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Abstract: The evolution of healthcare payer systems has led to an increase in complexity due to the diversity of health plans, 

service categories, provider types, authorization requirements, and member demographics. As a result, ensuring robust and 

cost-effective quality assurance has become a significant challenge. Traditional testing approaches often fall short when faced 

with the need to validate vast permutations of configurations and rules. To address this challenge, the Orthogonal Array Testing 

Strategy (OATS) emerges as a statistically grounded and highly efficient methodology for achieving extensive coverage with 

fewer test cases. OATS uses combinatorial mathematics to focus on pairwise or higher-order interactions among input 

variables, generating a representative set of test cases that ensure maximum defect detection with minimal redundancy. In the 

context of payer systems, this methodology enables accurate and scalable validation of mission-critical modules such as claims 

adjudication, benefit tier application, and eligibility verification. The use of orthogonal arrays drastically reduces the number 

of test scenarios while preserving thoroughness—making the testing process faster, more focused, and less resource-intensive. 

This approach is particularly advantageous for regulatory-sensitive systems, where compliance with CMS, HIPAA, and ACA 

mandates is mandatory. The structured methodology begins with identifying input variables and their values, followed by 

generating orthogonal arrays using tools such as ACTS or Hexawise. These test cases are then mapped to real-world payer 

scenarios and executed via automated test frameworks like Selenium and CI/CD tools such as Jenkins or GitLab CI. Post-

execution, outcomes are analysed using dashboards and reporting platforms such as Allure or TestRail, with feedback loops 

feeding into continuous test improvement cycles. This enables early defect detection, traceable test coverage, and dynamic 

adaptability as systems evolve In conclusion, OATS offers healthcare payer organizations a robust and intelligent strategy for 

maintaining software quality, ensuring compliance, and reducing operational risk. It stands as an essential pillar of modern 

QA practice in healthcare IT, especially as payer systems continue to grow in complexity and interdependence. 
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1. Introduction 

The complexity of modern healthcare payer 

systems—driven by intricate benefit plans, 

regulatory requirements, and real-time decision-

making processes—demands highly reliable and 

efficient software testing strategies. As the U.S. 

healthcare industry increasingly adopts value-based 

care and digital transformation initiatives, payer 

systems must be tested across a wide range of 

variable inputs, including plan types, member 

eligibility, provider contracts, and claim 

adjudication rules. In such a multidimensional 

environment, exhaustive testing of all input 

combinations becomes impractical, time-

consuming, and resource intensive. This is where 

Orthogonal Array Testing Strategy (OATS) [1] 

plays a crucial role. OATS is a statistical 

combinatorial testing technique that generates a 

representative subset of all possible test scenarios. It 

relies on orthogonal arrays, which are mathematical 

structures that allow for efficient test coverage of 

variable interactions—especially pairwise (2-way) 

combinations. The key advantage of OATS lies in 

its ability to test multiple permutations with 

significantly fewer test cases, while still maintaining 

high fault detection capability. In payer systems—

where configuration options for health plans, service 

codes, authorizations, and reimbursement rules can 

run into the thousands—this targeted approach 

enhances both testing speed and quality. 

For instance, when testing a claim adjudication 

module, combinations of plan coverage (HMO, 

PPO, Medicare Advantage), service type (inpatient, 

outpatient, emergency), [2] and authorization 

requirement (yes, no) must all be validated. 

Manually testing all possible permutations would be 
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inefficient. OATS helps by producing a set of 

optimized test cases that cover every significant 

interaction, ensuring defects are identified early and 

comprehensively. This is particularly critical in 

payer systems where errors in processing claims, 

member eligibility, or policy application can result 

in compliance violations, patient dissatisfaction, or 

financial losses. Another major advantage of OATS 

is its systematic and repeatable nature, which 

contrasts with random testing methods. By using 

pre-defined orthogonal arrays, test coverage 

becomes measurable and verifiable—key attributes 

for healthcare payers operating under tight 

compliance frameworks like HIPAA [3], ACA 

(Affordable Care Act), and CMS guidelines. It also 

improves the effectiveness of regression testing, as 

it allows QA teams to retest impacted modules after 

configuration changes without re-running the entire 

suite. 

