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Abstract: This paper presents a novel framework for hyperspectral image classification, using deep learning 

techniques to achieve high classification accuracy. The proposed approach integrates convolutional neural 

networks (CNN) with improved clustering and feature fusion strategies, outperforming traditional methods. By 

integrating an optimized architecture and clustering strategy, the proposed method effectively addresses the 

challenges of integrating high-dimensional data and spectral-spatial features. Experiments performed on 

standard datasets show the superiority of the proposed model, achieving an overall accuracy (OA) of 99.10% for 

the Indian Pines dataset and 99.09% for the University of Pavia dataset, outperforming other state-of-the-art 

classifiers such as O-CNN, E-CNN and SVM. These results prove the effectiveness of the model in accurately 

capturing spatial-spectral features, making it suitable for hyperspectral data analysis tasks. 

Keywords: capturing, presents, superiority, O-CNN, E-CNN, SVM 

1. INTRODUCTION 

Hyperspectral imagery (HSI) is widely 

used in remote sensing for its ability to capture 

hundreds of spectral channels in a single 

scene. However, accurate classification of HSI 

requires robust techniques to extract features 

from the image. This has been a challenging 

task due to factors such as the large amount of 

data, mixed pixels, and limited training 

samples. Over the years, various classification 

methods, including spectral domain classifiers 

like support vector machines (SVMs), random 

forest (RF), and multinomial logistic 

regression (MLR), have shown improvements 

in understanding HSI scenes. 

Recent advancements in technology have 

introduced more promising approaches for 

HSI classification. Techniques such as 

morphological profiles (MPs), Markov random 

fields (MRFs), and sparsity signal-based 

methods have been introduced to leverage 

spatial and contextual properties for a better 

understanding of the image scenes. These 

methods aim to combine spectral and spatial 

information for classification. For instance, 

joint sparse models combine information from 

neighboring pixels to enhance classification 

performance. 

In the domain of computer vision, deep 

learning, particularly convolutional neural 

networks (CNNs), has gained significant 

interest for its outstanding performance in 

various tasks like face recognition, object 

detection, and video classification. CNNs can 

automatically learn feature representations 

from raw images through convolutional 

blocks, making them superior to traditional 

rule-based feature extraction methods. This 

feature extraction capability has led to the 

application of many CNN models for HSI 

classification. Researchers have employed 

CNNs to extract nonlinear and invariant deep 

features from raw HSI data and avoid 

overfitting through various strategies. Other 

works have combined CNNs with dimension 

reduction methods to extract spectral-spatial 

features, constructed hierarchical CNN 

structures for high-level deep feature learning, 

and designed specific CNN frameworks for 

learning both spectral and spatial features. 

Although CNNs have shown success in 

feature extraction for HSI classification, there 

has been limited exploration of multiple 

feature learning for this purpose. Multiple 

feature learning aims to simultaneously learn 

multiple types of features to achieve more 

representative feature extraction for image 
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processing tasks. In this paper, we propose an 

enhanced framework that combines CNN and 

multiple feature learning. We extract initial 

geometrical feature maps using four widely 

used attribute filters to capture spatial 

characteristics and local spatial correlations in 

the original image. These initial feature maps, 

along with the original image, are fed into the 

CNN with different inputs corresponding to 

different initial features. The CNN extracts 

representative features, which are then 

concatenated to form a joint feature map 

representing both spectral and contextual 

properties of HSI. This joint feature map is 

used in subsequent layers to determine the 

final labels of HSI pixels. 

The proposed CNN consists of proper 

convolutional layers, a pooling layer for 

spatial invariance, a concatenating layer to 

exploit rich information, and a rectified linear 

unit (ReLU) function to accelerate 

convergence. As HSI often suffers from 

limited training samples, we designed a 

relatively shallow but effective network to 

avoid overfitting. The framework benefits 

from multiple inputs corresponding to various 

image features and concurrently exploits 

spectral and spatial contextual information. 

Despite limited training samples, the proposed 

network remains robust and efficient. 

The novelty of this work lies in the 

integration of multi-threading into a CNN-

based framework, which allows the creation of 

common feature maps that capture rich spatial-

spectral information. Using attribute profiles 

and a shallow but efficient CNN architecture, 

the proposed method addresses the challenges 

of limited training samples and achieves state-

of-the-art classification performance on 

reference datasets. 

The rest of the paper is organized as 

follows: Section 2 presents the detailed 

mechanism of the designed CNN and the 

proposed framework. In Section 3, we provide 

experimental results and discussions, 

investigating various factors influencing the 

results. Finally, Section 4 concludes the paper 

and offers remarks on the contributions of the 

proposed approach. 

 

2. METHODS 

 

Fig 1. Describe the structure of the proposed framework. The initial step is to extract some HSI 

features, followed by some CNN blocks. For each set of features (total test set), individual CNN 

blocks are used to learn representative feature maps. These feature maps are then merged with a 

connection layer. The weights and biases of each block are refined by backpropagation in the 

network. The output of the network for each pixel is a vector containing class membership 

probabilities, with C units corresponding to the C classes defined in the hyperspectral dataset. The 

core principles of this proposed framework will be developed in more detail in the following sections. 

