

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3320–3330 | 3320

Cloud Security Redefined: Intrusion Detection System Powered

by Deep Learning

Vijay Kumar Gandam1, Dr. E. Aravind*2

Submitted: 05/11/2024 Revised: 15/12/2024 Accepted: 23/12/2024

Abstract: Cloud Computing (CC) provides unparalleled scalability and adaptability, making it integral across industries.

However, these benefits come with significant security challenges, such as unauthorized access, data breaches, and insider

threats. The shared infrastructure of cloud systems is especially attractive to malicious actors. Addressing these vulnerabilities

necessitates robust security mechanisms, with Intrusion Detection Systems (IDS) being a key solution. IDS monitor network

and system activities to detect potential intrusions. The integration of machine learning (ML) and deep learning (DL) has

enabled IDS to adapt to emerging threats while minimizing false alarms. This study proposes an innovative IDS model

incorporating the Morlet Wavelet Kernel Function and an MLSTM (Modified Long Short-Term Memory) classifier. The

Jarratt-Butterfly Optimization Algorithm (JBOA) is utilized for feature selection to enhance classification accuracy. Tested on

the comprehensive BoT-IoT dataset, the model demonstrates superior performance compared to existing techniques.

Keywords: Cloud Computing, Deep Learning, Intrusion Detection Systems, Jarratt-Butterfly Optimization, Long Short-Term

Memory, Morlet Wavelet Kernel.

1. Introduction

Due to its cost-effectiveness in establishing and

managing system resources, cloud computing has

become widely adopted by businesses and startups [1].

Despite its advantages, cloud computing faces several

challenges, including mobility support, low latency,

geo-location, and location awareness. This model

delivers computing services and applications over the

Internet, enabling enhanced flexibility, mobility, and

service awareness while maintaining low latency [2-3].

However, the deployment of cloud computing across

various regions with inconsistent security protocols

introduces significant safety and security risks. For

example, smart devices are vulnerable to numerous

cyber-attacks, such as man-in-the-middle and port

scanning attacks, which jeopardize data privacy [4].

The growing prevalence of internet-enabled devices,

driven by the widespread integration of the Internet in

modern life, has led to a surge in the adoption of

Internet of Things (IoT) devices. Despite their benefits,

these devices face rising security challenges, prompting

researchers to explore potential solutions [5-6].

Intrusion detection plays a critical role in cloud and IoT

security by identifying, validating, and preventing

unauthorized access to computer networks or systems.

With the significant advancements in data

technologies, addressing critical disputes over network

confidentiality has become essential. Intrusion

Detection Systems (IDS) play a vital role in

safeguarding networks [7]. These systems are broadly

categorized into active and passive methods. However,

traditional active IDS often struggle to combat newly

emerging threats [8]. One of the key challenges in

intrusion detection lies in identifying and

differentiating between normal and abnormal

connections within complex networks with numerous

components and characteristics. IDS are commonly

employed to pinpoint and analyze intrusion methods

[9]. To achieve real-time intrusion detection,

researchers have extensively explored various feature

selection methodologies [10]. A strong case exists for

enhancing the efficiency and accuracy of classification

algorithms by reducing the number of features and

focusing solely on the most critical ones.

1 Research Scholar, Department of Computer

Science and Engineering, Chaitanya Deemed to

be University – 500075, Hyderabad, India

ORCID ID : 0000-0001-8101-2166

*2 Research Supervisor, Department of

Computer Science and Engineering, Chaitanya

Deemed to be University – 500075, Hyderabad.

ORCID ID : 0009-0009-8584-0087

* Corresponding Author Email:

gandamvijaykumarphd@email.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3320–3330 | 3321

Machine learning algorithms are commonly utilized for

detecting attacks and assisting network administrators

in determining the most effective response strategies

[11]. However, most traditional ML approaches rely on

exhaustive feature extraction and selection processes,

and they fall under the category of shallow learning

[12]. A major challenge in intrusion detection lies in

identifying and distinguishing between normal and

anomalous network connections, given the complexity

and vast number of components in such networks.

When an intrusion occurs, IDS are crucial for

determining its origin and method [13]. At the core of

any IDS is the classifier, which employs detection

algorithms to differentiate between normal and

intrusion-related activities. In cloud networks,

characterized by numerous interconnected devices,

developing a classifier with high accuracy for detecting

intrusions poses significant difficulties [14].

Recent scholarly researches has shown that advanced

learning techniques, such as machine learning (ML),

are highly effective in addressing network security

challenges and offer a range of practical applications

[15]. Despite the introduction of numerous neural

network (NN)-based intrusion detection methods that

claim to deliver high performance, existing approaches

still exhibit certain shortcomings that require resolution

[16]:While past studies dealt with DDoS attacks in the

cloud, our suggested model is capable of handling any

kind of attack.