OATS is especially suited to black-box testing 

environments, where the internal logic of a system 

is unknown or inaccessible, and only input-output 

behavior is validated. This makes it ideal for third-

party integrations (e.g., with PBMs, provider 

systems, or government platforms) where 

developers often do not have control over the 

underlying codebase. OATS can also be combined 

with automated test case generation tools such as 

ACTS (Automated Combinatorial Testing for 

Software) or integrated into CI/CD [4] pipelines for 

continuous testing in DevOps workflows. In 

summary, the introduction of Orthogonal Array 

Testing Strategy to payer insurance systems 

addresses a fundamental need: optimizing test 

coverage in a cost-effective, scalable, and 

statistically reliable manner. As healthcare IT 

systems grow more complex and the pressure to 

deliver high-quality software intensifies, OATS 

presents itself as an indispensable methodology to 

validate intricate interactions, maintain compliance, 

and support continuous delivery of reliable 

healthcare applications. Its structured approach 

ensures that payer systems perform accurately 

across all critical paths, [5] benefiting both 

organizations and the patients they serve. 

In payer insurance systems, testing every possible 

combination of policy variables, eligibility rules, 

provider contracts, and claim types is nearly 

impossible due to the exponential growth of 

permutations. Traditional testing approaches 

struggle to keep up with the complexity and 

scalability demands of these systems. Orthogonal 

Array Testing Strategy (OATS) offers a robust 

solution by applying a mathematically grounded, 

statistically optimized method to reduce the number 

of test cases while maintaining high fault detection 

rates. 

Understanding OATS in the Payer Context 

OATS is a combinatorial testing approach that uses 

orthogonal arrays to create a minimal set of test 

cases covering all pairwise combinations of input 

variables. Each row in an orthogonal array 

represents a test case, and each column represents an 

input parameter. This ensures systematic test 

coverage across combinations that could reveal 

potential defects, particularly in insurance rules 

engines, claim adjudication modules, and 

authorization logic. In a health insurance system, 

variables like plan type, coverage limits, network 

status, prior authorization requirements, and 

member demographics all interact to determine 

benefits and claim outcomes. OATS allows testers 

to evaluate all two-way (or higher order) [6] 

interactions between these variables without 

generating the full test matrix, which could involve 

millions of test scenarios. 

Application of OATS in Payer Insurance Testing 

Let’s consider a simplified example where a claims 

engine processes input such as: 

Plan Type: HMO, PPO, EPO 

Service Type: Inpatient, Outpatient, Emergency 

Authorization Required: Yes, No 

Provider Network: In-Network, Out-of-Network 

Instead of testing all 3×3×2×2=36 combinations, an 

orthogonal array might allow us to reduce this to 9 

test cases while still ensuring every pairwise 

interaction is tested at least once. This is ideal for 

regression testing, benefit rule changes, or new 

provider onboarding. 

Benefits of OATS for Payer QA Teams 

• Efficiency: Reduces the number of required test 

cases by 60–90%, saving time and computational 

resources. 

• Improved Coverage: Detects interaction-based 

defects that may be missed in random sampling or 

single-variable testing. 
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• Scalability: Supports testing in complex systems 

with hundreds of configurable inputs. 

• Repeatability and Objectivity: Uses a statistically 

defined structure to avoid bias in test design. 

• Regulatory Compliance: Ensures that business-

critical combinations (e.g., Medicare Advantage 

rules, ACA mandates) are adequately tested. 

Integration into DevOps Pipelines 

OATS can be integrated into automated testing 

pipelines using test generation tools like ACTS 

(Automated Combinatorial Testing for Software), 

which supports orthogonal arrays and combinatorial 

algorithms. This facilitates continuous testing in 

agile and DevOps environments, enabling faster 

release cycles without sacrificing quality. 

2. Related work 

Orthogonal Array Testing Strategy (OATS) has 

gained prominence as a valuable technique in 

combinatorial testing, particularly in domains where 

exhaustive testing is impractical due to the vast 

number of input combinations. In the healthcare 

payer sector, where system configurations often 

include multiple interdependent variables—such as 

coverage types, claim categories, authorization 

rules, and patient demographics—the relevance of 

OATS becomes especially apparent. This section 

explores the related work and literature surrounding 

the application of OATS in software testing, with a 

focus on its integration into healthcare payer 

systems and comparable complex environments. 

