

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 666–674 | 666

Orthogonal Array Testing Strategy (OATS) Payer Insurance

Systems

Praveen Kumar Rawat

Submitted:15/02/2023 Revised:28/03/2023 Accepted:05/04/202

Abstract: The evolution of healthcare payer systems has led to an increase in complexity due to the diversity of health plans,

service categories, provider types, authorization requirements, and member demographics. As a result, ensuring robust and

cost-effective quality assurance has become a significant challenge. Traditional testing approaches often fall short when faced

with the need to validate vast permutations of configurations and rules. To address this challenge, the Orthogonal Array Testing

Strategy (OATS) emerges as a statistically grounded and highly efficient methodology for achieving extensive coverage with

fewer test cases. OATS uses combinatorial mathematics to focus on pairwise or higher-order interactions among input

variables, generating a representative set of test cases that ensure maximum defect detection with minimal redundancy. In the

context of payer systems, this methodology enables accurate and scalable validation of mission-critical modules such as claims

adjudication, benefit tier application, and eligibility verification. The use of orthogonal arrays drastically reduces the number

of test scenarios while preserving thoroughness—making the testing process faster, more focused, and less resource-intensive.

This approach is particularly advantageous for regulatory-sensitive systems, where compliance with CMS, HIPAA, and ACA

mandates is mandatory. The structured methodology begins with identifying input variables and their values, followed by

generating orthogonal arrays using tools such as ACTS or Hexawise. These test cases are then mapped to real-world payer

scenarios and executed via automated test frameworks like Selenium and CI/CD tools such as Jenkins or GitLab CI. Post-

execution, outcomes are analysed using dashboards and reporting platforms such as Allure or TestRail, with feedback loops

feeding into continuous test improvement cycles. This enables early defect detection, traceable test coverage, and dynamic

adaptability as systems evolve In conclusion, OATS offers healthcare payer organizations a robust and intelligent strategy for

maintaining software quality, ensuring compliance, and reducing operational risk. It stands as an essential pillar of modern

QA practice in healthcare IT, especially as payer systems continue to grow in complexity and interdependence.

Keywords: Orthogonal Array, Combinatorial Testing, Payer Systems, Health Insurance, Software Quality

1. Introduction

The complexity of modern healthcare payer

systems—driven by intricate benefit plans,

regulatory requirements, and real-time decision-

making processes—demands highly reliable and

efficient software testing strategies. As the U.S.

healthcare industry increasingly adopts value-based

care and digital transformation initiatives, payer

systems must be tested across a wide range of

variable inputs, including plan types, member

eligibility, provider contracts, and claim

adjudication rules. In such a multidimensional

environment, exhaustive testing of all input

combinations becomes impractical, time-

consuming, and resource intensive. This is where

Orthogonal Array Testing Strategy (OATS) [1]

plays a crucial role. OATS is a statistical

combinatorial testing technique that generates a

representative subset of all possible test scenarios. It

relies on orthogonal arrays, which are mathematical

structures that allow for efficient test coverage of

variable interactions—especially pairwise (2-way)

combinations. The key advantage of OATS lies in

its ability to test multiple permutations with

significantly fewer test cases, while still maintaining

high fault detection capability. In payer systems—

where configuration options for health plans, service

codes, authorizations, and reimbursement rules can

run into the thousands—this targeted approach

enhances both testing speed and quality.

For instance, when testing a claim adjudication

module, combinations of plan coverage (HMO,

PPO, Medicare Advantage), service type (inpatient,

outpatient, emergency), [2] and authorization

requirement (yes, no) must all be validated.

Manually testing all possible permutations would be

Master’s in Computer Applications, PAHM,

PSM, ISTQB, MCDBA)

Email: Praveen.rawat1@gmail.com

Independent Researcher, Virginia, US

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 666–674 | 667

inefficient. OATS helps by producing a set of

optimized test cases that cover every significant

interaction, ensuring defects are identified early and

comprehensively. This is particularly critical in

payer systems where errors in processing claims,

member eligibility, or policy application can result

in compliance violations, patient dissatisfaction, or

financial losses. Another major advantage of OATS

is its systematic and repeatable nature, which

contrasts with random testing methods. By using

pre-defined orthogonal arrays, test coverage

becomes measurable and verifiable—key attributes

for healthcare payers operating under tight

compliance frameworks like HIPAA [3], ACA

(Affordable Care Act), and CMS guidelines. It also

improves the effectiveness of regression testing, as

it allows QA teams to retest impacted modules after

configuration changes without re-running the entire

suite.