Most published approaches focus on Host-based IDS.

However, we prioritize Network-based IDS due to

their superior response times. Network-based IDS can

oversee an entire network segment, independent of the

operating system, without necessitating modifications

to the existing infrastructure.

Traditional feature selection methods, such as wrapper

techniques, dominate existing approaches. These

methods often result in less sensitive classifiers,

leading to inaccurate detection by overlooking critical

features. In contrast, we utilize filter-based methods,

which are simpler, consume less storage, and operate

significantly faster.

The primary contributions of this research are as

follows:

• Utilization of a Deep Learning-based

Intrusion Detection (ID) framework,

specifically MLSTM, to detect intrusions in

IoT environments during cloud-based IoT

data transmission.

• Proposal of an efficient and optimal

mechanism for parameter selection using

JBOA to improve the performance of the

classification process.

• Experimental analysis demonstrating that the

proposed model is validated using publicly

available datasets

The related works are discussed in Section 2, the

proposed approach is detailed in Section 3, the

validation of the proposed model with existing methods

using the dataset is provided in Section 4, and the

conclusion is presented in Section 5.

2. Related Works

This Paper introduces the Binary Artificial Bee

Colony Network (BABCN) procedure for intrusion

detection, as proposed by Laassar, I., et al. [17], which

utilizes binary networks. The method's depth-first

search structure equations enhance the performance of

the artificial bee algorithm. Experimental results using

the NSL-KDD dataset demonstrate that the proposed

method improves classification accuracy and exhibits a

strong ability to detect intrusions, particularly in terms

of convergence, security between IoT devices, and

communication speed.

 Chaudhari, A., et al. [18] propose a novel intrusion

detection framework that analyzes the sequence of

system calls to detect both known and unknown threats.

The framework combines Long Short-Term Memory

(LSTM) and anomaly detection methods based on

system call frequency to examine the system call

sequences of virtual machines. The proposed

architecture is tested on the ADFA-LD dataset

(Australian Defence Force Academy-Linux Dataset).

The results demonstrate a maximum accuracy of 97.2%

and the lowest false positive rate of 2.4%,

outperforming existing frameworks.

Ziheng, G. E., and Jiang, G. [19] propose an Intrusion

Detection System (IDS) based on a genetic algorithm

and multilayer perceptron (MLP) networks. The MLP

uses the genetic algorithm to optimize the linkage-

related weights and biases, enabling reliable

differentiation between normal and abnormal network

data packets. The proposed method was tested in the

Matlab simulator using the KDD Cup dataset, showing

superior accuracy compared to other methods. The

technique also demonstrated excellent specificity and

sensitivity in identifying both normal and unusual

network traffic packets.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3320–3330 | 3322

To counteract the effects of attacks, Polepally, V., et

al. [20] introduce a novel IDS framework leveraging

cloud data and Spark architecture. Pre-processing is

used to eliminate artifacts and noise from incoming

data, while feature extraction and fusion are performed

by slave nodes. The proposed ExpSSA algorithm, a

hybrid of the exponential weighted moving average

(EWMA) and the squirrel search algorithm (SSA), is

used for feature fusion. These fused features are then

fed into a deep-stacked autoencoder (Deep SAE)

trained using the modified ExpSSA to optimize

weights. The ExpSSA-based Deep SAE outperforms

existing methods in terms of accuracy, detection rate

(0.846), and false positive rate (FPR).

For intrusion detection and secure cloud data storage,

Preethi et al. [21] propose the MDBGRNN-ID-

SCESOA model, which stands for Multi-Scale

Bidirectional Gated Recurrent Neural Network with

Optimal Encryption Scheme. The model uses Domain

Transform Filtering (DTF) for data preparation,

including tokenization, dimensionality reduction, and

semantic analysis with KDD CUP 99 and DS2OS

datasets. MDBGRNN is employed to distinguish

between intrusion and non-intrusion data. A two-way

encryption method combining Elliptical Curve and the

Sine Cosine Egret Swarm Optimization Algorithm

(ECC-SCESOA) enhances data security with minimal

computational overhead. Additionally, a

steganography-based approach is used to protect

encrypted data while it is stored in the cloud.

Performance evaluation metrics such as accuracy,

specificity, sensitivity, execution time, memory

utilization, and Matthews correlation coefficient

(MCC) demonstrate significant improvements in

computing efficiency and data security, highlighting

the effectiveness of MDBGRNN-ID-SCESOA in

securing cloud environments.