2.1 Combinatorial Testing Foundations 

The foundational work of [7] from the National 

Institute of Standards and Technology (NIST) 

highlighted the efficacy of pairwise testing using 

orthogonal arrays in detecting a majority of software 

defects. The study concluded that nearly 90% of 

reported software failures were caused by the 

interaction of just two parameters. This finding 

justified the use of orthogonal arrays to ensure 

coverage of all possible two-way (and optionally 

three-way) interactions among input variables while 

minimizing the total number of test cases. 

Subsequent enhancements to orthogonal array 

methods introduced higher-order combinatorial 

testing, which expanded the detection capability for 

complex interactions, albeit with marginally more 

test cases. These principles form the mathematical 

backbone of OATS and have since been applied 

across several industries, including finance, 

aerospace, and more recently, healthcare. 

 

Figure 1: Test Configuration Generation in 

Combinatorial Testing 

2.2 Use in Enterprise Systems and Insurance 

Platforms 

In enterprise environments, orthogonal array testing 

has been effectively used to validate policy 

management systems, billing modules, and claims 

workflows. A study by [8] demonstrated the use of 

orthogonal arrays to test insurance product 

configurators with over 200 input parameters. The 

result was a 60% reduction in test effort while 

achieving over 95% defect detection for parameter 

interaction errors. 

 

Figure 2: Enterprise AI solutions for insurance 

Similarly, in commercial insurance software 

platforms like Guidewire, Pega, and Oracle 

Insurance Suite, practitioners have adopted OATS 

for testing complex rating engines and underwriting 

rules. These systems, much like payer insurance 

platforms, rely on a combination of configurable 

variables that define benefit levels, premium 

adjustments, coverage exclusions, and regulatory 

constraints. 
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2.3 Application in Healthcare IT and Payer 

Systems 

In healthcare-specific literature, OATS has been 

applied to test health benefit configuration engines, 

eligibility rules, and claims adjudication systems. 

For example, a pilot project by a U.S.-based 

healthcare payer in collaboration with Infosys 

(2018) used orthogonal array testing to validate 

combinations of over 50 plan variables, resulting in 

a 40% faster test cycle and early defect identification 

in policy validation logic. 

 

Figure 3: Optimizing Healthcare 

Another case study published in the Journal of 

Healthcare Information Management (JHIM, 2021) 

reported that the use of OATS in Medicaid and 

Medicare Advantage testing environments allowed 

QA teams to confidently test permutations involving 

provider types, geographic locations, patient 

conditions, and state-specific benefits—factors that 

are often difficult to cover comprehensively through 

conventional testing. 

2.4 Tool Support and DevOps Integration 

Modern software testing tools have embedded 

support for OATS and combinatorial test design. 

ACTS (Automated Combinatorial Testing for 

Software), developed by NIST, remains a widely 

used open-source tool that generates orthogonal 

arrays and t-way combinations for configurable 

software systems. Commercial tools such as 

TestOptimal, Hexawise, and IBM Rational Quality 

Manager also support orthogonal test planning, 

which aligns well with agile and DevOps practices 

in payer IT environments. 

Integration of OATS into CI/CD pipelines allows 

test suites to run automatically with each 

configuration change or code update. This approach 

has proven especially beneficial in payer systems 

with frequent plan updates, regulatory patches, and 

seasonal open enrolment changes. In a 2020 HIMSS 

case report, a Blue Cross Blue Shield affiliate 

reduced post-deployment errors by 35% after 

adopting OATS-driven automated testing. The body 

of related work underscores the growing 

applicability and success of Orthogonal Array 

Testing in complex, parameter-heavy domains like 

payer insurance systems. From foundational 

research by NIST to real-world implementations in 

Medicaid and Medicare configurations, OATS has 

consistently shown the ability to enhance test 

efficiency, improve defect detection, and reduce 

quality assurance (QA) [9] costs. As payer 

organizations increasingly seek agile, data-driven 

solutions to ensure operational reliability and 

compliance, OATS provides a scientifically 

grounded, scalable testing strategy that aligns well 

with both traditional and modern healthcare IT 

ecosystems. 