 

2.1. Extraction of Feature Maps 

Morphological profiles (MPs) are utilized to 

characterize spatial contextual information, 

representing structural variability in images 

[27]. However, features obtained from a 

specific MP cannot model other geometrical 

characteristics. To address this limitation and 

simultaneously model various geometrical 
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characteristics for feature extraction in HSI 

classification, attribute profiles (APs) were 

introduced in the work of [28]. APs offer 

interesting properties in HSI processing and 

can be used to generate an extended AP 

(EAP). APs serve as a generalized form of 

MPs and are obtained by applying a criterion 

T to an image through morphological attribute 

filters (AFs) [28]. AFs are connected operators 

that process the image by merging connected 

components instead of individual pixels. When 

the operators are applied to regions, the 

attribute results are compared to a pre-defined 

reference value. Based on whether the 

criterion is met (i.e., if the attribute results are 

larger than the reference value), the region is 

either preserved or removed from the image. 

In the case of removal, the values in the 

eliminated region are set to the closest 

grayscale value of the adjacent region. 

Additionally, thinning or thickening may be 

applied based on whether the merged region 

has a lower or greater gray level, respectively. 

Afterward, an AP can be constructed by 

directly applying a sequence of thinning and 

thickening AFs to the image, using a set of 

specific criteria. This can be achieved by 

utilizing n morphological thickening (ϕT) and 

n thinning (ϕT) operators, resulting in the 

construction of an AP from the image f as 

follows: 

AP( f ) = ,ϕT( f ), ϕT ( f ), ..., ϕT( f ), f , φT( f 

), ..., φT ( f ), φT( f ),      Eq.1. 

Typically, the operators (thickening or 

thinning) in image processing are associated 

with common criteria like area, volume, 

diagonal box, and standard deviation. 

Depending on the chosen operators, the image 

can be transformed into an extensive or anti-

extensive form. For the purpose of this paper, 

our focus is on measuring the effectiveness of 

multiple feature learning using the proposed 

CNN, rather than achieving absolute 

performance maximization. Therefore, we 

only extract attribute profiles (APs) based on 

four different criteria (i.e., area, standard 

deviation, moment of inertia, and length of the 

diagonal) as the diverse feature maps for the 

classification tasks. Each AP feature is named 

according to its corresponding criterion. More 

information on the various APs can be found 

in [27]. 

2.2. Proposed CNN 

CNNs are designed to extract representative 

features from different types of data through 

multiple non-linear transformation 

architectures [29]. The features learned by a 

CNN are generally more reliable and effective 

compared to rule-based features. In this paper, 

we focus on HSI classification using directed 

acyclic graphs (DAG), where the layers are 

not limited to sequential chaining. In HSI 

classification, a neural network can map input 

HSI pixels to output pixel labels, and this 

function is composed of a sequence of simple 

blocks called layers. The basic layers in a 

CNN are as follows: 

Mathematically, an individual neuron is 

computed by taking a vector of inputs x and 

applying an operator with a weight filter f and 

bias b:  

a = σ( f x + b)  Eq. 2 

Here, σ(•) represents a nonlinear function 

known as an activation function. In a 

convolutional layer, each neuron is associated 

with a specific spatial location (i, j) relative to 

the input image. The output ai,j, which 

corresponds to the given input, can be defined 

as follows: 

     ai,j = σ((F ⊗ X)i,j + b)             Eq. 3 

In a network, the kernel function F utilizes 

learned weights, while X represents either the 

input or the layer. The convolution operator ⊗ 

is applied. Normally, networks include at least 

one layer of the activation function. Two 

commonly used activation functions are the 

sigmoid function and the ReLU function. 

Comparatively, the ReLU function is regarded 

as more effective than the sigmoid function in 

facilitating the training procedure's 

convergence [29]. The ReLU function is 

defined as follows: 

σ(x) = max(0, x) Eq. 4 

Another crucial layer type is pooling, which 

acts as a down-sampling function. The two 

most common pooling methods are max-

pooling and mean-pooling. The pooling 

function divides the input feature map into 

rectangular regions and produces the 

maximum or mean value for each of these sub-

regions. Consequently, this helps reduce 

computational complexity. 
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In the top layer, a softmax function is typically 

applied to obtain a probability distribution as 

an output, where each unit represents the 

probability of class membership. Following 

this principle, this paper introduces different 

features from the raw image into their 

respective CNN blocks, and the network is 

fine-tuned using backpropagation. 

2.3. CNN Architecture 

HSI typically contains numerous spectral 

bands, and a HSI classifier usually takes the 

entire image as input, which sets it apart from 

common classification problems. Recognizing 

the significance of spatial contextual 

information for HSI classification, we opt for a 

three-dimensional structure of the HSI pixel as 

input to the CNN model we built. Given a HSI 

cube X ∈ RM*N*L, where M * N represents 

the image size and L indicates the number of 

spectral channels, we use a K * K * B format 

structure as input for a test pixel xi (where i is 

the index of the test pixel). Here, K * K is a 

fixed neighborhood size, and B represents the 

dimension of the input features. For instance, 

in the original image cube, B equals the 

number of spectral channels L. In this study, 

after extracting T attribute profile features 

(e.g., area, standard deviation, length of 

diagonal, and moment of inertia), each 

attribute can be represented as At ∈ 

RM×N×Bt, where t = 1, 2, ...T. At denotes the 

tth attribute of X, and Bt indicates the number 

of spectral channels of At. For each pixel in 

At, a K * K * Bt neighborhood region patch is 

selected as input for the corresponding model. 

Each convolutional layer utilizes a four-

dimensional convolution of W * W * B* F, 

where W * W represents the kernel size of the 

convolutional layer, B is the dimension of the 

input variable, and F denotes the number of 

kernels in each convolutional layer. For 

example, for a 2 * 2*200 * 50 convolutional 

layer with an input size of 5 * 5 * 200, the 

output in the DAG will be in a format of 4 * 4 

* 50, which will then be used as the input for 

the next layer. 