Souri, A., et al. [22] present a hyper-automation

process for Industrial Internet of Things (IIoT) based

on a Trees Detection algorithm, designed to predict

malicious attacks. The architecture utilizes a priority-

based feature selection approach alongside Analysis of

Variance (ANOVA) to identify the most relevant

features based on network traffic, computation time,

malicious behaviors, and attack types. Experiments

with NSL-KDD and UNSW-NB15 datasets show that

the proposed design effectively optimizes large-scale

cyber-attack systems for IIoT processes,

outperforming existing models.

3. Proposed Methodology

This work presents an automated IoT network

detection approach. In our proposed model, flow data

collected from sensors is processed through feature

engineering algorithms. The feature engineering

methods, such as feature imbalance handling and

feature selection, are integrated into the model.

Recursive Feature Elimination (RFE) and Principal

Component Analysis (PCA) are two feature selection

techniques used to enhance model accuracy, reduce

training time, and prevent overfitting, among other

data-related issues.To evaluate the performance and

runtime of each deep learning model, we will run

multiple models and analyze their results. The study

workflow is illustrated in Figure 1.

Figure 1: Workflow of the Research Work

a. Description of Bot-IoT Dataset

In this experiment, a fresh set of development data is

utilized, with Bot-IoT employed to identify simulated

attacks on the IoT network [24]. The data collection

consists of information gathered from IoT devices, the

Cyber Range Lab at UNSW Canberra, regular traffic

patterns, and botnet traffic patterns induced by various

attack types. A realistic testbed is used to generate a

comprehensive dataset with detailed traffic statistics.

To enhance the machine learning model's

performance, additional features are added and

labeled. Feature extraction is supported by three

subcomponents: investigative analysis, network

structure, and simulated IoT services.

The IoT system is capable of collecting real-time

weather data and adjusting settings accordingly. For

instance, one smart device controls the lighting, while

another monitors the fridge's temperature and cooling

system. These lights automatically turn on when

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3320–3330 | 3323

motion is detected. The system also includes a smart

thermostat that adjusts the temperature independently

and an IoT-enabled smart door that responds to

probabilistic input. The characteristics of attacks on

this data are detailed in Table 1.

Using targets, an IoT system can more effectively

categorize network data as either safe or harmful,

helping to separate normal from malicious traffic. The

BoT-IoT dataset is designed to capture the following

types of data:

i. The benign category includes typical, lawful,

and non-malicious Internet of Things (IoT)

network operations, representing regular, safe

activity within the IoT network.

ii. TCP-based attacks can render a network

unavailable to legitimate users by

overwhelming it with excessive requests,

causing congestion and disrupting normal

communication

iii. UDP-based DDoS attacks overwhelm

networks by flooding them with traffic,

leading to service outages and disruptions in

network availability.

iv. HTTP-based DDoS attacks overwhelm web

servers with an excessive number of requests,

causing them to become unresponsive or

unavailable, effectively disrupting access to

the targeted websites or services.

v. TCP-based attacks exploit vulnerabilities in

the TCP stack to exhaust network and device

resources, potentially leading to system

crashes or slowdowns. UDP-based attacks

flood the target with excessive packets,

causing network congestion and disruptions,

resulting in outages and degraded

performance.

vi. HTTP-based attacks overwhelm web servers

with a high volume of requests, causing them

to become unresponsive or unavailable,

disrupting access to websites and online

services.

vii. Keylogging involves secretly recording

keystrokes on an infected device, with the

intent of stealing sensitive information such as

passwords, personal data, or financial details.

viii. Data capture refers to the illegal collection of

data from compromised IoT networks or

devices, often with the aim of stealing

confidential or proprietary information.

.

Target Category Count

Benign BENIGN 9654

Attack DDoS TCP 19,547,60

Attack DDoS UDP 18,965,10

Attack DDoS HTTP 19,71

Attack DoS-TCP 12,35,897

Attack DoS UDP 20,69,491

Attack DoS HTTP 29,607

Keylogging Key logging 109

Data theft Data -theft 118

- Total 73,370,443

Table 1. Bot-IoT dataset

b. Data Preprocessing

An essential aspect of building models is the pre-

processing of data. To enhance the proposed model, the

following pre-processing methods were implemented

throughout the process:

• Data Cleansing: This involves data

filtering, data transformation, and

checking for missing values during the

pre-processing phase.

• Data Filtering: Identifies and removes null

and duplicate values to ensure data

consistency.

Data Transformation: Includes format conversions,

such as transforming categorical data into numerical

formats, among others, to standardize the data for

analysis.