 

Figure 4: Implement DevOps in the Healthcare 

Industry 

3. Proposed Methodology 

To manage the inherent complexity and 

interdependency of variables in payer insurance 

systems, this proposed methodology applies the 

Orthogonal Array Testing Strategy (OATS) for 

comprehensive yet efficient test case generation. 

The goal is to validate combinations of plan 

configurations, member eligibility rules, service 

codes, provider types, and authorization policies 

using a statistically optimized testing framework. 

The methodology is divided into five key phases: 

3.1 Requirement and Parameter Identification 

The first and most crucial step in implementing the 

Orthogonal Array Testing Strategy (OATS)[10] for 

payer insurance systems is Requirement and 

Parameter Identification. This phase sets the 

groundwork for the entire testing process by 
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defining the variable inputs that influence the 

system’s behavior across different modules such as 

eligibility verification, benefits adjudication, and 

claims processing. In payer systems, a wide range of 

configurable parameters govern how claims are 

processed and coverage is determined. These inputs 

vary based on insurance product types, regional 

compliance regulations, member characteristics, and 

provider arrangements. Identifying and cataloging 

these variables accurately ensures that the 

orthogonal array used later will be both 

comprehensive and relevant to real-world 

operations. 

The key parameters and their typical value sets 

include: 

Plan Types: These define the insurance structure and 

coverage rules. Common types include: 

• HMO (Health Maintenance Organization) 

• PPO (Preferred Provider Organization) 

• EPO (Exclusive Provider Organization) 

Medicare Advantage 

Service Types: This refers to the medical services 

rendered and directly impacts authorization, 

coverage limits, and copayment rules: 

• Inpatient 

• Outpatient 

• Emergency 

• Preventive 

Provider Types: The classification of providers 

affects reimbursement rates and network rules: 

• Primary Care Physician (PCP) 

• Specialist 

• Out-of-Network 

Authorization Requirement: Indicates whether prior 

approval is required before services are rendered: 

Yes 

No 

Member Age Group: Age segments often correlate 

with specific benefits and limitations: 

• Child (0–17 years) 

• Adult (18–64 years) 

• Senior (65+ years) 

Geographic Zone: Insurance policies and provider 

networks often vary by location: 

• Urban 

• Rural 

• State-Specific (e.g., California, Texas, etc.) 

Benefit Tier: Reflects the richness of coverage and 

impacts deductible, copay, and coinsurance values: 

• Gold 

• Silver 

• Bronze 

These variables are identified through a thorough 

analysis of the payer system's business rules, 

configuration files, and regulatory requirements. 

Once collected, they are catalogued in a parameter 

matrix, which serves as the input for constructing the 

orthogonal array in the next phase. This structured 

approach enables OATS to systematically validate 

combinations that reflect the operational and 

regulatory complexity of payer environments, 

ensuring robust, high coverage testing with minimal 

test cases [11]. 

3.2 Test Model Design Using Orthogonal Arrays 

Once all input parameters and their respective values 

are identified, the next phase in the Orthogonal 

Array Testing Strategy (OATS) for payer insurance 

systems is the Test Model Design. This stage 

involves creating an optimized and statistically 

balanced set of test cases using orthogonal arrays 

(OAs) [12]. The objective is to ensure maximum test 

coverage of parameter interactions—especially 

pairwise combinations—while keeping the total 

number of test cases manageable and efficient. 

Orthogonal arrays are structured matrices that allow 

testers to systematically cover all pairwise (or higher 

order) combinations of variables. Each column in 

the OA corresponds to a parameter (e.g., Plan Type, 

Service Type), and each row represents a test case. 

The values in the rows are selected in such a way 

that each pair of input combinations occurs at least 

once across the entire set of test cases. This 

guarantees that interaction defects—often caused by 

specific variable combinations—are detected even 

without exhaustive testing. 