The proposed network's three-dimensional 

input format results in a high dimensionality, 

potentially reaching several hundreds (K * K * 

B). This increased dimensionality can pose an 

overfitting risk during the training process. To 

address this issue, the proposed network 

incorporates the ReLU activation function. 

The ReLU used in this study is a 

straightforward nonlinear function that assigns 

0 or 1 based on whether the neuron's input is 

positive or negative. It has been demonstrated 

that ReLU can significantly enhance network 

performance in various scenarios [30]. 

For classification using the learned 

representative features, the proposed network 

employs the softmax operator in its top layer. 

Softmax is a probabilistic-based classification 

model that measures the correlation between 

an output value and a reference value through 

a probability score. It's worth noting that, in 

the CNN architecture, softmax can be applied 

across spectral channels for all spatial 

locations in a convolutional manner [31]. 

Given the three-dimensional input (K * K * 

B), the probability that the input belongs to 

class c is calculated as follows: [probability 

formula]. 

𝑃(𝑦 = 𝑐) =
𝑒𝑋𝑚𝑛𝑘

∑ ∑𝐵
𝑏=1 𝑒𝑋𝑚𝑛𝑏    Eq. 5 

To achieve the necessary probability 

distribution using the softmax operator, the 

number of kernels in the last layer should be 

set equal to the number of classes defined in 

the HSI dataset. The entire training process of 

the network can be viewed as optimizing 

parameters to minimize a loss function, which 

measures the discrepancy between the 

network's outputs and the ground truth values 

for the training dataset. Let yi = 1, ..., c, ..., C 

represent the target ground truth value 

corresponding to the test pixel xi, and p(yi) be 

the output class membership distribution with i 

as the index of the test pixel. The multi-class 

hinge loss employed in this study is expressed 

as follows:  

𝐿 = ∑ ∑𝑁
𝑖=1 ∑ ∑𝐶

𝑐=1 𝑚𝑎𝑥 (0,1 − 𝑝(𝑦𝑖 = 𝑐))  Eq 6 

Ultimately, the prediction label is determined 

by selecting the argument that minimizes the 

value of the loss function: 

𝑦̂𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐿 𝑐  Eq. 7 

3. RESLTS AND DISCUSSION 

The proposed framework underwent testing 

using two benchmark HSI datasets. Section 

3.1 introduces these datasets and provides 

details about their class information. In 

Section 3.2, the specific network architectures 

applied in this study and other relevant 

information for the experimental evaluation 



International Journal of Intelligent Systems and Applications in Engineering                    IJISAE, 2024, 12(23s), 3230–3244 |  3234 

 

are presented. The experimental results for all 

the classifiers are outlined in Section 3.3, 

while Section 3.4 focuses on additional 

experiments that influenced the classification 

outcomes. 

In this research, both the original features and 

four attribute features derived from four 

attribute filters (area, moment of inertia, length 

of diagonal, and standard deviation) are 

utilized as inputs to the proposed network. The 

parameters for each attribute profile criterion 

are set as defaults, as described in [28]. The 

attribute features extracted in this study have 

parameters set as described in [27, 31]. All the 

scripts were executed in Google Colab. Figure 

2 depicts the architecture of the classifier. 

 

Fig 2. The architecture of classifier. 

3.1 Description of the Data 

In this paper, two benchmark datasets [32] are 

employed to assess the efficacy of the 

proposed framework. 

1) The Indian Pines dataset was 

generated using the Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS) sensor, 

which captured imagery over a location in 

northwest Indiana, USA. The dataset consists 

of 220 spectral bands spanning wavelengths 

from 0.2 to 2.4 µm. Each band comprises 145 

* 145 pixels with a spatial resolution of 20 

meters. The dataset contains 16 labeled 

classes, and during the experiments, 20 water 

absorption bands were excluded depicted in 

figure 3(a) and 3(b). 

2) The University of Pavia, Italy, 

provided the Reflective Optics System 

Imaging Spectrometer (ROSIS) dataset. It was 

collected over the  region in northern Italy and 

consists of 610 * 610 pixels with a spatial 

resolution of 1.3 meters per pixel. The dataset 

comprises nine labeled ground truths and 

includes 103 bands for the experiments after 

eliminating water absorption bands depicted in 

figure 3(c) and 3(d). 

 

  

  

Fig.3.(a) False color 

composite of Indian 

Pines dataset 

Fig.3.(b) groundtruth of 

Indian Pines dataset 

Fig.3.(c) False color 

composite of Pavia 

dataset 

Fig.3.(d) False color 

composite of Pavia 

dataset 

    

Each of the two datasets is divided into two 

subsets: a training set and a test set. The 

specifics regarding the number of subsets can 

be found in Tables 1 and 2. During the training 

process of each Convolutional Neural Network 

(CNN) block, 90% of the training pixels are 
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utilized to learn the filter parameters for that 

block, while the remaining 10% form the 

validation set. The training set is responsible 

for adjusting the neural network's weights, 

while the validation set plays a crucial role in 

providing an unbiased evaluation of the 

model's fit to the training data. This unbiased 

evaluation is especially important when tuning 

hyperparameters. The test set, on the other 

hand, is exclusively used to assess the 

performance of a fully-trained CNN model. 

 

Table 1. Class Information for Indian Pines Data Set. 

 

Table 2. Class Information for Pavia Data Set. 

 

3.2. Experimental Setup and CNN Design 

The CNN blocks were designed with a 

consistent architecture for different features. 