These steps ensure that the data is cleaned and prepared

for analysis, improving the quality and reliability of the

model. Various Python tools and libraries were utilized

to perform these pre-processing tasks [25].

c. Feature Selection using JBOA

Jarratt's method is a significant enhancement of

Newton's method for solving nonlinear equations. It is

a fourth-order iterative method designed to improve

convergence efficiency. The method can be expressed

mathematically as follows:

Let the nonlinear equation be

𝑓(𝑥)=0

f(x)=0.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3320–3330 | 3324

The iterative steps for Jarratt's method are:

{
𝑦𝑛 = 𝑥𝑛 −

2𝑓(𝑥𝑛)

3𝑓′(𝑥𝑛)

𝑥𝑛+1 = 𝑥𝑛 − (
3𝑓′(𝑦𝑛)+𝑓′(𝑥𝑛)

6𝑓′(𝑦𝑛) − 2𝑓′(𝑥𝑛)
)

𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

An essential step in building effective models is the

pre-processing of data, which ensures the data is clean,

structured, and ready for analysis. To enhance the

proposed model, the following pre-processing methods

were applied:

• Data Cleansing: This step focuses on ensuring

the dataset is free of errors and

inconsistencies:

• Data Filtering: Involves identifying and

removing null values and duplicates to

improve data quality.

• Missing Data Checks: Ensures that any gaps

in the data are addressed to maintain

completeness.

• Data Transformation: This process converts

the data into formats suitable for analysis:

• Format Conversion: Includes transforming

categorical data into numerical formats or

other necessary conversions to make the data

compatible with machine learning algorithms.

By employing these pre-processing techniques, the data

becomes better structured and optimized for training

the model, ultimately improving its accuracy and

reliability.

Python programs and libraries were instrumental in

cleaning and preparing the data for analysis [25].

In addition to data pre-processing, Jarratt’s method

offers an efficient approach for solving nonlinear

equations. This method, due to its convergence rate of

23−1=42^{3-1} = 423−1=4, is considered optimal. The

process evaluates f(xn)f(x_n)f(xn), f′(xn)f'(x_n)f′(xn),

and f′(yn)f'(y_n)f′(yn), resulting in significant

advancements in numerical solutions.

Key Features of Jarratt's Method:

• Convergence: The method approaches four

significant digits (or correct decimals) per

iteration, effectively multiplying accuracy by

four with each repetition.

• Application Example: Consider the nonlinear

equation f(x)=cos⁡(x)−xf(x) = \cos(x) -

xf(x)=cos(x)−x. The root of this equation is

approximately a=0.739085133215a =

0.739085133215a=0.739085133215. Using

Jarratt’s method with an initial guess of

x0=1.7x_0 = 1.7x0=1.7, the approximation of

the root advances consistently by a factor of

four with each iteration until it converges to

the exact solution.

Limitations of Jarratt's Method:

Despite its effectiveness, Jarratt's method shares some

challenges common to iterative methods:

• Divergence: The method may fail to converge

if the initial guess is poorly chosen.

• Local Optima Trapping: It can become stuck

in a local optimum rather than finding the

global solution.

• Initial Value Sensitivity: The accuracy and

success of the method heavily depend on

selecting an appropriate starting point.

These limitations have driven extensive research on

Jarratt’s method, resulting in various proposed

enhancements to improve its stability and

applicability.

Through its efficiency and widespread applicability,

Jarratt’s method serves as a powerful tool in solving

nonlinear equations, complementing the robust data

preparation methods used in model building.

d. Butterfly optimization algorithm

(BOA)

The scent and texture of each fragrance in the Butterfly

Optimization Algorithm (BOA) are unique, serving as

a defining characteristic that sets it apart from other

metaheuristic algorithms. In BOA, the "smell" is a key

parameter used to guide the search process, and it is

determined in the following way:

𝑓 = 𝑐𝐼𝑎(2)

The parameter f represents the intensity of the scent,

which indicates how other butterflies perceive and rate

the fragrance. Among the various sensory modalities

that define odor, c symbolizes the fragrance. The value

of parameter a is associated with the butterfly's aroma.

If we assume a=1 all butterflies can be considered to

have the same scent. In this scenario, as all butterflies

share the same threshold for olfactory perception, there

is no absorption of the aroma. This simplifies the

process, making it easier to converge toward a single

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3320–3330 | 3325

optimal solution, usually the global one. Conversely,

when a=0, no other butterfly can detect the scent

produced by a specific butterfly.

To achieve an optimal solution, the BOA algorithm

replicates the unique flight patterns of butterflies,

which are defined by the following key characteristics.

1. Butterflies attract one another through the

release of their distinctive scent.