OATS is especially suited to black-box testing

environments, where the internal logic of a system

is unknown or inaccessible, and only input-output

behavior is validated. This makes it ideal for third-

party integrations (e.g., with PBMs, provider

systems, or government platforms) where

developers often do not have control over the

underlying codebase. OATS can also be combined

with automated test case generation tools such as

ACTS (Automated Combinatorial Testing for

Software) or integrated into CI/CD [4] pipelines for

continuous testing in DevOps workflows. In

summary, the introduction of Orthogonal Array

Testing Strategy to payer insurance systems

addresses a fundamental need: optimizing test

coverage in a cost-effective, scalable, and

statistically reliable manner. As healthcare IT

systems grow more complex and the pressure to

deliver high-quality software intensifies, OATS

presents itself as an indispensable methodology to

validate intricate interactions, maintain compliance,

and support continuous delivery of reliable

healthcare applications. Its structured approach

ensures that payer systems perform accurately

across all critical paths, [5] benefiting both

organizations and the patients they serve.

In payer insurance systems, testing every possible

combination of policy variables, eligibility rules,

provider contracts, and claim types is nearly

impossible due to the exponential growth of

permutations. Traditional testing approaches

struggle to keep up with the complexity and

scalability demands of these systems. Orthogonal

Array Testing Strategy (OATS) offers a robust

solution by applying a mathematically grounded,

statistically optimized method to reduce the number

of test cases while maintaining high fault detection

rates.

Understanding OATS in the Payer Context

OATS is a combinatorial testing approach that uses

orthogonal arrays to create a minimal set of test

cases covering all pairwise combinations of input

variables. Each row in an orthogonal array

represents a test case, and each column represents an

input parameter. This ensures systematic test

coverage across combinations that could reveal

potential defects, particularly in insurance rules

engines, claim adjudication modules, and

authorization logic. In a health insurance system,

variables like plan type, coverage limits, network

status, prior authorization requirements, and

member demographics all interact to determine

benefits and claim outcomes. OATS allows testers

to evaluate all two-way (or higher order) [6]

interactions between these variables without

generating the full test matrix, which could involve

millions of test scenarios.

Application of OATS in Payer Insurance Testing

Let’s consider a simplified example where a claims

engine processes input such as:

Plan Type: HMO, PPO, EPO

Service Type: Inpatient, Outpatient, Emergency

Authorization Required: Yes, No

Provider Network: In-Network, Out-of-Network

Instead of testing all 3×3×2×2=36 combinations, an

orthogonal array might allow us to reduce this to 9

test cases while still ensuring every pairwise

interaction is tested at least once. This is ideal for

regression testing, benefit rule changes, or new

provider onboarding.

Benefits of OATS for Payer QA Teams

• Efficiency: Reduces the number of required test

cases by 60–90%, saving time and computational

resources.

• Improved Coverage: Detects interaction-based

defects that may be missed in random sampling or

single-variable testing.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 666–674 | 668

• Scalability: Supports testing in complex systems

with hundreds of configurable inputs.

• Repeatability and Objectivity: Uses a statistically

defined structure to avoid bias in test design.

• Regulatory Compliance: Ensures that business-

critical combinations (e.g., Medicare Advantage

rules, ACA mandates) are adequately tested.

Integration into DevOps Pipelines

OATS can be integrated into automated testing

pipelines using test generation tools like ACTS

(Automated Combinatorial Testing for Software),

which supports orthogonal arrays and combinatorial

algorithms. This facilitates continuous testing in

agile and DevOps environments, enabling faster

release cycles without sacrificing quality.

2. Related work

Orthogonal Array Testing Strategy (OATS) has

gained prominence as a valuable technique in

combinatorial testing, particularly in domains where

exhaustive testing is impractical due to the vast

number of input combinations. In the healthcare

payer sector, where system configurations often

include multiple interdependent variables—such as

coverage types, claim categories, authorization

rules, and patient demographics—the relevance of

OATS becomes especially apparent. This section

explores the related work and literature surrounding

the application of OATS in software testing, with a

focus on its integration into healthcare payer

systems and comparable complex environments.

