
0.2
~ i}
0 50 100 =0 oo
epochs epochs

b) University of Pavia

Fig. 8 The training error of the proposed framework was evaluated on two different datasets.

3.3.4. The influence of the number of
training samples

The number of training samples plays a crucial
role in training a CNN. It is well-known that
CNNs require an abundance of training
samples to effectively extract features.
However, in the case of hyperspectral imagery
(HSI), obtaining a large number of training
samples is not common. Therefore, it is
essential to develop a network that is robust
and efficient for classification tasks in such
scenarios.

In this paper, the impact of the number of
training samples on the accuracies of three
datasets is investigated. For the Indian Pines
scene, training pixels are randomly selected
from 5% to 50% of the samples, with the
remaining pixels used for testing. For the
University of Pavia and Salinas images, 50 to

500 pixels per class are randomly chosen as
training samples, while the rest are used for
testing.

Figure 9 displays the overall accuracy (OA) of
various methods with different numbers of
training samples. It is evident that all methods
show improved performance as the number of
training samples increases, particularly for the
Indian Pines dataset, where the proposed
method outperforms the others. Notably, the
proposed method achieves an accuracy higher
than 95% with less than 10% of the training
samples. As the number of training samples
further increases, the accuracies tend to
stabilize for all three methods.

For the University of Pavia dataset, the
classification accuracies of the CNN-based
methods reach approximately 100% with more
training samples, especially for the proposed
method, which achieves an accuracy of over
96% with 50 samples per class.
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Throughout all two datasets, the CNN-based
classifiers demonstrate sensitivity to the
number of training samples, with accuracy
increasing as more training samples are used.
Moreover, these CNN-based approaches show
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competitive performance even with a large
number of training samples, with the proposed
method displaying enhanced robustness across
different sample sizes depicted in figure 7.
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Fig.9 Model performance across various proportions of training samples.(a)Indian Pines; (b)Pavia University

4. Conclusion

This  study introduced a  novel
convolutional neural network (CNN)
framework designed for hyperspectral
image (HSI) classification. The proposed
method combines spectral and spatial
features to create a highly efficient and
powerful classification model. By using
multiple CNN blocks and a connection
layer, the architecture efficiently captures
various  spatial-spectral ~ information,
thereby improving classification
performance.Experimental  results  on
standard datasets, including the Indian
Pine and the University of Pavia,
emphasize the superiority of the proposed
method over traditional and existing CNN-
based approaches. The model achieved an
overall accuracy (OA) of 99. 10% and
99.09% on the Indian Pines and University
of Pavia datasets, respectively. These
results outperformed alternative methods
such as O-CNN, E-CNN and SVM,
especially in preserving spatial
discontinuities and minimizing noise
artifacts in classification maps. For
example, the proposed framework was
shown to improve by 5.18% over E-CNN
and 14.0% over SVM. 32% improvement
over SVM for specific classes.The
inclusion of ReLU activation and pooling

layers, along with strategic use of multiple
input feature maps, mitigates overfitting
and accelerates convergence, even with
limited training samples. In particular, the
model maintained strong performance with
fewer training samples, achieving more
than 95% accuracy on Indian pine trees
with less than 10% training samples. This
adaptation for small The datasets highlight
the practicality of the proposed approach
in real-world scenarios.In summary, the
proposed CNN-based framework shows
significant advances in HSI classification,
providing a shallow but effective network
that integrates multiple feature learning
strategies. The results highlight the
potential of leveraging spatial information
and deep learning to improve classification
accuracy, paving the way for future
advances in hyperspectral data analysis.

Author Contributions

We present a novel framework for
hyperspectral image (HSI) classification that
integrates convolutional neural networks
(CNNs) with a multi-feature learning
approach. Their primary contribution lies in
designing a unique CNN architecture capable
of efficiently capturing both spatial and
spectral features through multiple individual
CNN blocks, each extracting distinct features
from the HSI data. By concatenating these
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feature maps into a joint feature map, the
model can leverage a combination of spatial
and spectral information, leading to improved
classification accuracy. The framework also
addresses the issue of limited training samples
in HSI by using multiple input feature maps
and ReLU activation, which helps reduce
overfitting and accelerate  convergence.
Additionally, the authors identified an optimal
three-layer CNN structure with a specific
neighborhood and pooling size, balancing
efficiency and  complexity.  Extensive
experiments on three benchmark datasets
confirm the framework's effectiveness,
showcasing significant performance
improvements over traditional classifiers and
CNN-based single feature methods.
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