2. They either move randomly or converge

around the butterfly emitting the strongest

scent.

3. The intensity of stimuli a butterfly perceives is

influenced by the objective function.

All metaheuristic algorithms generally follow three

stages: initialization, iteration, and finalization, and the

Butterfly Optimization Algorithm (BOA) adheres to

this structure. Initialization: In this stage, the algorithm

defines the solution space to explore potential

solutions. The parameters of the BOA are also

initialized. Subsequently, the algorithm generates an

initial population of butterflies. Since the number of

butterflies remains constant throughout the algorithm,

each butterfly is allocated a fixed memory size to store

relevant data. Iteration: This phase involves repeated

execution of the algorithm. During each iteration, the

fitness value of every butterfly in the solution space is

computed. Butterflies generate scents at their

respective positions based on Equation (2). The

algorithm dynamically alternates between global and

local searches. In the global search phase, butterflies

aim to converge on the optimal solution, which

corresponds to the butterfly with the highest fitness

value. The global search process can be represented

mathematically, as shown in Equation (3).

𝑥𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑟2 × 𝑔 − 𝑥𝑖
𝑡) × 𝑓𝑖 (3)

where X_i^t represents the key vector x_i of

butterfly in repetition t, while g* is the greatest

solution for the current repetition. f_i characterizes

the butterfly, and r is a random sum between 0

besides 1.

𝑥𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑟2 × 𝑥𝑗
𝑡 − 𝑥𝑘

𝑡) × 𝑓𝑖 (4)

where X_i^t and x_j^t are butterflies space.

Thus, Equation (24) performs a local walk.

The Butterfly Optimization Algorithm (BOA)

incorporates a probability value 𝑝, typically ranging

between 0 and 1, to switch dynamically between a

broad global search and a focused local search. The

iteration phase continues until a predefined termination

criterion is met. These criteria can be set in several

ways, such as measuring CPU time, reaching a specific

number of iterations, or achieving a predefined error

threshold.In the final step, the solution that yields the

highest fitness value is selected as the optimal outcome.

This ensures that the algorithm identifies the most

effective solution within the defined parameters.

e. Jarratt-Butterfly optimization

algorithm (JBOA)

 The Butterfly Optimization Algorithm (BOA) is a

versatile optimization method applied in various

contexts. However, the "No Free Lunch" (NFL)

theorem asserts that no single optimization method can

excel at solving every problem. Additionally, when

addressing Nonlinear System Equations (NSE), BOA

may encounter challenges such as getting stuck in local

optima or facing divergence issues. To address these

limitations, the JBOA method enhances BOA by

integrating it with Jarratt's techniques.

In JBOA, each iteration incorporates Jarratt's method

to refine solutions. Initially, the best position identified

by BOA for the butterfly is treated as a candidate site.

Jarratt's method then optimizes this candidate site,

often improving the butterfly's location. The results of

Jarratt's method are compared against BOA's

candidate positions, and the location with the highest

fitness value is chosen.Due to its convergence

capabilities, Jarratt's method enables more accurate

solutions with fewer iterations, thus improving

JBOA's efficiency in solving NSE. At the end of each

iteration, JBOA incorporates updates, comparing the

fitness of Jarratt's refined position 𝑋𝑛+1 with the BOA

butterfly position 𝑥𝑏𝑗(𝑡)x . Ultimately, the solution

that achieves the best fitness value is selected as the

optimal outcome. This integration significantly

enhances the search strategy and solution accuracy of

BOA.

4. Classification using MLSTM

The selected features are then passed into a Long

Short-Term Memory (LSTM) model to classify the

type of incursion. LSTM is a deep learning architecture

based on artificial recurrent neural networks (RNNs)

that is particularly adept at handling time-series data.

Unlike conventional feed-forward neural networks,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3320–3330 | 3326

LSTM introduces feedback connections between

hidden units across discrete time steps. This

architecture enables the model to learn long-term

sequence dependencies effectively, making it capable

of predicting transaction labels based on a sequence of

previous transactions.LSTMs were designed to

overcome challenges such as vanishing and exploding

gradients, which are common in the training of

traditional RNNs.The construction of the LSTM unit is

shown in Fig. 2.

Figure 2: Construction of LSTM.