To construct an orthogonal array, one must first 

understand the number of parameters (factors) and 

the levels (number of values) each parameter can 

take. For example, suppose the following 

configuration from the requirement identification 

phase: 

• Plan Type (3 levels: HMO, PPO, EPO) 
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• Service Type (4 levels: Inpatient, Outpatient, 

Emergency, Preventive) 

• Provider Type (3 levels: PCP, Specialist, Out-of-

Network) 

• Authorization (2 levels: Yes, No) 

• Member Age Group (3 levels) 

• Benefit Tier (3 levels) 

Given these variations, a total combinatorial matrix 

would yield hundreds of combinations if tested 

exhaustively. Instead, a well-fitting orthogonal array 

such as L18 (2¹ × 3⁷) may be used, which allows for 

efficient coverage of pairwise interactions among up 

to 8 parameters with 2 or 3 levels. The “L18” OA 

includes 18 test cases, each containing a unique 

combination of values for every parameter, carefully 

selected to cover all necessary pairwise interactions. 

Specialized tools like ACTS (Automated 

Combinatorial Testing for Software) by NIST, or 

commercial platforms such as Hexawise, are used to 

generate the appropriate orthogonal array. These 

tools take the parameters and levels as input and 

automatically produce a matrix of test cases that 

ensures coverage of all critical interaction paths. 

By using this approach, payer system testers can 

significantly reduce the test case volume—from 

potentially hundreds to under twenty—without 

compromising the quality of coverage. This is 

especially important in healthcare environments, 

where configuration errors in claim logic or 

authorization workflows can lead to regulatory 

penalties or denied services for patients. Thus, 

orthogonal arrays provide a scientifically rigorous 

yet resource-efficient way to validate complex payer 

workflows. 

3.3 Automation and Execution in CI/CD 

Following the generation of optimized test cases 

through Orthogonal Array Testing Strategy (OATS), 

the next step is to integrate and automate their 

execution within a Continuous 

Integration/Continuous Deployment (CI/CD) 

pipeline. This ensures that test coverage is 

consistently maintained across evolving payer 

insurance systems, allowing rapid feedback, defect 

identification, and continuous improvement in 

software quality. 

Each orthogonally derived test case—representing 

critical combinations of parameters such as plan 

type, service type, provider classification, and 

authorization requirements—is converted into 

executable scripts using automation frameworks. 

Tools like Selenium, TestNG, Cypress, Robot 

Framework, or Cucumber are used for functional 

and UI-level automation, while Postman, 

RestAssured, or Karate DSL are employed for API-

level testing. 

These automated scripts target core payer modules 

such as: 

➢ Eligibility Checks: Validating that member-plan 

combinations return accurate eligibility responses 

via payer APIs (e.g., X12 270/271 transactions). 

➢ Claim Routing: Ensuring claims are directed to the 

correct adjudication path based on provider network 

status and service location. 

➢ Authorization Processing: Verifying pre-

authorization rules for different service types, age 

groups, or benefit tiers. 

➢ Benefits Adjudication: Checking accurate co-

payment, deductible, and coverage application 

across plan types and patient demographics. 

Once developed, these scripts are triggered as part of 

the CI/CD workflow. Platforms like Jenkins, GitLab 

CI, CircleCI, or Azure DevOps are configured to 

automatically run these tests whenever a code 

commit, configuration change, or environment 

deployment occurs. The CI/CD pipeline pulls the 

latest builds, deploys them to test environments, and 

executes the OATS-based test suite as part of the 

pipeline's test stage. 

Test results are visualized using dashboards like 

Allure, Extent Reports, or Grafana, which offer 

insights into: 

➢ Test pass/fail rates 

➢ Module-wise coverage 

➢ Defect recurrence trends 

➢ Test execution duration 

By aligning test execution with each iteration of 

code or configuration, teams can detect defects 

early—particularly those caused by configuration 

mismatches or overlooked parameter interactions. 

For example, a misalignment between a PPO plan 

and a new benefit rule affecting emergency services 

for seniors in rural areas would be flagged 

immediately if the interaction was covered in the 

OATS test matrix. 