Each block consists of three convolutional 

layers, pooling layers, ReLU layers, and 

concatenating layers. Specific details about the 

network structure can be found in Tables 3 and 

4. The input images are normalized to the 

range of [-1, 1]. In each convolutional layer, 

200 kernels are empirically set. The input 

neighborhood size for each feature is 5 * 5 for 

the Indian Pines dataset, and 7 * 7 for the 

University of Pavia dataset. 
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For the CNN models, a learning rate of 0.01 is 

used, and the training process is run for 100 

epochs for the Indian Pines and University of 

Pavia datasets. The batch size is set to 10. To 

ensure the robustness of the proposed 

framework, the results are quantitatively 

validated using overall accuracy (OA), 

average accuracy (AA), and the Kappa 

coefficient (k) as performance metrics. Each 

reported result is an average of ten repeated 

experiments with randomly selected training 

samples. 

Table 3. Network Architecture for Indian Pines Data Set. 

Convolution: 4*20*200*16 11*11*32 

Batch Normalization 11*11*32 

Relu 11*11*32 

Max Pooling : 2*2 
5*5*32 

 

Table 4. Network Structure for University of Pavia Data Set. 

Convolution: 4*20*200*9 5*5*64 

BN 5*5*64 

ReLU 5*5*64 

Max Pooling : 2*2 2*2*64 

3.3. Result and discussion 

3.3.1. Indian Pines Data set results 

      Evaluation Metrics 

The evaluation process employs the confusion 

matrix as the primary quantitative measure, 

including overall accuracy (OA), average 

accuracy (AA), and statistical Kappa (κ) 

coefficients, to gauge the performance of the 

proposed network against alternative methods. 

OA quantifies the ratio of correctly classified 

test samples to the total number of test 

samples, while AA represents the mean 

accuracy across all classes. The kappa 

coefficient assesses the level of agreement 

between the classification maps generated by 

the model under consideration and the 

provided ground truth. 

 

 

Fig.4 Confusion matrix for Indian Pines data 

Table 5 displays the classification outcomes 

achieved by different classifiers for the Indian 

Pines dataset, and Figure 5 provides the 

corresponding maps. It can be observed that 

all CNN-based models exhibit commendable 
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performance, with the proposed method 

showing notable improvements on this dataset. 

Regarding O-CNN[41], the original image is 

used as input for the network. To validate the 

effectiveness of the proposed mechanism, 

spatial contextual features are extracted and 

combined as input for E-CNN. While E-

CNN[41], achieves more accurate results than 

O-CNN, it falls short of surpassing the 

proposed method. The superior performance 

achieved by the proposed framework is likely 

attributed to the joint utilization of spatial-

spectral information, resulting in reduced 

"salt-and-pepper" noise in the classification 

maps. 

In comparison to O-CNN, the proposed 

method shows improvements of 2.3% in OA. 

Similar conclusions can be drawn when 

comparing the proposed method with E-CNN, 

particularly for classes with similar labels, as 

evident from Table 5. For example, the 

proposed method outperforms E-CNN by 

5.18%, and as compared to SVM proposed 

method outperforms E-NN by 14.32% 

accuracy. Additionally, the proposed method 

excels at preserving discontinuities in the 

classification maps. Moreover, CNN methods 

do not require predefined parameters, unlike 

pixel-level extraction methods. 

Table 5. Classification Results (%) of University of Indian Pine Data Set. 

ClassNo. O-CNN E-CNN SVM Proposed 

1 89.74 ± 0.01 94.63 ± 5.21 33.81 ± 0.05 100 ± 0.00 

2 85.01 ± 0.12 89.90 ± 1.71 74.99 ± 0.03 96.76 ± 0.56 

3 86.41 ± 0.26 89.97 ± 1.25 68.86 ± 0.02 99.57 ± 0.66 

4 96.19 ± 0.02 97.65 ± 1.07 47.57 ± 0.04 99.15 ± 0.91 

5 88.19 ± 0.01 97.06 ± 1.07 85.29 ± 0.03 99.86 ± 0.11 

6 88.16 ± 0.02 99.33 ± 0.41 95.77 ± 0.03 99.51 ± 0.34 

7 

87.50 ± 0.04 

71.20 ± 

10.24 

60.00 ± 0.24 

100 ± 0.00 

8 100 ± 0.00 99.86 ± 0.19 98.56 ± 0.01 99.90 ± 0.19 

9 

88.23 ± 0.16 

66.67 ± 

11.11 

30.00 ± 0.08 

93.34 ± 5.44 

10 89.35 ± 0.01 92.78 ± 1.41 75.45 ± 0.02 99.43 ± 0.19 

11 93.71 ± 0.03 95.70 ± 1.34 82.14 ± 0.01 99.38 ± 0.20 

12 93.63 ± 0.23 80.56 ± 3.29 61.31 ± 0.01 98.58 ± 0.39 

13 100 ± 0.00 99.68 ± 0.43 95.14 ± 0.02 99.89 ± 0.22 

14 97.99 ± 0.04 98.53 ± 1.03 94.19 ± 0.02 99.84 ± 0.13 

15 88.92 ± 0.01 90.72 ± 2.67 53.91 ± 0.04 100 ± 0.00 

16 95.29 ± 0.01 91.90 ± 5.80 80.95 ± 0.05 97.14 ± 0.95 

OA 91.62 ± 0.01 93.92 ± 0.91 79.60 ± 0.01 99.10 ± 0.06 

AA 91.78 ± 0.01 91.01 ± 0.93 71.12 ± 0.01 98.90 ± 0.30 

Kappa 90.45 ± 0.01 93.06 ± 1.04 76.66 ± 0.01 98.98 ± 0.0 
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Fig. 5 (a) Classification 

maps of the Indian Pines 

dataset O-

CNN(OA=91.62) 

Fig. 5 (b) Classification 

maps of the Indian Pines 

dataset O-

ENN(OA=93.92) 

Fig. 5 (c) Classification 

maps of the Indian Pines 

dataset SVM (OA=79.60) 

Fig. 5 (d) Classification 

maps of the Indian Pines 

dataset Proposed 

(OA=99.10) 

 

3.3.2. Pavia Data set classification 

Evaluation Metrics 

The evaluation process employs the confusion 

matrix as the primary quantitative measure, 

including overall accuracy (OA), average 

accuracy (AA), and statistical Kappa (κ) 

coefficients, to gauge the performance of the 

proposed network against alternative methods. 