Each LSTM layer comprises three critical gates: the

input gate(𝑖𝑔𝑡), forget gate (𝑓𝑔𝑡), and an output gate

((𝑜𝑔𝑡)). These gates manage the flow of information

into and out of the cell, which is responsible for storing

values over random time intervals. The input gate

controls which values are updated, the forget gate

decides which information to discard, and the output

gate determines what part of the cell state is output at a

given time step.However, traditional LSTM training

methods often face slower convergence and struggle

with optimizing the error function due to gradient

descent becoming trapped in local minima caused by

random initialization of biases and weights. To address

this, the Morlet Wavelet Kernel Function (MWKF) is

introduced as a derivative-free optimization approach

for complex problems.MWKF replaces the random

selection of gate weights and biases in traditional

LSTM, improving its performance in data classification

and non-linear function approximation tasks. The

integration of MWKF with LSTM results in a model

known as MWKFLSTM. This approach leverages the

MWKF for efficient weight and bias initialization,

leading to superior accuracy and faster convergence

compared to standard LSTM. The equations for 𝑖𝑔t ,

𝑓𝑔t ,and 𝑜𝑔t are given below:

𝑓𝑔𝑡 = 𝛽(𝑤𝑓𝑔(ℎ𝑡−1, 𝑞𝑡) + 𝑏𝑓𝑔)

(5)

𝑖𝑔𝑡 = 𝛽(𝑤𝑖𝑔(ℎ𝑡−1, 𝑞𝑡) + 𝑏𝑖𝑔)

(6)

𝑜𝑔𝑡 = 𝛽(𝑤𝑜𝑔(ℎ𝑡−1, 𝑞𝑡) + 𝑏𝑜𝑔)

(7)

Where 𝛽 indicates the sigmoid function. The

terms 𝑤fg , 𝑤ig , and 𝑤og are the weight matrices of

𝑓𝑔𝑡
,𝑖𝑔𝑡

 ,and 𝑜gt
 respectively. The terms𝑏fg,𝑏ig, and𝑏og

are the bias matrices of𝑓𝑔𝑡
,𝑖𝑔𝑡

and 𝑜gt
correspondingly.

The preceding output at (𝑡 − 1)𝑡ℎ timestamp is

represented as ℎt−1 , andqt characterizes the present

input vector at time stamp 𝑡. Every LSTM gate has a

weight and bias value between zero and n-1 that are

randomly generated. To improve the classifier's

detection performance, we use MWKF to find the best

fit weight and bias values for the LSTM network,

rather than picking them at random. The expression for

the wavelet basis function can be given by taking a

function, Η(w), with a scale factor of z and a

translation factor of x.

𝛽𝑧,𝑥(𝑤) =
1

√|𝑧|
𝜓 (

𝑤−𝑥

𝑧
) (8)

To represent a multidimensional wavelet purpose,

tensor product theory states that one can take many

functions besides multiply them together.

𝜓(𝑤) = ∏ 𝜓(𝑤𝑖)𝑛
𝑖=1 (9)

Equation (9), in where n is the sum of functions, and

w_i is variable of the i-th one- function, allows one to

design a kernel function.

𝐾(𝑤, 𝑤̅) = ∏ 𝛽 (
𝑤𝑖−𝑤̅𝑖

𝑧
)𝑛

𝑖=1 (10)

This study uses the MVKF to build the function. This

is the MVKF function:

𝛽(𝑤) = cos (1.75𝑤)𝑒𝑥𝑝 (−
𝑤2

2
) (11)

The WK purpose accumulated since the MVKF

𝐾(𝑤, 𝑤̅) = ∏ [𝑐𝑜𝑠 (1.75

𝑛

𝑖=1

×
𝑤𝑖 − 𝑤̅𝑖

𝑧
) 𝑒𝑥𝑝 (−

(𝑤𝑖 − 𝑤̅𝑖)
2

2𝑧2
)]

 (12)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3320–3330 | 3327

In the MWKFLSTM model, the weights of the three

gates are represented by 𝑤𝑖 which determines the

standards of the input, forget, and output gate weights.

The Morlet Wavelet Kernel Function (MWKF) is

employed to approximate these weights, leveraging

the wavelet function's kernel properties. The

construction of MWKF provides enhanced

approximation capabilities, which, when applied to

LSTM, result in superior performance for

classification tasks.The weight values for each gate

(𝑤𝑖) are processed through the kernel computations of

the MWKF, ensuring better initialization and

optimization. Similarly, the calculation of bias values

for the gates is carried out using the same kernel

computations, ensuring consistency in the

optimization process. In addition to the output, the

terms for the cell state and applicant cell state are

𝒦𝑡
𝜔 = tanh (𝑤𝑘[ℎ𝑡−1, 𝑞𝑡] + 𝑏𝑘)

(13)

𝑘𝑡 = 𝑓𝑔𝑡
∗ 𝑘𝑡−1 + 𝑖𝑔𝑡 ∗ 𝑘𝑡

(14)

ℎ𝑡 = 𝑜𝑔𝑡 ∗ tanh (𝑘𝑡) (15)

Where 𝑘t besides 𝑘t−1 represents the new and

preceding cell states of 𝑡 and also 𝑡 − 1 . The term

𝒦𝑡
𝜔 characterizes candidate cell public at t, and

*symbolizes the multiplication of vectors.

