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Abstract: Cloud Computing (CC) provides unparalleled scalability and adaptability, making it integral across industries. 

However, these benefits come with significant security challenges, such as unauthorized access, data breaches, and insider 

threats. The shared infrastructure of cloud systems is especially attractive to malicious actors. Addressing these vulnerabilities 

necessitates robust security mechanisms, with Intrusion Detection Systems (IDS) being a key solution. IDS monitor network 

and system activities to detect potential intrusions. The integration of machine learning (ML) and deep learning (DL) has 

enabled IDS to adapt to emerging threats while minimizing false alarms. This study proposes an innovative IDS model 

incorporating the Morlet Wavelet Kernel Function and an MLSTM (Modified Long Short-Term Memory) classifier. The 

Jarratt-Butterfly Optimization Algorithm (JBOA) is utilized for feature selection to enhance classification accuracy. Tested on 

the comprehensive BoT-IoT dataset, the model demonstrates superior performance compared to existing techniques. 

Keywords: Cloud Computing, Deep Learning, Intrusion Detection Systems, Jarratt-Butterfly Optimization, Long Short-Term 

Memory, Morlet Wavelet Kernel. 

 

1. Introduction  

Due to its cost-effectiveness in establishing and 

managing system resources, cloud computing has 

become widely adopted by businesses and startups [1]. 

Despite its advantages, cloud computing faces several 

challenges, including mobility support, low latency, 

geo-location, and location awareness. This model 

delivers computing services and applications over the 

Internet, enabling enhanced flexibility, mobility, and 

service awareness while maintaining low latency [2-3]. 

However, the deployment of cloud computing across 

various regions with inconsistent security protocols 

introduces significant safety and security risks. For 

example, smart devices are vulnerable to numerous 

cyber-attacks, such as man-in-the-middle and port 

scanning attacks, which jeopardize data privacy [4]. 

The growing prevalence of internet-enabled devices, 

driven by the widespread integration of the Internet in 

modern life, has led to a surge in the adoption of 

Internet of Things (IoT) devices. Despite their benefits, 

these devices face rising security challenges, prompting 

researchers to explore potential solutions [5-6]. 

Intrusion detection plays a critical role in cloud and IoT 

security by identifying, validating, and preventing 

unauthorized access to computer networks or systems. 

With the significant advancements in data 

technologies, addressing critical disputes over network 

confidentiality has become essential. Intrusion 

Detection Systems (IDS) play a vital role in 

safeguarding networks [7]. These systems are broadly 

categorized into active and passive methods. However, 

traditional active IDS often struggle to combat newly 

emerging threats [8]. One of the key challenges in 

intrusion detection lies in identifying and 

differentiating between normal and abnormal 

connections within complex networks with numerous 

components and characteristics. IDS are commonly 

employed to pinpoint and analyze intrusion methods 

[9]. To achieve real-time intrusion detection, 

researchers have extensively explored various feature 

selection methodologies [10]. A strong case exists for 

enhancing the efficiency and accuracy of classification 

algorithms by reducing the number of features and 

focusing solely on the most critical ones. 
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Machine learning algorithms are commonly utilized for 

detecting attacks and assisting network administrators 

in determining the most effective response strategies 

[11]. However, most traditional ML approaches rely on 

exhaustive feature extraction and selection processes, 

and they fall under the category of shallow learning 

[12]. A major challenge in intrusion detection lies in 

identifying and distinguishing between normal and 

anomalous network connections, given the complexity 

and vast number of components in such networks. 

When an intrusion occurs, IDS are crucial for 

determining its origin and method [13]. At the core of 

any IDS is the classifier, which employs detection 

algorithms to differentiate between normal and 

intrusion-related activities. In cloud networks, 

characterized by numerous interconnected devices, 

developing a classifier with high accuracy for detecting 

intrusions poses significant difficulties [14]. 

Recent scholarly researches has shown that advanced 

learning techniques, such as machine learning (ML), 

are highly effective in addressing network security 

challenges and offer a range of practical applications 

[15]. Despite the introduction of numerous neural 

network (NN)-based intrusion detection methods that 

claim to deliver high performance, existing approaches 

still exhibit certain shortcomings that require resolution 

[16]:While past studies dealt with DDoS attacks in the 

cloud, our suggested model is capable of handling any 

kind of attack. 