OA quantifies the ratio of correctly classified 

test samples to the total number of test 

samples, while AA represents the mean 

accuracy across all classes. The kappa 

coefficient assesses the level of agreement 

between the classification maps generated by 

the model under consideration and the 

provided ground truth. 

 

 

 

Fig.6 Confusion matrix for University of Pavia data 

Table 6 presents the class-specific 

classification accuracies for the University of 

Pavia image, while Figure 7 displays the 

representative classification maps. The results 

clearly demonstrate the superiority of the 

proposed method over other algorithms in 

terms of OA, AA, and Kappa. When evaluated 

using the University of Pavia dataset, the 

proposed method achieves remarkable 

accuracy improvements. Inspecting the 
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classification maps, it is evident that O-CNN 

and E-CNN exhibit more scattered noisy 

points compared to the proposed method. In 

contrast, the proposed method effectively 

eliminates these noisy artifacts and delivers 

smoother classification results while 

preserving clear boundaries without blurring 

depicted in figure 7. 

In comparison to E-CNN, the proposed 

method shows improvements of 1.12% in OA. 

Similar conclusions can be drawn when 

comparing the proposed method with E-CNN, 

particularly for classes with similar labels, as 

evident from Table 6. For example, the 

proposed method outperforms SVM by 5.15%, 

and as compared to O-CNN proposed method 

outperforms by 1% accuracy. Additionally, the 

proposed method excels at preserving 

discontinuities in the classification maps. 

Moreover, CNN methods do not require 

predefined parameters, unlike pixel-level 

extraction methods. 

 

Table 6. Classification Results (%) of University of Pavia Data Set. 

ClassNo.        O-CNN          E-CNN       SVM Proposed 

1 
98.75 ± 0.01 99.36 ± 0.47 94.65 ± 0.01 99.29 ± 0.56 

2 99.35 ± 0.01 99.96 ± 0.03 98.12 ± 0.01 99.97 ± 0.02 

3 91.83 ± 0.03 97.89 ± 1.05 76.84 ± 0.04 91.68 ± 2.31 

4 93.00 ± 0.02 90.51 ± 3.52 92.91 ± 0.03 98.48 ± 0.64 

5 98.57 ± 0.01 96.88 ± 3.45 99.30 ± 0.01 100 ± 0.00 

6 99.68 ± 0.01 99.40 ± 0.45 87.84 ± 0.02 99.79 ± 0.27 

7 99.70 ± 0.01 99.18 ± 0.76 85.92 ± 0.02 98.60 ± 1.08 

8 96.56 ± 0.02 97.99 ± 1.72 89.92 ± 0.01 97.87 ± 0.63 

9 
93.65 ± 0.03 78.24 ± 12.68 99.76 ± 0.01 99.41 ± 0.47 

     OA 
98.09 ± 0.01 98.25 ± 0.42 93.94 ± 0.01 99.09 ± 0.03 

    AA 96.79 ± 0.01 95.49 ± 1.44 91.69 ± 0.01 98.34 ± 0.18 

Kappa 
97.47 ± 0.01 97.68 ± 0.57 91.93 ± 0.01 98.80 ± 0.05 

 

  
 

  

Fig. 7 (a) Classification 

maps of the Indian Pines 

dataset O-

CNN(OA=98.09) 

Fig. 7 (b) Classification 

maps of the Indian Pines 

dataset O-

ENN(OA=98.25) 

 

 

 

 

Fig. 7 (c) Classification 

maps of the Indian Pines 

dataset SVM 

(OA=93.94) 

Fig.7 (d) Classification 

maps of the Indian Pines 

dataset Proposed 

(OA=99.09) 

3.3.3 The Influence of the Number of 

Training Iterations 

The number of training epochs plays a crucial 

role in CNN-based methods. Figure 8 

illustrates how the training error changes with 

varying epochs across all three datasets. 

During the network training process, 

backpropagation is used to minimize the 

training objective=− ∑ ∑
𝑁𝑡
𝑖=1 𝑙𝑜𝑔 (𝑝𝑖𝑐), which 
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is computed as the sum of logarithms of 

prediction probabilities for each class. 

The "error" term is also calculated during 

training by 𝑒𝑟𝑟𝑜𝑟 = ∑ ∑
𝑁𝑡
𝑖=1 𝑃𝑖𝑐(𝑎𝑟𝑔𝑚𝑎𝑥𝑝𝑖 ≅

𝑐), where, training samples denoted by 𝑁𝑡 and 

𝑃𝑖𝑐 representing the sum of prediction 

probabilities for pixels 𝑥𝑖belonging to their 

respective 𝑐𝑡ℎclasses. This assessment proves 

to be helpful in evaluating the model. ReLU’s 

presence can expedite network convergence 

and enhance overall training efficiency [29]. 

 

  

epochs epochs 

a) Indian Pines 

  

epochs epochs 

b) University of Pavia 

Fig. 8 The training error of the proposed framework was evaluated on two different datasets. 