2.1 Combinatorial Testing Foundations

The foundational work of [7] from the National

Institute of Standards and Technology (NIST)

highlighted the efficacy of pairwise testing using

orthogonal arrays in detecting a majority of software

defects. The study concluded that nearly 90% of

reported software failures were caused by the

interaction of just two parameters. This finding

justified the use of orthogonal arrays to ensure

coverage of all possible two-way (and optionally

three-way) interactions among input variables while

minimizing the total number of test cases.

Subsequent enhancements to orthogonal array

methods introduced higher-order combinatorial

testing, which expanded the detection capability for

complex interactions, albeit with marginally more

test cases. These principles form the mathematical

backbone of OATS and have since been applied

across several industries, including finance,

aerospace, and more recently, healthcare.

Figure 1: Test Configuration Generation in

Combinatorial Testing

2.2 Use in Enterprise Systems and Insurance

Platforms

In enterprise environments, orthogonal array testing

has been effectively used to validate policy

management systems, billing modules, and claims

workflows. A study by [8] demonstrated the use of

orthogonal arrays to test insurance product

configurators with over 200 input parameters. The

result was a 60% reduction in test effort while

achieving over 95% defect detection for parameter

interaction errors.

Figure 2: Enterprise AI solutions for insurance

Similarly, in commercial insurance software

platforms like Guidewire, Pega, and Oracle

Insurance Suite, practitioners have adopted OATS

for testing complex rating engines and underwriting

rules. These systems, much like payer insurance

platforms, rely on a combination of configurable

variables that define benefit levels, premium

adjustments, coverage exclusions, and regulatory

constraints.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 666–674 | 669

2.3 Application in Healthcare IT and Payer

Systems

In healthcare-specific literature, OATS has been

applied to test health benefit configuration engines,

eligibility rules, and claims adjudication systems.

For example, a pilot project by a U.S.-based

healthcare payer in collaboration with Infosys

(2018) used orthogonal array testing to validate

combinations of over 50 plan variables, resulting in

a 40% faster test cycle and early defect identification

in policy validation logic.

Figure 3: Optimizing Healthcare

Another case study published in the Journal of

Healthcare Information Management (JHIM, 2021)

reported that the use of OATS in Medicaid and

Medicare Advantage testing environments allowed

QA teams to confidently test permutations involving

provider types, geographic locations, patient

conditions, and state-specific benefits—factors that

are often difficult to cover comprehensively through

conventional testing.

2.4 Tool Support and DevOps Integration

Modern software testing tools have embedded

support for OATS and combinatorial test design.

ACTS (Automated Combinatorial Testing for

Software), developed by NIST, remains a widely

used open-source tool that generates orthogonal

arrays and t-way combinations for configurable

software systems. Commercial tools such as

TestOptimal, Hexawise, and IBM Rational Quality

Manager also support orthogonal test planning,

which aligns well with agile and DevOps practices

in payer IT environments.

Integration of OATS into CI/CD pipelines allows

test suites to run automatically with each

configuration change or code update. This approach

has proven especially beneficial in payer systems

with frequent plan updates, regulatory patches, and

seasonal open enrolment changes. In a 2020 HIMSS

case report, a Blue Cross Blue Shield affiliate

reduced post-deployment errors by 35% after

adopting OATS-driven automated testing. The body

of related work underscores the growing

applicability and success of Orthogonal Array

Testing in complex, parameter-heavy domains like

payer insurance systems. From foundational

research by NIST to real-world implementations in

Medicaid and Medicare configurations, OATS has

consistently shown the ability to enhance test

efficiency, improve defect detection, and reduce

quality assurance (QA) [9] costs. As payer

organizations increasingly seek agile, data-driven

solutions to ensure operational reliability and

compliance, OATS provides a scientifically

grounded, scalable testing strategy that aligns well

with both traditional and modern healthcare IT

ecosystems.

Figure 4: Implement DevOps in the Healthcare

Industry

3. Proposed Methodology

To manage the inherent complexity and

interdependency of variables in payer insurance

systems, this proposed methodology applies the

Orthogonal Array Testing Strategy (OATS) for

comprehensive yet efficient test case generation.

The goal is to validate combinations of plan

configurations, member eligibility rules, service

codes, provider types, and authorization policies

using a statistically optimized testing framework.