5. Results and Discussion

This experiment was conducted using a DELL laptop

running Windows 10, equipped with 16 GB of RAM

and an Intel Core i5-10210U processor. The suggested

method was applied and evaluated on the dataset in

question. The experiment utilized several libraries,

including matplotlib (version 3.3.2), numpy (version

1.19.2), pandas (version 1.1.3), scikit-learn (version

0.23.2), keras (version 2.6.0), and tensorflow (version

2.6.0). The programming environment used was

Spyder Python (version 3.8).

To measure the efficacy of the proposed system, we

use the following metrics: Accuracy, Precision, Recall,

F1-Score, True Positive Rate, and False Positive Rate.

Accuracy is calculated as the ratio of correctly

predicted records to the total number of records, as

shown in Equation (16):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 +

 𝐹𝑁) (16)

The accuracy rate of abnormal instance predictions

relative to the total sum of abnormal instance

predictions is called Precision. It is calculated using

the following Equation: (17):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑃 (17)

According to Equation (18), recall is the proportion

of correctly estimated abnormal cases to the entire

sum of actual abnormal instances:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑁 (18)

According to Equation (19), the F1 Score provides a

Precision besides Recall for evaluating the scheme's

accuracy:

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2((𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)) (19)

o Validation Analysis of Proposed

Model

Table 2 offers the investigational study of proposed

classical with existing techniques in terms of diverse

metrics.

Method ACC Recall Precision F1-Score

XGBoost 93.12 94.21 92.31 93.42

DBN 95.75 95.78 93.08 94.30

CNN 96.51 96.94 94.29 95.19

RNN 97.61 97.04 95.14 96.51

LSTM 98.44 98.39 97.66 97.93

MLSTM 99.22 99.51 98.48 98.58

Table 2: Validation study of proposed perfect with

existing procedures

In the proposed method compared to existing

procedures, the performance metrics for each

technique are as follows: the XGBoost technique

accuracy as 93.12 also recall of 94.21 and precision

as92.31alsof1-score as 93.42. Then the DBN

technique accuracy as 95.75 also recalls of 95.78 and

precision as 93.08 also the f1-score as 94.30

correspondingly. Then the CNN technique accuracy as

96.51 also recall of 96.94 and precision as 94.29 also

the f1-score as 95.19 correspondingly. Then the RNN

technique accuracy as 97.61 also recalls of 97.04 and

precision as 95.14 also the f1-score as 96.51

correspondingly. Then the LSTM technique accuracy

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3320–3330 | 3328

as 98.44 also recalls of 98.39 and precision as 97.66

also the f1-score as 97.93 correspondingly. Then the

MLSTM technique accuracy as 99.22 also recalls of

99.51 and precision as 98.48 also the f1-score as 98.58

correspondingly.

Figure 3: Graphical Description of proposed perfect

with existing performances

Algorithm Training

Accurancy

Test

Accuracy

Training

Time(s)

XGBoost 0.9101 0.9144 244

DBN 0.9319 0.9382 229

CNN 0.9407 0.9423 324

RNN 0.9594 0.9534 251

LSTM 0.9600 0.9653 260

MLSTM 0.9743 0.9777 236

Table 3: Timing Analysis

The XGBoost technique has a training accuracy of

0.9101, a testing accuracy of 0.9144, and a training

time of 244 in the timing analysis of various

techniques. Subsequently, the DBN technique yielded

training accuracy of 0.9319, testing accuracy of

0.9382, and training time of 229 in accordance.

Subsequently, the CNN technique yielded training

accuracy of 0.9407, testing accuracy of 0.9423, and

training time of 324 in accordance. Subsequently, the

RNN technique yielded training accuracy of 0.9594,

testing accuracy of 0.9534, and a corresponding

training time of 251.

Figure 4: Visual Representation of the proposed

model for timing analysis

6. Conclusion

 This paper proposes a novel MLSTM model for

detecting breaches in IoT-Cloud infrastructure. To

enhance the feature selection process, pre-processing

techniques and the JBOA algorithm were utilized.

Simulations conducted on the BoT-IoT dataset

demonstrate the efficacy of the model. The MLSTM

achieves a high degree of accuracy in detecting various

types of network threats. When compared to state-of-

the-art methodologies presented in existing literature,

the MLSTM outperforms them in detection accuracy.

The model also exhibits the best throughput ratio,

lowest false alarm rate, and minimal delay when tested

against other approaches using the same dataset.