 

3.3.4. The influence of the number of 

training samples 

The number of training samples plays a crucial 

role in training a CNN. It is well-known that 

CNNs require an abundance of training 

samples to effectively extract features. 

However, in the case of hyperspectral imagery 

(HSI), obtaining a large number of training 

samples is not common. Therefore, it is 

essential to develop a network that is robust 

and efficient for classification tasks in such 

scenarios. 

 

In this paper, the impact of the number of 

training samples on the accuracies of three 

datasets is investigated. For the Indian Pines 

scene, training pixels are randomly selected 

from 5% to 50% of the samples, with the 

remaining pixels used for testing. For the 

University of Pavia and Salinas images, 50 to 

500 pixels per class are randomly chosen as 

training samples, while the rest are used for 

testing. 

  Figure 9 displays the overall accuracy (OA) of 

various methods with different numbers of 

training samples. It is evident that all methods 

show improved performance as the number of 

training samples increases, particularly for the 

Indian Pines dataset, where the proposed 

method outperforms the others. Notably, the 

proposed method achieves an accuracy higher 

than 95% with less than 10% of the training 

samples. As the number of training samples 

further increases, the accuracies tend to 

stabilize for all three methods. 

For the University of Pavia dataset, the 

classification accuracies of the CNN-based 

methods reach approximately 100% with more 

training samples, especially for the proposed 

method, which achieves an accuracy of over 

96% with 50 samples per class.  
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Throughout all two datasets, the CNN-based 

classifiers demonstrate sensitivity to the 

number of training samples, with accuracy 

increasing as more training samples are used. 

Moreover, these CNN-based approaches show 

competitive performance even with a large 

number of training samples, with the proposed 

method displaying enhanced robustness across 

different sample sizes depicted in figure 7. 

 

  

 

Fig.9 Model performance across various proportions of training samples.(a)Indian Pines; (b)Pavia University 

 

4. Conclusion 

This study introduced a novel 

convolutional neural network (CNN) 

framework designed for hyperspectral 

image (HSI) classification. The proposed 

method combines spectral and spatial 

features to create a highly efficient and 

powerful classification model. By using 

multiple CNN blocks and a connection 

layer, the architecture efficiently captures 

various spatial-spectral information, 

thereby improving classification 

performance.Experimental results on 

standard datasets, including the Indian 

Pine and the University of Pavia, 

emphasize the superiority of the proposed 

method over traditional and existing CNN-

based approaches. The model achieved an 

overall accuracy (OA) of 99. 10% and 

99.09% on the Indian Pines and University 

of Pavia datasets, respectively. These 

results outperformed alternative methods 

such as O-CNN, E-CNN and SVM, 

especially in preserving spatial 

discontinuities and minimizing noise 

artifacts in classification maps. For 

example, the proposed framework was 

shown to improve by 5.18% over E-CNN 

and 14.0% over SVM. 32% improvement 

over SVM for specific classes.The 

inclusion of ReLU activation and pooling 

layers, along with strategic use of multiple 

input feature maps, mitigates overfitting 

and accelerates convergence, even with 

limited training samples. In particular, the 

model maintained strong performance with 

fewer training samples, achieving more 

than 95% accuracy on Indian pine trees 

with less than 10% training samples. This 

adaptation for small The datasets highlight 

the practicality of the proposed approach 

in real-world scenarios.In summary, the 

proposed CNN-based framework shows 

significant advances in HSI classification, 

providing a shallow but effective network 

that integrates multiple feature learning 

strategies. The results highlight the 

potential of leveraging spatial information 

and deep learning to improve classification 

accuracy, paving the way for future 

advances in hyperspectral data analysis. 

Author Contributions 

We present a novel framework for 

hyperspectral image (HSI) classification that 

integrates convolutional neural networks 

(CNNs) with a multi-feature learning 

approach. Their primary contribution lies in 

designing a unique CNN architecture capable 

of efficiently capturing both spatial and 

spectral features through multiple individual 

CNN blocks, each extracting distinct features 

from the HSI data. By concatenating these 
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feature maps into a joint feature map, the 

model can leverage a combination of spatial 

and spectral information, leading to improved 

classification accuracy. The framework also 

addresses the issue of limited training samples 

in HSI by using multiple input feature maps 

and ReLU activation, which helps reduce 

overfitting and accelerate convergence. 

Additionally, the authors identified an optimal 

three-layer CNN structure with a specific 

neighborhood and pooling size, balancing 

efficiency and complexity. Extensive 

experiments on three benchmark datasets 

confirm the framework's effectiveness, 

showcasing significant performance 

improvements over traditional classifiers and 

CNN-based single feature methods. 

Conflicts of Interest 

"The authors declare no conflicts of 

interest regarding the publication of this 

paper." 

 

References 

[1] Melgani, Farid, and Lorenzo Bruzzone. 

"Classification of hyperspectral remote 

sensing images with support vector 

machines." IEEE Transactions on 

geoscience and remote sensing 42, no. 8 

(2004): 1778-1790. 

[2] Pal, Mahesh, and Giles M. Foody. "Feature 

selection for classification of hyperspectral 

data by SVM." IEEE Transactions on 

Geoscience and Remote Sensing 48, no. 5 

(2010): 2297-2307. 

[3] Ham, Jisoo, Yangchi Chen, Melba M. 

Crawford, and Joydeep Ghosh. 

"Investigation of the random forest 

framework for classification of hyperspectral 

data." IEEE Transactions on Geoscience 

and Remote Sensing 43, no. 3 (2005): 492-

501. 