 

Most published approaches focus on Host-based IDS. 

However, we prioritize Network-based IDS due to 

their superior response times. Network-based IDS can 

oversee an entire network segment, independent of the 

operating system, without necessitating modifications 

to the existing infrastructure. 

Traditional feature selection methods, such as wrapper 

techniques, dominate existing approaches. These 

methods often result in less sensitive classifiers, 

leading to inaccurate detection by overlooking critical 

features. In contrast, we utilize filter-based methods, 

which are simpler, consume less storage, and operate 

significantly faster. 

The primary contributions of this research are as 

follows: 

• Utilization of a Deep Learning-based 

Intrusion Detection (ID) framework, 

specifically MLSTM, to detect intrusions in 

IoT environments during cloud-based IoT 

data transmission. 

• Proposal of an efficient and optimal 

mechanism for parameter selection using 

JBOA to improve the performance of the 

classification process. 

• Experimental analysis demonstrating that the 

proposed model is validated using publicly 

available datasets 

The related works are discussed in Section 2, the 

proposed approach is detailed in Section 3, the 

validation of the proposed model with existing methods 

using the dataset is provided in Section 4, and the 

conclusion is presented in Section 5. 

2. Related Works 

This Paper introduces the Binary Artificial Bee 

Colony Network (BABCN) procedure for intrusion 

detection, as proposed by Laassar, I., et al. [17], which 

utilizes binary networks. The method's depth-first 

search structure equations enhance the performance of 

the artificial bee algorithm. Experimental results using 

the NSL-KDD dataset demonstrate that the proposed 

method improves classification accuracy and exhibits a 

strong ability to detect intrusions, particularly in terms 

of convergence, security between IoT devices, and 

communication speed. 

 Chaudhari, A., et al. [18] propose a novel intrusion 

detection framework that analyzes the sequence of 

system calls to detect both known and unknown threats. 

The framework combines Long Short-Term Memory 

(LSTM) and anomaly detection methods based on 

system call frequency to examine the system call 

sequences of virtual machines. The proposed 

architecture is tested on the ADFA-LD dataset 

(Australian Defence Force Academy-Linux Dataset). 

The results demonstrate a maximum accuracy of 97.2% 

and the lowest false positive rate of 2.4%, 

outperforming existing frameworks. 

Ziheng, G. E., and Jiang, G. [19] propose an Intrusion 

Detection System (IDS) based on a genetic algorithm 

and multilayer perceptron (MLP) networks. The MLP 

uses the genetic algorithm to optimize the linkage-

related weights and biases, enabling reliable 

differentiation between normal and abnormal network 

data packets. The proposed method was tested in the 

Matlab simulator using the KDD Cup dataset, showing 

superior accuracy compared to other methods. The 

technique also demonstrated excellent specificity and 

sensitivity in identifying both normal and unusual 

network traffic packets. 
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To counteract the effects of attacks, Polepally, V., et 

al. [20] introduce a novel IDS framework leveraging 

cloud data and Spark architecture. Pre-processing is 

used to eliminate artifacts and noise from incoming 

data, while feature extraction and fusion are performed 

by slave nodes. The proposed ExpSSA algorithm, a 

hybrid of the exponential weighted moving average 

(EWMA) and the squirrel search algorithm (SSA), is 

used for feature fusion. These fused features are then 

fed into a deep-stacked autoencoder (Deep SAE) 

trained using the modified ExpSSA to optimize 

weights. The ExpSSA-based Deep SAE outperforms 

existing methods in terms of accuracy, detection rate 

(0.846), and false positive rate (FPR). 

For intrusion detection and secure cloud data storage, 

Preethi et al. [21] propose the MDBGRNN-ID-

SCESOA model, which stands for Multi-Scale 

Bidirectional Gated Recurrent Neural Network with 

Optimal Encryption Scheme. The model uses Domain 

Transform Filtering (DTF) for data preparation, 

including tokenization, dimensionality reduction, and 

semantic analysis with KDD CUP 99 and DS2OS 

datasets. MDBGRNN is employed to distinguish 

between intrusion and non-intrusion data. A two-way 

encryption method combining Elliptical Curve and the 

Sine Cosine Egret Swarm Optimization Algorithm 

(ECC-SCESOA) enhances data security with minimal 

computational overhead. Additionally, a 

steganography-based approach is used to protect 

encrypted data while it is stored in the cloud. 