Furthermore, integration with defect tracking 

systems such as JIRA, Azure Boards, or 

ServiceNow ensures that any failures are logged and 
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triaged automatically, reducing manual oversight 

and enabling rapid remediation. In summary, 

embedding OATS-based test automation within 

CI/CD pipelines enhances test efficiency, 

repeatability, and traceability, which are essential 

for maintaining the reliability and regulatory 

compliance of complex payer insurance systems. 

5. Result Analysis and Feedback Loop 

The final and equally critical phase of the 

Orthogonal Array Testing Strategy (OATS) for 

payer insurance systems is the Result Analysis and 

Feedback Loop. This stage ensures that the 

outcomes of test executions are not only reviewed 

for defects but also used to continuously refine and 

improve the testing process itself. In payer 

systems—where frequent updates to policies, 

benefit tiers, regulatory rules, and provider contracts 

are common—this feedback mechanism is vital for 

maintaining long-term software reliability and 

compliance. 

Analysing Test Outcomes 

After executing the orthogonal array-based test 

cases, all results are automatically aggregated and 

analysed using test management and reporting tools 

such as Allure, TestRail, or Extent Reports. The goal 

is to identify patterns and classify the types of 

defects uncovered during the test cycle. Common 

defect categories include: 

Table 1: Analysing Test Outcomes 

Defect 

Category 

Descripti

on 

Example 

Scenario 

Impact 

Business 

Rule 

Violations 

System 

logic fails 

to adhere 

to 

contractu

al or 

regulator

y 

mandates

. 

Incorrect 

co-pay 

calculatio

n for a 

Medicare 

Advantag

e 

emergenc

y room 

visit. 

Non-

complian

ce, legal 

risk, and 

claim 

reprocess

ing. 

Misconfig

ured 

Benefit 

Tiers 

Configur

ation 

errors in 

tier-based 

plan 

benefits 

such as 

Bronze 

plan 

incorrectl

y applies 

Gold tier 

benefits. 

Financial 

discrepan

cies, 

member 

confusion

. 

deductibl

e, 

coverage 

levels, or 

service 

limits. 

Authorizat

ion Logic 

Defects 

Flaws in 

determini

ng pre-

authoriza

tion 

requirem

ents or 

delays in 

approval 

routing. 

A surgery 

requiring 

prior 

approval 

is 

processed 

without 

authorizat

ion due to 

a 

misconfig

ured rule. 

Overpay

ment, 

service 

denial, 

potential 

fraud. 

UI/UX 

Inconsiste

ncies 

Irregulari

ties in 

user 

interfaces 

affecting 

usability 

and 

experienc

e across 

platforms

. 

Drop-

down for 

provider 

selection 

displays 

outdated 

or 

irrelevant 

entries in 

mobile 

app. 

Poor user 

experienc

e, 

increased 

support 

calls. 

 

➢ Business Rule Violations: These occur when system 

logic fails to enforce contractual or regulatory rules, 

such as incorrect co-pay calculations for Medicare 

Advantage members or inappropriate denial of 

services for emergency claims. 

➢ Misconfigured Benefit Tiers: Errors in plan 

configuration, such as incorrect deductible amounts 

for Bronze plans or improper benefits applied to 

Gold tier members, are identified. 

➢ Authorization Logic Defects: Test failures often 

expose flaws in pre-authorization workflows—such 

as missing flags for services that should require prior 

approval or delays in status updates due to 

misconfigured decision rules. 

➢ UI/UX Inconsistencies: In scenarios involving web 

portals or mobile apps for member access, 

inconsistencies in drop-down values, display logic, 

or navigation behavior are highlighted. 
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Defects are logged and tracked using issue 

management platforms like JIRA, Azure DevOps 

Boards, or ServiceNow ITSM. Each defect is tagged 

with metadata indicating its severity, impacted 

modules, and the test case from which it 

originated—enabling traceability and faster root-

cause analysis. 

Feedback Loop Integration 

Beyond basic defect tracking, the feedback loop 

plays a pivotal role in adapting the testing 

framework to ongoing changes in the payer 

environment. For instance: 

Parameter Recalibration: If new plan types or 

service categories are introduced (e.g., new ACA-

compliant plans or telehealth services), the 

parameter list used for generating orthogonal arrays 

is updated. This ensures future test matrices reflect 

the evolving input landscape. 