[4] Li, Jun, José M. Bioucas-Dias, and Antonio 

Plaza. "Semisupervised hyperspectral image 

classification using soft sparse multinomial 

logistic regression." IEEE Geoscience and 

Remote Sensing Letters 10, no. 2 (2012): 

318-322. 

[5] Benediktsson, JónAtli, JónAevarPalmason, 

and Johannes R. Sveinsson. "Classification 

of hyperspectral data from urban areas based 

on extended morphological profiles." IEEE 

Transactions on Geoscience and Remote 

Sensing 43, no. 3 (2005): 480-491. 

[6] Fauvel, Mathieu, JónAtliBenediktsson, 

Jocelyn Chanussot, and Johannes R. 

Sveinsson. "Spectral and spatial 

classification of hyperspectral data using 

SVMs and morphological profiles." IEEE 

Transactions on Geoscience and Remote 

Sensing 46, no. 11 (2008): 3804-3814. 

[7] Li, Jun, José M. Bioucas-Dias, and Antonio 

Plaza. "Spectral–spatial hyperspectral image 

segmentation using subspace multinomial 

logistic regression and Markov random 

fields." IEEE Transactions on Geoscience 

and Remote Sensing 50, no. 3 (2011): 809-

823. 

[8] Zhang, Bing, Shanshan Li, XiupingJia, 

Lianru Gao, and Man Peng. "Adaptive 

Markov random field approach for 

classification of hyperspectral 

imagery." IEEE Geoscience and Remote 

Sensing Letters 8, no. 5 (2011): 973-977. 

[9] Chen, Yi, Nasser M. Nasrabadi, and Trac D. 

Tran. "Hyperspectral image classification 

using dictionary-based sparse 

representation." IEEE transactions on 

geoscience and remote sensing 49, no. 10 

(2011): 3973-3985. 

[10] Parkhi, Omkar, Andrea Vedaldi, and 

Andrew Zisserman. "Deep face recognition." 

In BMVC 2015-Proceedings of the British 

Machine Vision Conference 2015. British 

Machine Vision Association, 2015. 

[11] Lawrence, Steve, C. Lee Giles, Ah Chung 

Tsoi, and Andrew D. Back. "Face 

recognition: A convolutional neural-network 

approach." IEEE transactions on neural 

networks 8, no. 1 (1997): 98-113. 

[12] Ren, Shaoqing, Kaiming He, Ross Girshick, 

and Jian Sun. "Faster r-cnn: Towards real-

time object detection with region proposal 

networks." Advances in neural information 

processing systems 28 (2015). 

[13] Karpathy, Andrej, George Toderici, Sanketh 

Shetty, Thomas Leung, Rahul Sukthankar, 

and Li Fei-Fei. "Large-scale video 

classification with convolutional neural 

networks." In Proceedings of the IEEE 

conference on Computer Vision and Pattern 

Recognition, pp. 1725-1732. 2014. 

[14] Chen, Yushi, Hanlu Jiang, Chunyang Li, 

XiupingJia, and PedramGhamisi. "Deep 

feature extraction and classification of 

hyperspectral images based on convolutional 

neural networks." IEEE transactions on 

geoscience and remote sensing 54, no. 10 

(2016): 6232-6251. 



International Journal of Intelligent Systems and Applications in Engineering                    IJISAE, 2024, 12(23s), 3230–3244 |  3243 

 

[15] Zhao, Wenzhi, and Shihong Du. "Spectral–

spatial feature extraction for hyperspectral 

image classification: A dimension reduction 

and deep learning approach." IEEE 

Transactions on Geoscience and Remote 

Sensing 54, no. 8 (2016): 4544-4554. 

[16] Makantasis, Konstantinos, Konstantinos 

Karantzalos, AnastasiosDoulamis, and 

Nikolaos Doulamis. "Deep supervised 

learning for hyperspectral data classification 

through convolutional neural networks." 

In 2015 IEEE international geoscience and 

remote sensing symposium (IGARSS), pp. 

4959-4962. IEEE, 2015. 

[17] Yue, Jun, Wenzhi Zhao, Shanjun Mao, and 

Hui Liu. "Spectral–spatial classification of 

hyperspectral images using deep 

convolutional neural networks." Remote 

Sensing Letters 6, no. 6 (2015): 468-477. 

[18] Kürüm, Ulas, Peter R. Wiecha, Rebecca 

French, and Otto L. Muskens. "Deep 

learning enabled real time speckle 

recognition and hyperspectral imaging using 

a multimode fiber array." Optics express 27, 

no. 15 (2019): 20965-20979. 

[19] Zhao, Wenzhi, Zhou Guo, Jun Yue, Xiuyuan 

Zhang, and Liqun Luo. "On combining 

multiscale deep learning features for the 

classification of hyperspectral remote 

sensing imagery." International Journal of 

Remote Sensing 36, no. 13 (2015): 3368-

3379. 

[20] Luus, Francois PS, Brian P. Salmon, Frans 

Van den Bergh, and 

BodhaswarTikanathJugpershadMaharaj. 

"Multiview deep learning for land-use 

classification." IEEE Geoscience and 

Remote Sensing Letters 12, no. 12 (2015): 

2448-2452. 

[21] Zhang, Lu, Zhenwei Shi, and Jun Wu. "A 

hierarchical oil tank detector with deep 

surrounding features for high-resolution 

optical satellite imagery." IEEE Journal of 

Selected Topics in Applied Earth 

Observations and Remote Sensing 8, no. 10 

(2015): 4895-4909. 

[22] Zhang, Fan, Bo Du, and Liangpei Zhang. 