Performance evaluation metrics such as accuracy, 

specificity, sensitivity, execution time, memory 

utilization, and Matthews correlation coefficient 

(MCC) demonstrate significant improvements in 

computing efficiency and data security, highlighting 

the effectiveness of MDBGRNN-ID-SCESOA in 

securing cloud environments. 

Souri, A., et al. [22] present a hyper-automation 

process for Industrial Internet of Things (IIoT) based 

on a Trees Detection algorithm, designed to predict 

malicious attacks. The architecture utilizes a priority-

based feature selection approach alongside Analysis of 

Variance (ANOVA) to identify the most relevant 

features based on network traffic, computation time, 

malicious behaviors, and attack types. Experiments 

with NSL-KDD and UNSW-NB15 datasets show that 

the proposed design effectively optimizes large-scale 

cyber-attack systems for IIoT processes, 

outperforming existing models. 

3. Proposed Methodology 

This work presents an automated IoT network 

detection approach. In our proposed model, flow data 

collected from sensors is processed through feature 

engineering algorithms. The feature engineering 

methods, such as feature imbalance handling and 

feature selection, are integrated into the model. 

Recursive Feature Elimination (RFE) and Principal 

Component Analysis (PCA) are two feature selection 

techniques used to enhance model accuracy, reduce 

training time, and prevent overfitting, among other 

data-related issues.To evaluate the performance and 

runtime of each deep learning model, we will run 

multiple models and analyze their results. The study 

workflow is illustrated in Figure 1. 

 

 

Figure 1: Workflow of the Research Work 

a. Description of Bot-IoT Dataset 

In this experiment, a fresh set of development data is 

utilized, with Bot-IoT employed to identify simulated 

attacks on the IoT network [24]. The data collection 

consists of information gathered from IoT devices, the 

Cyber Range Lab at UNSW Canberra, regular traffic 

patterns, and botnet traffic patterns induced by various 

attack types. A realistic testbed is used to generate a 

comprehensive dataset with detailed traffic statistics. 

To enhance the machine learning model's 

performance, additional features are added and 

labeled. Feature extraction is supported by three 

subcomponents: investigative analysis, network 

structure, and simulated IoT services. 

The IoT system is capable of collecting real-time 

weather data and adjusting settings accordingly. For 

instance, one smart device controls the lighting, while 

another monitors the fridge's temperature and cooling 

system. These lights automatically turn on when 
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motion is detected. The system also includes a smart 

thermostat that adjusts the temperature independently 

and an IoT-enabled smart door that responds to 

probabilistic input. The characteristics of attacks on 

this data are detailed in Table 1. 

Using targets, an IoT system can more effectively 

categorize network data as either safe or harmful, 

helping to separate normal from malicious traffic. The 

BoT-IoT dataset is designed to capture the following 

types of data: 

i. The benign category includes typical, lawful, 

and non-malicious Internet of Things (IoT) 

network operations, representing regular, safe 

activity within the IoT network. 

ii. TCP-based attacks can render a network 

unavailable to legitimate users by 

overwhelming it with excessive requests, 

causing congestion and disrupting normal 

communication 

iii. UDP-based DDoS attacks overwhelm 

networks by flooding them with traffic, 

leading to service outages and disruptions in 

network availability. 

iv. HTTP-based DDoS attacks overwhelm web 

servers with an excessive number of requests, 

causing them to become unresponsive or 

unavailable, effectively disrupting access to 

the targeted websites or services. 

v.  TCP-based attacks exploit vulnerabilities in 

the TCP stack to exhaust network and device 

resources, potentially leading to system 

crashes or slowdowns. UDP-based attacks 

flood the target with excessive packets, 

causing network congestion and disruptions, 

resulting in outages and degraded 

performance. 

vi. HTTP-based attacks overwhelm web servers 

with a high volume of requests, causing them 

to become unresponsive or unavailable, 

disrupting access to websites and online 

services. 

vii. Keylogging involves secretly recording 

keystrokes on an infected device, with the 

intent of stealing sensitive information such as 

passwords, personal data, or financial details. 

viii.  Data capture refers to the illegal collection of 

data from compromised IoT networks or 

devices, often with the aim of stealing 

confidential or proprietary information. 