Regression Suite Optimization: Based on the test 

results, the regression test suite is revised to focus 

only on relevant and historically error-prone 

combinations. This avoids bloated test suites and 

accelerates testing cycles. 

Higher-Order Combinatorial Testing: If recurring 

defects are observed at specific intersections (e.g., 

Plan Type + Provider + Service Type), the test 

strategy may evolve to include 3-way or 4-way 

interaction coverage, instead of only pairwise, using 

more advanced orthogonal arrays or mixed-strength 

arrays. 

Regulatory Coverage Validation: Regular audits of 

test outcomes also ensure that the testing process 

continues to meet external compliance mandates 

such as CMS interoperability rules, HIPAA privacy 

guidelines, or state-specific Medicaid regulations. 

Continuous Learning 

Each testing cycle becomes a learning opportunity. 

Lessons learned are documented in QA 

retrospectives and used to enhance test design 

templates, improve test data generation logic, and 

train new testers on high-risk areas. Over time, this 

iterative process matures into a self-optimizing 

quality framework that scales alongside the payer 

system’s growth and complexity. In summary, the 

result analysis and feedback loop stage ensure that 

the Orthogonal Array Testing Strategy remains 

dynamic, data-driven, and aligned with the real-

world conditions of healthcare payer operations. It 

transforms testing from a static activity into a 

continuous, intelligent quality assurance process. 

6. Result 

In the increasingly complex and highly regulated 

environment of healthcare payer systems, efficient 

and effective software testing is no longer a 

luxury—it is a necessity. Systems must process a 

vast range of permutations involving health plans, 

service types, patient demographics, authorization 

rules, and provider contracts. Ensuring 

comprehensive test coverage in such a 

multidimensional space can be overwhelming, 

costly, and time-consuming when using traditional 

testing methods. The Orthogonal Array Testing 

Strategy (OATS) presents itself as a powerful 

solution to this challenge. OATS enables testers to 

generate a statistically balanced and representative 

set of test cases from large combinations of 

variables. By focusing on pairwise or higher-order 

interactions, OATS minimizes redundant testing 

while maintaining a high level of defect detection. In 

payer systems, this means that critical logic—such 

as benefit tier assignments, eligibility verifications, 

or claims adjudication—can be validated efficiently, 

helping prevent errors that could lead to financial 

losses, compliance violations, or patient 

dissatisfaction. 

Throughout the methodology, the structured 

phases—beginning with parameter identification, 

followed by orthogonal array modeling, test case 

generation, CI/CD automation, and finally, result 

analysis—demonstrate how OATS fits seamlessly 

into both waterfall and agile testing environments. 

Moreover, its adaptability to DevOps practices 

ensures that as payer systems evolve through 

continuous integration and rapid configuration 

changes, the testing process remains scalable, 

responsive, and reliable. A particularly valuable 

aspect of OATS is its ability to identify defects early 

in the software development lifecycle. Business rule 

violations, authorization workflow errors, and 

misconfigured plan details—often triggered by 

subtle parameter interactions—can be proactively 

discovered and corrected before reaching 

production. Additionally, the incorporation of 

feedback loops and dynamic test matrix updates 

ensures that the test strategy evolves alongside the 

system, keeping quality assurance processes 

relevant and robust. 
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The use of automated tools such as ACTS, 

Selenium, and Jenkins further enhances OATS by 

reducing manual effort, improving traceability, and 

enabling frequent and consistent test execution. 

Dashboards and test management platforms like 

Allure or TestRail support real-time visibility into 

test performance, enabling QA teams to make 

informed decisions quickly. In summary, the 

Orthogonal Array Testing Strategy provides a 

disciplined, statistically sound, and operationally 

efficient framework for testing payer insurance 

systems. It aligns with key healthcare industry 

demands, including regulatory compliance, 

configuration complexity, interoperability, and 

system scalability. By adopting OATS, payer 

organizations can ensure that their applications 

deliver accurate, reliable, and compliant 

functionality—ultimately supporting better 

decision-making, improving member experience, 

and reducing operational risk. As healthcare 

technology continues to grow in sophistication and 

interconnectivity, strategies like OATS will remain 

critical tools in maintaining quality at scale. 
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