"Scene classification via a gradient boosting 

random convolutional network 

framework." IEEE Transactions on 

Geoscience and Remote Sensing 54, no. 3 

(2015): 1793-1802. 

[23] Wang, Jun, Jingwei Song, Mingquan Chen, 

and Zhi Yang. "Road network extraction: A 

neural-dynamic framework based on deep 

learning and a finite state 

machine." International Journal of Remote 

Sensing 36, no. 12 (2015): 3144-3169. 

[24] Ding, Changxing, Chang Xu, and Dacheng 

Tao. "Multi-task pose-invariant face 

recognition." IEEE Transactions on image 

Processing 24, no. 3 (2015): 980-993. 

[25] Zhu, Chao, and Yuxin Peng. "A boosted 

multi-task model for pedestrian detection 

with occlusion handling." IEEE transactions 

on image processing 24, no. 12 (2015): 

5619-5629. 

[26] Liu, Wu, Tao Mei, Yongdong Zhang, Cherry 

Che, and Jiebo Luo. "Multi-task deep visual-

semantic embedding for video thumbnail 

selection." In Proceedings of the IEEE 

conference on computer vision and pattern 

recognition, pp. 3707-3715. 2015. 

[27] Dalla Mura, Mauro, Alberto Villa, Jon 

AtliBenediktsson, Jocelyn Chanussot, and 

Lorenzo Bruzzone. "Classification of 

hyperspectral images by using extended 

morphological attribute profiles and 

independent component analysis." IEEE 

Geoscience and Remote Sensing Letters 8, 

no. 3 (2010): 542-546. 

[28] Dalla Mura, Mauro, JónAtliBenediktsson, 

BjörnWaske, and Lorenzo Bruzzone. 

"Morphological attribute profiles for the 

analysis of very high resolution 

images." IEEE Transactions on Geoscience 

and Remote Sensing 48, no. 10 (2010): 

3747-3762. 

[29] Krizhevsky, Alex, Ilya Sutskever, and 

Geoffrey E. Hinton. "Imagenet classification 

with deep convolutional neural 

networks." Advances in neural information 

processing systems 25 (2012). 

[30] Nair, Vinod, and Geoffrey E. Hinton. 

"Rectified linear units improve restricted 

boltzmann machines." In Proceedings of the 

27th international conference on machine 

learning (ICML-10), pp. 807-814. 2010. 

[31] Vedaldi, Andrea, and Karel Lenc. 

"Matconvnet: Convolutional neural 

networks for matlab." In Proceedings of the 

23rd ACM international conference on 

Multimedia, pp. 689-692. 2015. 

[32] Gao, Qishuo, Samsung Lim, and XiupingJia. 

"Hyperspectral image classification using 

convolutional neural networks and multiple 

feature learning." Remote Sensing 10, no. 2 

(2018): 299. 

[33] Zhang, Xiao, Liangyun Liu, Xidong Chen, 

Yuan Gao, and Mihang Jiang. 

"Automatically monitoring impervious 



International Journal of Intelligent Systems and Applications in Engineering                    IJISAE, 2024, 12(23s), 3230–3244 |  3244 

 

surfaces using spectral generalization and 

time series Landsat imagery from 1985 to 

2020 in the Yangtze River Delta." Journal of 

Remote Sensing 2021 (2021). 

[34] Yang, Xiguang, and Ying Yu. "Estimating 

soil salinity under various moisture 

conditions: An experimental study." IEEE 

Transactions on Geoscience and Remote 

Sensing 55, no. 5 (2017): 2525-2533. 

[35] Avtar, Ram, NetranandaSahu, Ashwani 

Kumar Aggarwal, Shamik Chakraborty, Ali 

Kharrazi, Ali P. Yunus, Jie Dou, and 

TonniAgustionoKurniawan. "Exploring 

renewable energy resources using remote 

sensing and GIS—A review." Resources 8, 

no. 3 (2019): 149. 

[36] Li, Jun, José M. Bioucas-Dias, and Antonio 

Plaza. "Spectral–spatial hyperspectral image 

segmentation using subspace multinomial 

logistic regression and Markov random 

fields." IEEE Transactions on Geoscience 

and Remote Sensing 50, no. 3 (2011): 809-

823. 

[37] Wenju, Li, Chu Wanghui, Cui Liu, and 

Zhang Gan. "A graph attention feature 

pyramid network for 3D object detection in 

point clouds." In 2022 7th International 

Conference on Intelligent Informatics and 

Biomedical Science (ICIIBMS), vol. 7, pp. 

94-98. IEEE, 2022. 

[38] Mei, Shaohui, Xingang Li, Xiao Liu, 

HuiminCai, and Qian Du. "Hyperspectral 

image classification using attention-based 

bidirectional long short-term memory 

network." IEEE Transactions on Geoscience 

and Remote Sensing 60 (2021): 1-12. 

[39] Yu, Haoyang, Hao Zhang, Yao Liu, Ke 

Zheng, Zhen Xu, and Chenchao Xiao. 

"Dual-channel convolution network with 

image-based global learning framework for 

hyperspectral image classification." IEEE 

Geoscience and Remote Sensing Letters 19 

(2021): 1-5. 

[40] Song, Weiwei, Shutao Li, Leyuan Fang, and 

Ting Lu. "Hyperspectral image classification 

with deep feature fusion network." IEEE 

Transactions on Geoscience and Remote 

Sensing 56, no. 6 (2018): 3173-3184. 

[41] Gao, Q., Lim, S., &Jia, X. (2018). 

Hyperspectral image classification using 

convolutional neural networks and multiple 

feature learning. Remote Sensing, 10(2), 

299. 

 