. 

Target  Category  Count 

Benign BENIGN  9654 

Attack DDoS TCP  19,547,60 

Attack DDoS UDP  18,965,10 

Attack DDoS HTTP  19,71 

Attack DoS-TCP  12,35,897 

Attack DoS UDP  20,69,491 

Attack DoS HTTP  29,607 

Keylogging Key logging  109 

Data theft Data -theft  118 

-  Total  73,370,443 

 

Table 1. Bot-IoT dataset 

b. Data Preprocessing 

 

An essential aspect of building models is the pre-

processing of data. To enhance the proposed model, the 

following pre-processing methods were implemented 

throughout the process: 

• Data Cleansing: This involves data 

filtering, data transformation, and 

checking for missing values during the 

pre-processing phase. 

• Data Filtering: Identifies and removes null 

and duplicate values to ensure data 

consistency. 

Data Transformation: Includes format conversions, 

such as transforming categorical data into numerical 

formats, among others, to standardize the data for 

analysis. 

These steps ensure that the data is cleaned and prepared 

for analysis, improving the quality and reliability of the 

model. Various Python tools and libraries were utilized 

to perform these pre-processing tasks [25]. 

c. Feature Selection using JBOA 

Jarratt's method is a significant enhancement of 

Newton's method for solving nonlinear equations. It is 

a fourth-order iterative method designed to improve 

convergence efficiency. The method can be expressed 

mathematically as follows: 

Let the nonlinear equation be  

𝑓(𝑥)=0 

f(x)=0. 
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The iterative steps for Jarratt's method are: 

{
𝑦𝑛 = 𝑥𝑛 −

2𝑓(𝑥𝑛)

3𝑓′(𝑥𝑛)

𝑥𝑛+1 = 𝑥𝑛 − (
3𝑓′(𝑦𝑛)+𝑓′(𝑥𝑛)

6𝑓′(𝑦𝑛) − 2𝑓′(𝑥𝑛)
)

𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

 

An essential step in building effective models is the 

pre-processing of data, which ensures the data is clean, 

structured, and ready for analysis. To enhance the 

proposed model, the following pre-processing methods 

were applied: 

• Data Cleansing: This step focuses on ensuring 

the dataset is free of errors and 

inconsistencies: 

• Data Filtering: Involves identifying and 

removing null values and duplicates to 

improve data quality. 

• Missing Data Checks: Ensures that any gaps 

in the data are addressed to maintain 

completeness. 

• Data Transformation: This process converts 

the data into formats suitable for analysis: 

• Format Conversion: Includes transforming 

categorical data into numerical formats or 

other necessary conversions to make the data 

compatible with machine learning algorithms. 

By employing these pre-processing techniques, the data 

becomes better structured and optimized for training 

the model, ultimately improving its accuracy and 

reliability. 

Python programs and libraries were instrumental in 

cleaning and preparing the data for analysis [25]. 

In addition to data pre-processing, Jarratt’s method 

offers an efficient approach for solving nonlinear 

equations. This method, due to its convergence rate of 

23−1=42^{3-1} = 423−1=4, is considered optimal. The 

process evaluates f(xn)f(x_n)f(xn), f′(xn)f'(x_n)f′(xn), 

and f′(yn)f'(y_n)f′(yn), resulting in significant 

advancements in numerical solutions. 

Key Features of Jarratt's Method: 

• Convergence: The method approaches four 

significant digits (or correct decimals) per 

iteration, effectively multiplying accuracy by 

four with each repetition. 

• Application Example: Consider the nonlinear 

equation f(x)=cos⁡(x)−xf(x) = \cos(x) - 

xf(x)=cos(x)−x. The root of this equation is 

approximately a=0.739085133215a = 

0.739085133215a=0.739085133215. Using 

Jarratt’s method with an initial guess of 

x0=1.7x_0 = 1.7x0=1.7, the approximation of 

the root advances consistently by a factor of 

four with each iteration until it converges to 

the exact solution. 

Limitations of Jarratt's Method: 

Despite its effectiveness, Jarratt's method shares some 

challenges common to iterative methods: 

• Divergence: The method may fail to converge 

if the initial guess is poorly chosen. 