The methodology is divided into five key phases:

3.1 Requirement and Parameter Identification

The first and most crucial step in implementing the

Orthogonal Array Testing Strategy (OATS)[10] for

payer insurance systems is Requirement and

Parameter Identification. This phase sets the

groundwork for the entire testing process by

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 666–674 | 670

defining the variable inputs that influence the

system’s behavior across different modules such as

eligibility verification, benefits adjudication, and

claims processing. In payer systems, a wide range of

configurable parameters govern how claims are

processed and coverage is determined. These inputs

vary based on insurance product types, regional

compliance regulations, member characteristics, and

provider arrangements. Identifying and cataloging

these variables accurately ensures that the

orthogonal array used later will be both

comprehensive and relevant to real-world

operations.

The key parameters and their typical value sets

include:

Plan Types: These define the insurance structure and

coverage rules. Common types include:

• HMO (Health Maintenance Organization)

• PPO (Preferred Provider Organization)

• EPO (Exclusive Provider Organization)

Medicare Advantage

Service Types: This refers to the medical services

rendered and directly impacts authorization,

coverage limits, and copayment rules:

• Inpatient

• Outpatient

• Emergency

• Preventive

Provider Types: The classification of providers

affects reimbursement rates and network rules:

• Primary Care Physician (PCP)

• Specialist

• Out-of-Network

Authorization Requirement: Indicates whether prior

approval is required before services are rendered:

Yes

No

Member Age Group: Age segments often correlate

with specific benefits and limitations:

• Child (0–17 years)

• Adult (18–64 years)

• Senior (65+ years)

Geographic Zone: Insurance policies and provider

networks often vary by location:

• Urban

• Rural

• State-Specific (e.g., California, Texas, etc.)

Benefit Tier: Reflects the richness of coverage and

impacts deductible, copay, and coinsurance values:

• Gold

• Silver

• Bronze

These variables are identified through a thorough

analysis of the payer system's business rules,

configuration files, and regulatory requirements.

Once collected, they are catalogued in a parameter

matrix, which serves as the input for constructing the

orthogonal array in the next phase. This structured

approach enables OATS to systematically validate

combinations that reflect the operational and

regulatory complexity of payer environments,

ensuring robust, high coverage testing with minimal

test cases [11].

3.2 Test Model Design Using Orthogonal Arrays

Once all input parameters and their respective values

are identified, the next phase in the Orthogonal

Array Testing Strategy (OATS) for payer insurance

systems is the Test Model Design. This stage

involves creating an optimized and statistically

balanced set of test cases using orthogonal arrays

(OAs) [12]. The objective is to ensure maximum test

coverage of parameter interactions—especially

pairwise combinations—while keeping the total

number of test cases manageable and efficient.

Orthogonal arrays are structured matrices that allow

testers to systematically cover all pairwise (or higher

order) combinations of variables. Each column in

the OA corresponds to a parameter (e.g., Plan Type,

Service Type), and each row represents a test case.

The values in the rows are selected in such a way

that each pair of input combinations occurs at least

once across the entire set of test cases. This

guarantees that interaction defects—often caused by

specific variable combinations—are detected even

without exhaustive testing.

To construct an orthogonal array, one must first

understand the number of parameters (factors) and

the levels (number of values) each parameter can

take. For example, suppose the following

configuration from the requirement identification

phase:

• Plan Type (3 levels: HMO, PPO, EPO)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 666–674 | 671

• Service Type (4 levels: Inpatient, Outpatient,

Emergency, Preventive)

• Provider Type (3 levels: PCP, Specialist, Out-of-

Network)

• Authorization (2 levels: Yes, No)

• Member Age Group (3 levels)

• Benefit Tier (3 levels)

Given these variations, a total combinatorial matrix

would yield hundreds of combinations if tested

exhaustively. Instead, a well-fitting orthogonal array

such as L18 (2¹ × 3⁷) may be used, which allows for

efficient coverage of pairwise interactions among up

to 8 parameters with 2 or 3 levels. The “L18” OA

includes 18 test cases, each containing a unique

combination of values for every parameter, carefully

selected to cover all necessary pairwise interactions.

Specialized tools like ACTS (Automated

Combinatorial Testing for Software) by NIST, or

commercial platforms such as Hexawise, are used to

generate the appropriate orthogonal array. These

tools take the parameters and levels as input and

automatically produce a matrix of test cases that

ensures coverage of all critical interaction paths.