• Local Optima Trapping: It can become stuck 

in a local optimum rather than finding the 

global solution. 

• Initial Value Sensitivity: The accuracy and 

success of the method heavily depend on 

selecting an appropriate starting point. 

These limitations have driven extensive research on 

Jarratt’s method, resulting in various proposed 

enhancements to improve its stability and 

applicability. 

Through its efficiency and widespread applicability, 

Jarratt’s method serves as a powerful tool in solving 

nonlinear equations, complementing the robust data 

preparation methods used in model building. 

d. Butterfly optimization algorithm 

(BOA) 

The scent and texture of each fragrance in the Butterfly 

Optimization Algorithm (BOA) are unique, serving as 

a defining characteristic that sets it apart from other 

metaheuristic algorithms. In BOA, the "smell" is a key 

parameter used to guide the search process, and it is 

determined in the following way: 

𝑓 = 𝑐𝐼𝑎(2) 

 

The parameter f represents the intensity of the scent, 

which indicates how other butterflies perceive and rate 

the fragrance. Among the various sensory modalities 

that define odor, c symbolizes the fragrance. The value 

of parameter a is associated with the butterfly's aroma. 

If we assume a=1 all butterflies can be considered to 

have the same scent. In this scenario, as all butterflies 

share the same threshold for olfactory perception, there 

is no absorption of the aroma. This simplifies the 

process, making it easier to converge toward a single 
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optimal solution, usually the global one. Conversely, 

when a=0, no other butterfly can detect the scent 

produced by a specific butterfly. 

To achieve an optimal solution, the BOA algorithm 

replicates the unique flight patterns of butterflies, 

which are defined by the following key characteristics. 

1. Butterflies attract one another through the 

release of their distinctive scent. 

2. They either move randomly or converge 

around the butterfly emitting the strongest 

scent. 

3. The intensity of stimuli a butterfly perceives is 

influenced by the objective function. 

All metaheuristic algorithms generally follow three 

stages: initialization, iteration, and finalization, and the 

Butterfly Optimization Algorithm (BOA) adheres to 

this structure. Initialization: In this stage, the algorithm 

defines the solution space to explore potential 

solutions. The parameters of the BOA are also 

initialized. Subsequently, the algorithm generates an 

initial population of butterflies. Since the number of 

butterflies remains constant throughout the algorithm, 

each butterfly is allocated a fixed memory size to store 

relevant data. Iteration: This phase involves repeated 

execution of the algorithm. During each iteration, the 

fitness value of every butterfly in the solution space is 

computed. Butterflies generate scents at their 

respective positions based on Equation (2). The 

algorithm dynamically alternates between global and 

local searches. In the global search phase, butterflies 

aim to converge on the optimal solution, which 

corresponds to the butterfly with the highest fitness 

value. The global search process can be represented 

mathematically, as shown in Equation (3). 

𝑥𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑟2 × 𝑔 − 𝑥𝑖
𝑡) × 𝑓𝑖 (3) 

 

where X_i^t represents the key vector x_i of 

butterfly in repetition t, while g* is the greatest 

solution for the current repetition. f_i characterizes 

the butterfly, and r is a random sum between 0 

besides 1. 

𝑥𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑟2 × 𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 ) × 𝑓𝑖 (4) 

 

where X_i^t and x_j^t are butterflies space. 

Thus, Equation (24) performs a local walk. 

The Butterfly Optimization Algorithm (BOA) 

incorporates a probability value 𝑝, typically ranging 

between 0 and 1, to switch dynamically between a 

broad global search and a focused local search. The 

iteration phase continues until a predefined termination 

criterion is met. These criteria can be set in several 

ways, such as measuring CPU time, reaching a specific 

number of iterations, or achieving a predefined error 

threshold.In the final step, the solution that yields the 

highest fitness value is selected as the optimal outcome. 

This ensures that the algorithm identifies the most 

effective solution within the defined parameters. 

e. Jarratt-Butterfly optimization 

algorithm (JBOA) 

 The Butterfly Optimization Algorithm (BOA) is a 

versatile optimization method applied in various 

contexts. However, the "No Free Lunch" (NFL) 

theorem asserts that no single optimization method can 

excel at solving every problem. Additionally, when 

addressing Nonlinear System Equations (NSE), BOA 

may encounter challenges such as getting stuck in local 

optima or facing divergence issues. To address these 

limitations, the JBOA method enhances BOA by 

integrating it with Jarratt's techniques.  