By using this approach, payer system testers can

significantly reduce the test case volume—from

potentially hundreds to under twenty—without

compromising the quality of coverage. This is

especially important in healthcare environments,

where configuration errors in claim logic or

authorization workflows can lead to regulatory

penalties or denied services for patients. Thus,

orthogonal arrays provide a scientifically rigorous

yet resource-efficient way to validate complex payer

workflows.

3.3 Automation and Execution in CI/CD

Following the generation of optimized test cases

through Orthogonal Array Testing Strategy (OATS),

the next step is to integrate and automate their

execution within a Continuous

Integration/Continuous Deployment (CI/CD)

pipeline. This ensures that test coverage is

consistently maintained across evolving payer

insurance systems, allowing rapid feedback, defect

identification, and continuous improvement in

software quality.

Each orthogonally derived test case—representing

critical combinations of parameters such as plan

type, service type, provider classification, and

authorization requirements—is converted into

executable scripts using automation frameworks.

Tools like Selenium, TestNG, Cypress, Robot

Framework, or Cucumber are used for functional

and UI-level automation, while Postman,

RestAssured, or Karate DSL are employed for API-

level testing.

These automated scripts target core payer modules

such as:

➢ Eligibility Checks: Validating that member-plan

combinations return accurate eligibility responses

via payer APIs (e.g., X12 270/271 transactions).

➢ Claim Routing: Ensuring claims are directed to the

correct adjudication path based on provider network

status and service location.

➢ Authorization Processing: Verifying pre-

authorization rules for different service types, age

groups, or benefit tiers.

➢ Benefits Adjudication: Checking accurate co-

payment, deductible, and coverage application

across plan types and patient demographics.

Once developed, these scripts are triggered as part of

the CI/CD workflow. Platforms like Jenkins, GitLab

CI, CircleCI, or Azure DevOps are configured to

automatically run these tests whenever a code

commit, configuration change, or environment

deployment occurs. The CI/CD pipeline pulls the

latest builds, deploys them to test environments, and

executes the OATS-based test suite as part of the

pipeline's test stage.

Test results are visualized using dashboards like

Allure, Extent Reports, or Grafana, which offer

insights into:

➢ Test pass/fail rates

➢ Module-wise coverage

➢ Defect recurrence trends

➢ Test execution duration

By aligning test execution with each iteration of

code or configuration, teams can detect defects

early—particularly those caused by configuration

mismatches or overlooked parameter interactions.

For example, a misalignment between a PPO plan

and a new benefit rule affecting emergency services

for seniors in rural areas would be flagged

immediately if the interaction was covered in the

OATS test matrix.

Furthermore, integration with defect tracking

systems such as JIRA, Azure Boards, or

ServiceNow ensures that any failures are logged and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 666–674 | 672

triaged automatically, reducing manual oversight

and enabling rapid remediation. In summary,

embedding OATS-based test automation within

CI/CD pipelines enhances test efficiency,

repeatability, and traceability, which are essential

for maintaining the reliability and regulatory

compliance of complex payer insurance systems.

5. Result Analysis and Feedback Loop

The final and equally critical phase of the

Orthogonal Array Testing Strategy (OATS) for

payer insurance systems is the Result Analysis and

Feedback Loop. This stage ensures that the

outcomes of test executions are not only reviewed

for defects but also used to continuously refine and

improve the testing process itself. In payer

systems—where frequent updates to policies,

benefit tiers, regulatory rules, and provider contracts

are common—this feedback mechanism is vital for

maintaining long-term software reliability and

compliance.

Analysing Test Outcomes

After executing the orthogonal array-based test

cases, all results are automatically aggregated and

analysed using test management and reporting tools

such as Allure, TestRail, or Extent Reports. The goal

is to identify patterns and classify the types of

defects uncovered during the test cycle. Common

defect categories include:

Table 1: Analysing Test Outcomes

Defect

Category

Descripti

on

Example

Scenario

Impact

Business

Rule

Violations

System

logic fails

to adhere

to

contractu

al or

regulator

y

mandates

.

Incorrect

co-pay

calculatio

n for a

Medicare

Advantag

e

emergenc

y room

visit.

Non-

complian

ce, legal

risk, and

claim

reprocess

ing.

Misconfig

ured

Benefit

Tiers

Configur

ation

errors in

tier-based

plan

benefits

such as

Bronze

plan

incorrectl

y applies

Gold tier

benefits.