 

In JBOA, each iteration incorporates Jarratt's method 

to refine solutions. Initially, the best position identified 

by BOA for the butterfly is treated as a candidate site. 

Jarratt's method then optimizes this candidate site, 

often improving the butterfly's location. The results of 

Jarratt's method are compared against BOA's 

candidate positions, and the location with the highest 

fitness value is chosen.Due to its convergence 

capabilities, Jarratt's method enables more accurate 

solutions with fewer iterations, thus improving 

JBOA's efficiency in solving NSE. At the end of each 

iteration, JBOA incorporates updates, comparing the 

fitness of Jarratt's refined position 𝑋𝑛+1 with the BOA 

butterfly position 𝑥𝑏𝑗(𝑡)x  . Ultimately, the solution 

that achieves the best fitness value is selected as the 

optimal outcome. This integration significantly 

enhances the search strategy and solution accuracy of 

BOA. 

4. Classification using MLSTM 

The selected features are then passed into a Long 

Short-Term Memory (LSTM) model to classify the 

type of incursion. LSTM is a deep learning architecture 

based on artificial recurrent neural networks (RNNs) 

that is particularly adept at handling time-series data. 

Unlike conventional feed-forward neural networks, 
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LSTM introduces feedback connections between 

hidden units across discrete time steps. This 

architecture enables the model to learn long-term 

sequence dependencies effectively, making it capable 

of predicting transaction labels based on a sequence of 

previous transactions.LSTMs were designed to 

overcome challenges such as vanishing and exploding 

gradients, which are common in the training of 

traditional RNNs.The construction of the LSTM unit is 

shown in Fig. 2. 

 

Figure 2: Construction of LSTM. 

Each LSTM layer comprises three critical gates: the 

input gate(𝑖𝑔𝑡), forget gate (𝑓𝑔𝑡), and an output gate 

((𝑜𝑔𝑡)). These gates manage the flow of information 

into and out of the cell, which is responsible for storing 

values over random time intervals. The input gate 

controls which values are updated, the forget gate 

decides which information to discard, and the output 

gate determines what part of the cell state is output at a 

given time step.However, traditional LSTM training 

methods often face slower convergence and struggle 

with optimizing the error function due to gradient 

descent becoming trapped in local minima caused by 

random initialization of biases and weights. To address 

this, the Morlet Wavelet Kernel Function (MWKF) is 

introduced as a derivative-free optimization approach 

for complex problems.MWKF replaces the random 

selection of gate weights and biases in traditional 

LSTM, improving its performance in data classification 

and non-linear function approximation tasks. The 

integration of MWKF with LSTM results in a model 

known as MWKFLSTM. This approach leverages the 

MWKF for efficient weight and bias initialization, 

leading to superior accuracy and faster convergence 

compared to standard LSTM. The equations for 𝑖𝑔t , 

𝑓𝑔t ,and 𝑜𝑔t are given below: 

 

𝑓𝑔𝑡 = 𝛽(𝑤𝑓𝑔(ℎ𝑡−1, 𝑞𝑡) + 𝑏𝑓𝑔)                                          

(5) 

 

𝑖𝑔𝑡 = 𝛽(𝑤𝑖𝑔(ℎ𝑡−1, 𝑞𝑡) + 𝑏𝑖𝑔)                                            

(6) 

 

𝑜𝑔𝑡 = 𝛽(𝑤𝑜𝑔(ℎ𝑡−1, 𝑞𝑡) + 𝑏𝑜𝑔)                                         

(7) 

 

Where 𝛽  indicates the sigmoid function. The 

terms 𝑤fg , 𝑤ig , and 𝑤og  are the weight matrices of 

𝑓𝑔𝑡
,𝑖𝑔𝑡

 ,and 𝑜gt
 respectively. The terms𝑏fg,𝑏ig, and𝑏og 

are the bias matrices of𝑓𝑔𝑡
,𝑖𝑔𝑡

and 𝑜gt
correspondingly. 

The preceding output at (𝑡 − 1)𝑡ℎ  timestamp is 

represented as ℎt−1  , andqt characterizes the present 

input vector at time stamp 𝑡. Every LSTM gate has a 

weight and bias value between zero and n-1 that are 

randomly generated. To improve the classifier's 

detection performance, we use MWKF to find the best 

fit weight and bias values for the LSTM network, 

rather than picking them at random. The expression for 

the wavelet basis function can be given by taking a 

function, Η(w), with a scale factor of z and a 

translation factor of x. 

 

𝛽𝑧,𝑥(𝑤) =
1

√|𝑧|
𝜓 (

𝑤−𝑥

𝑧
)                                 (8) 

To represent a multidimensional wavelet purpose, 

tensor product theory states that one can take many 

functions besides multiply them together. 

 

𝜓(𝑤) = ∏ 𝜓(𝑤𝑖)𝑛
𝑖=1                             (9) 

 

Equation (9), in where n is the sum of functions, and 

w_i is variable of the i-th one- function, allows one to 

design a kernel function. 

 

𝐾(𝑤, 𝑤̅) = ∏ 𝛽 (
𝑤𝑖−𝑤̅𝑖

𝑧
)𝑛

𝑖=1                             (10) 

 

This study uses the MVKF to build the function. This 

is the MVKF function: 

 

𝛽(𝑤) = cos (1.75𝑤)𝑒𝑥𝑝 (−
𝑤2

2
)                          (11) 

 

The WK purpose accumulated since the MVKF  

𝐾(𝑤, 𝑤̅) = ∏ [𝑐𝑜𝑠 (1.75

𝑛

𝑖=1

×
𝑤𝑖 − 𝑤̅𝑖

𝑧
) 𝑒𝑥𝑝 (−

(𝑤𝑖 − 𝑤̅𝑖)
2

2𝑧2
)] 

   (12) 
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In the MWKFLSTM model, the weights of the three 

gates are represented by 𝑤𝑖 which determines the 

standards of the input, forget, and output gate weights. 

The Morlet Wavelet Kernel Function (MWKF) is 

employed to approximate these weights, leveraging 

the wavelet function's kernel properties. The 

construction of MWKF provides enhanced 

approximation capabilities, which, when applied to 

LSTM, result in superior performance for 

classification tasks.The weight values for each gate 

(𝑤𝑖) are processed through the kernel computations of 

the MWKF, ensuring better initialization and 

optimization. Similarly, the calculation of bias values 

for the gates is carried out using the same kernel 

computations, ensuring consistency in the 

optimization process. In addition to the output, the 

terms for the cell state and applicant cell state are 

 

𝒦𝑡
𝜔 = tanh (𝑤𝑘[ℎ𝑡−1, 𝑞𝑡] + 𝑏𝑘)                                    

(13) 

 

𝑘𝑡 = 𝑓𝑔𝑡
∗ 𝑘𝑡−1 + 𝑖𝑔𝑡 ∗ 𝑘𝑡                                        

(14) 

 

ℎ𝑡 = 𝑜𝑔𝑡 ∗ tanh (𝑘𝑡)                                           (15) 

 

Where 𝑘t  besides 𝑘t−1  represents the new and 

preceding cell states of 𝑡 and also 𝑡 − 1 . The term 

𝒦𝑡
𝜔 characterizes candidate cell public at t, and 

*symbolizes the multiplication of vectors. 

5. Results and Discussion  

This experiment was conducted using a DELL laptop 

running Windows 10, equipped with 16 GB of RAM 

and an Intel Core i5-10210U processor. The suggested 

method was applied and evaluated on the dataset in 

question. The experiment utilized several libraries, 

including matplotlib (version 3.3.2), numpy (version 

1.19.2), pandas (version 1.1.3), scikit-learn (version 

0.23.2), keras (version 2.6.0), and tensorflow (version 

2.6.0). The programming environment used was 

Spyder Python (version 3.8). 

 

To measure the efficacy of the proposed system, we 

use the following metrics: Accuracy, Precision, Recall, 

F1-Score, True Positive Rate, and False Positive Rate. 