Financial

discrepan

cies,

member

confusion

.

deductibl

e,

coverage

levels, or

service

limits.

Authorizat

ion Logic

Defects

Flaws in

determini

ng pre-

authoriza

tion

requirem

ents or

delays in

approval

routing.

A surgery

requiring

prior

approval

is

processed

without

authorizat

ion due to

a

misconfig

ured rule.

Overpay

ment,

service

denial,

potential

fraud.

UI/UX

Inconsiste

ncies

Irregulari

ties in

user

interfaces

affecting

usability

and

experienc

e across

platforms

.

Drop-

down for

provider

selection

displays

outdated

or

irrelevant

entries in

mobile

app.

Poor user

experienc

e,

increased

support

calls.

➢ Business Rule Violations: These occur when system

logic fails to enforce contractual or regulatory rules,

such as incorrect co-pay calculations for Medicare

Advantage members or inappropriate denial of

services for emergency claims.

➢ Misconfigured Benefit Tiers: Errors in plan

configuration, such as incorrect deductible amounts

for Bronze plans or improper benefits applied to

Gold tier members, are identified.

➢ Authorization Logic Defects: Test failures often

expose flaws in pre-authorization workflows—such

as missing flags for services that should require prior

approval or delays in status updates due to

misconfigured decision rules.

➢ UI/UX Inconsistencies: In scenarios involving web

portals or mobile apps for member access,

inconsistencies in drop-down values, display logic,

or navigation behavior are highlighted.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 666–674 | 673

Defects are logged and tracked using issue

management platforms like JIRA, Azure DevOps

Boards, or ServiceNow ITSM. Each defect is tagged

with metadata indicating its severity, impacted

modules, and the test case from which it

originated—enabling traceability and faster root-

cause analysis.

Feedback Loop Integration

Beyond basic defect tracking, the feedback loop

plays a pivotal role in adapting the testing

framework to ongoing changes in the payer

environment. For instance:

Parameter Recalibration: If new plan types or

service categories are introduced (e.g., new ACA-

compliant plans or telehealth services), the

parameter list used for generating orthogonal arrays

is updated. This ensures future test matrices reflect

the evolving input landscape.

Regression Suite Optimization: Based on the test

results, the regression test suite is revised to focus

only on relevant and historically error-prone

combinations. This avoids bloated test suites and

accelerates testing cycles.

Higher-Order Combinatorial Testing: If recurring

defects are observed at specific intersections (e.g.,

Plan Type + Provider + Service Type), the test

strategy may evolve to include 3-way or 4-way

interaction coverage, instead of only pairwise, using

more advanced orthogonal arrays or mixed-strength

arrays.

Regulatory Coverage Validation: Regular audits of

test outcomes also ensure that the testing process

continues to meet external compliance mandates

such as CMS interoperability rules, HIPAA privacy

guidelines, or state-specific Medicaid regulations.

Continuous Learning

Each testing cycle becomes a learning opportunity.

Lessons learned are documented in QA

retrospectives and used to enhance test design

templates, improve test data generation logic, and

train new testers on high-risk areas. Over time, this

iterative process matures into a self-optimizing

quality framework that scales alongside the payer

system’s growth and complexity. In summary, the

result analysis and feedback loop stage ensure that

the Orthogonal Array Testing Strategy remains

dynamic, data-driven, and aligned with the real-

world conditions of healthcare payer operations. It

transforms testing from a static activity into a

continuous, intelligent quality assurance process.

6. Result

In the increasingly complex and highly regulated

environment of healthcare payer systems, efficient

and effective software testing is no longer a

luxury—it is a necessity. Systems must process a

vast range of permutations involving health plans,

service types, patient demographics, authorization

rules, and provider contracts. Ensuring

comprehensive test coverage in such a

multidimensional space can be overwhelming,

costly, and time-consuming when using traditional

testing methods. The Orthogonal Array Testing

Strategy (OATS) presents itself as a powerful

solution to this challenge. OATS enables testers to

generate a statistically balanced and representative

set of test cases from large combinations of

variables. By focusing on pairwise or higher-order

interactions, OATS minimizes redundant testing

while maintaining a high level of defect detection. In

payer systems, this means that critical logic—such

as benefit tier assignments, eligibility verifications,

or claims adjudication—can be validated efficiently,

helping prevent errors that could lead to financial

losses, compliance violations, or patient

dissatisfaction.