Accuracy is calculated as the ratio of correctly 

predicted records to the total number of records, as 

shown in Equation (16): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁)/(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +

 𝐹𝑁) (16) 

The accuracy rate of abnormal instance predictions 

relative to the total sum of abnormal instance 

predictions is called Precision. It is calculated using 

the following Equation: (17): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃/𝑇𝑃 +  𝐹𝑃 (17) 

 

According to Equation (18), recall is the proportion 

of correctly estimated abnormal cases to the entire 

sum of actual abnormal instances: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃/𝑇𝑃 +  𝐹𝑁 (18) 

 

According to Equation (19), the F1 Score provides a 

Precision besides Recall for evaluating the scheme's 

accuracy: 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 =  2((𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)/

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)) (19) 

 

o Validation Analysis of Proposed 

Model 

Table 2 offers the investigational study of proposed 

classical with existing techniques in terms of diverse 

metrics. 

 

Method ACC Recall Precision F1-Score 

XGBoost 93.12 94.21 92.31 93.42 

DBN 95.75 95.78 93.08 94.30 

CNN 96.51 96.94 94.29 95.19 

RNN 97.61 97.04 95.14 96.51 

LSTM 98.44 98.39 97.66 97.93 

MLSTM 99.22 99.51 98.48 98.58 

 

Table 2: Validation study of proposed perfect with 

existing procedures 

 

In the proposed method compared to existing 

procedures, the performance metrics for each 

technique are as follows: the XGBoost technique 

accuracy as 93.12 also recall of 94.21 and precision 

as92.31alsof1-score as 93.42. Then the DBN 

technique accuracy as 95.75 also recalls of 95.78 and 

precision as 93.08 also the f1-score as 94.30 

correspondingly. Then the CNN technique accuracy as 

96.51 also recall of 96.94 and precision as 94.29 also 

the f1-score as 95.19 correspondingly. Then the RNN 

technique accuracy as 97.61 also recalls of 97.04 and 

precision as 95.14 also the f1-score as 96.51 

correspondingly. Then the LSTM technique accuracy 
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as 98.44 also recalls of 98.39 and precision as 97.66 

also the f1-score as 97.93 correspondingly. Then the 

MLSTM technique accuracy as 99.22 also recalls of 

99.51 and precision as 98.48 also the f1-score as 98.58 

correspondingly.  

 

 
 

Figure 3: Graphical Description of proposed perfect 

with existing performances 

 

Algorithm Training 

Accurancy 

Test 

Accuracy 

Training 

Time(s) 

XGBoost 0.9101 0.9144 244 

DBN 0.9319 0.9382 229 

CNN 0.9407 0.9423 324 

RNN 0.9594 0.9534 251 

LSTM 0.9600 0.9653 260 

MLSTM 0.9743 0.9777 236 

 

Table 3: Timing Analysis 

 

The XGBoost technique has a training accuracy of 

0.9101, a testing accuracy of 0.9144, and a training 

time of 244 in the timing analysis of various 

techniques. Subsequently, the DBN technique yielded 

training accuracy of 0.9319, testing accuracy of 

0.9382, and training time of 229 in accordance. 

Subsequently, the CNN technique yielded training 

accuracy of 0.9407, testing accuracy of 0.9423, and 

training time of 324 in accordance. Subsequently, the 

RNN technique yielded training accuracy of 0.9594, 

testing accuracy of 0.9534, and a corresponding 

training time of 251.  

 
 

Figure 4: Visual Representation of the proposed 

model for timing analysis 

6. Conclusion 

 This paper proposes a novel MLSTM model for 

detecting breaches in IoT-Cloud infrastructure. To 

enhance the feature selection process, pre-processing 

techniques and the JBOA algorithm were utilized. 

Simulations conducted on the BoT-IoT dataset 

demonstrate the efficacy of the model. The MLSTM 

achieves a high degree of accuracy in detecting various 

types of network threats. When compared to state-of-

the-art methodologies presented in existing literature, 

the MLSTM outperforms them in detection accuracy. 

The model also exhibits the best throughput ratio, 

lowest false alarm rate, and minimal delay when tested 

against other approaches using the same dataset. 

Additionally, the performance of the MLSTM is 

further validated by its superior efficiency in 

transferring data packets between cloud-based IoT 

devices.After the classification of normalcy, the data 

was securely stored in the cloud. However, some 

limitations exist within the system, such as the 

reliability of the input and output data used to train the 

model. Additionally, the issue of data imbalance in the 

dataset remains a significant challenge that will be 

addressed in future stages of the research. 
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