Throughout the methodology, the structured

phases—beginning with parameter identification,

followed by orthogonal array modeling, test case

generation, CI/CD automation, and finally, result

analysis—demonstrate how OATS fits seamlessly

into both waterfall and agile testing environments.

Moreover, its adaptability to DevOps practices

ensures that as payer systems evolve through

continuous integration and rapid configuration

changes, the testing process remains scalable,

responsive, and reliable. A particularly valuable

aspect of OATS is its ability to identify defects early

in the software development lifecycle. Business rule

violations, authorization workflow errors, and

misconfigured plan details—often triggered by

subtle parameter interactions—can be proactively

discovered and corrected before reaching

production. Additionally, the incorporation of

feedback loops and dynamic test matrix updates

ensures that the test strategy evolves alongside the

system, keeping quality assurance processes

relevant and robust.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 666–674 | 674

The use of automated tools such as ACTS,

Selenium, and Jenkins further enhances OATS by

reducing manual effort, improving traceability, and

enabling frequent and consistent test execution.

Dashboards and test management platforms like

Allure or TestRail support real-time visibility into

test performance, enabling QA teams to make

informed decisions quickly. In summary, the

Orthogonal Array Testing Strategy provides a

disciplined, statistically sound, and operationally

efficient framework for testing payer insurance

systems. It aligns with key healthcare industry

demands, including regulatory compliance,

configuration complexity, interoperability, and

system scalability. By adopting OATS, payer

organizations can ensure that their applications

deliver accurate, reliable, and compliant

functionality—ultimately supporting better

decision-making, improving member experience,

and reducing operational risk. As healthcare

technology continues to grow in sophistication and

interconnectivity, strategies like OATS will remain

critical tools in maintaining quality at scale.

References

[1] Lj. Lazić S. Milinković, S. Ilić " OptimalSQM:

Optimal Software Quality Management Repository

is a Software Testing Center of Excellence", Proc. of

6th WSEAS European Computing Conference

(ECC '12), Prague, Czech Republic, September 24-

26, 2012, pp. 197- 209.

 [2] D. R. Kuhn, N. Kacker, Yu Lei, “Practical

Combinatorial Testing,” NIST Special Publication

Oct.2010.

[3] P. Flores and Y. Cheon, “Generating Test Cases

for Pairwise Testing Using Genetic Algorithms,”

18th IEEE International Symposium on Software

Reliability Engineering (ISSRE’07), Dec.2007.

 [4] Lj. Lazic and D. Velasevic, “Applying

Simulation and Design of Experiments to the

Embedded Software Testing Process,” Journal of

Software Testing, Verification and Reliability, Vol.

14, 2004, p.257–282

 [5] http://www.pairwise.org/tools.asp

 [6] Lj. Lazic, N. Mastorakis, "Orthogonal Array

application for optimal combination of software

defect detection techniques choices", WSEAS

TRANSACTIONS on COMPUTERS, pp. 1319-

1336, August 2008.

 [7] J. Czerwonka, "Pairwise Testing in the Real

World: Practical Extensions to Test-Case

Scenarios", Microsoft Corporation, Software

Testing Technical Articles, February 2008. [8] D.R.

Kuhn, Y.Lei, R. Kacker, "Practical Combinatorial

Testing - Beyond Pairwise", IEEE IT Professional,

June 2008.

 [9] Porter D. Problem Resolution Optimization,

Senior Statistician, Motorola, on web site

www.stickyminds.com, visited 2013.

 [10] Gopalakrishnan Nair, T R. Suma V., Nithya G.

N. Estimation of the Characteristics of a Software

Team for Implementing. Software Quality

Professional; Mar 2011; 13, 2; ProQuest Central, pg.

14

[11] Lj. Lazić, I. Đokić, S. Milinković, „Estimating

Cost and Defect Removal Effectiveness in SDLC

Testing activities“, INFOTEH-JAHORINA 2013,

Jahorina, Proceedings Vol. 12,, ISBN 978-99955-

763-1-8, March 2013. pp.572-577.

 [12] Jones, Capers, Applied Software

Measurement, Global Analysis of Productivity and

Quality,Third Edition, New York: McGraw Hill,

2008.

http://www.pairwise.org/tools.asp