Additionally, the performance of the MLSTM is

further validated by its superior efficiency in

transferring data packets between cloud-based IoT

devices.After the classification of normalcy, the data

was securely stored in the cloud. However, some

limitations exist within the system, such as the

reliability of the input and output data used to train the

model. Additionally, the issue of data imbalance in the

dataset remains a significant challenge that will be

addressed in future stages of the research.

7. REFERENCES

[1] Al-Ghuwairi, A. R., Sharrab, Y., Al-Fraihat, D.,

AlElaimat, M., Alsarhan, A., & Algarni, A.

(2023). Intrusion detection in cloud computing

based on time series anomalies utilizing machine

learning. Journal of Cloud Computing, 12(1), 127.

[2] Mohamed, D., & Ismael, O. (2023). Enhancement

of an IoT hybrid intrusion detection system based

on fog-to-cloud computing. Journal of Cloud

Computing, 12(1), 41.

[3] Samunnisa, K., Kumar, G. S. V., & Madhavi, K.

(2023). Intrusion detection system in distributed

cloud computing: Hybrid clustering and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3320–3330 | 3329

classification methods. Measurement: Sensors,

25, 100612.

[4] Attou, H., Guezzaz, A., Benkirane, S., Azrour, M.,

& Farhaoui, Y. (2023). Cloud-based intrusion

detection approach using machine learning

techniques. Big Data Mining and Analytics, 6(3),

311-320.

[5] Tariq, M., & Suaib, M. (2023). A review on

intrusion detection in cloud computing.

International Journal of Engineering and

Management Research, 13(2), 207-215.

[6] Kavitha, C., Gadekallu, T. R., K, N., Kavin, B. P.,

& Lai, W. C. (2023). Filter-based ensemble

feature selection and deep learning model for

intrusion detection in cloud computing.

Electronics, 12(3), 556.

[7] Attou, H., Mohy-eddine, M., Guezzaz, A.,

Benkirane, S., Azrour, M., Alabdultif, A., &

Almusallam, N. (2023). Towards an intelligent

intrusion detection system to detect malicious

activities in cloud computing. Applied Sciences,

13(17), 9588.

[8] Lin, H., Xue, Q., Feng, J., & Bai, D. (2023).

Internet of things intrusion detection model and

algorithm based on cloud computing and multi-

feature extraction extreme learning machine.

Digital Communications and Networks, 9(1),

111-124.

[9] Sanz González, R, Luque Juárez, J, M.ª, Martino,

L, Liz Rivas, L, Delgado Morán, J, J, & Payá

Santos, C, A. (2024) Artificial Intelligence

Applications for Criminology and Police

Sciences. International Journal of Humanities and

Social Science. Vol. 14, No. 2, pp. 139-148.

https://doi.org/10.15640/jehd.v14n2a14

[10] Maheswari, K. G., Siva, C., & Priya, G. N. (2023).

An optimal cluster based intrusion detection

system for defence against attack in web and

cloud computing environments. Wireless

Personal Communications, 128(3), 2011-2037.

[11] Maheswari, K. G., Siva, C., & Nalinipriya, G.

(2023). Optimal cluster based feature selection for

intrusion detection system in web and cloud

computing environment using hybrid teacher

learning optimization enables deep recurrent

neural network. Computer Communications, 202,

145-153.

[12] Vashishtha, L. K., Singh, A. P., & Chatterjee, K.

(2023). HIDM: A hybrid intrusion detection

model for cloud based systems. Wireless Personal

Communications, 128(4), 2637-2666.

[13] Srilatha, D., & Thillaiarasu, N. (2023).

Implementation of Intrusion detection and

prevention with Deep Learning in Cloud

Computing. Journal of Information Technology

Management, 15(Special Issue), 1-18.

[14] Alzughaibi, S., & El Khediri, S. (2023). A cloud

intrusion detection systems based on dnn using

backpropagation and pso on the cse-cic-ids2018

dataset. Applied Sciences, 13(4), 2276.

[15] Alheeti, K. M. A., Lateef, A. A. A., Alzahrani, A.,

Imran, A., & Al_Dosary, D. (2023). Cloud

Intrusion Detection System Based on SVM.

International Journal of Interactive Mobile

Technologies, 17(11).

[16] Bingu, R., & Jothilakshmi, S. (2023). Design of

intrusion detection system using ensemble

learning technique in cloud computing

environment. International Journal of Advanced

Computer Science and Applications, 14(5).

[17] Wankhade, N., & Khandare, A. (2023).

Optimization of deep generative intrusion

detection system for cloud computing: challenges

and scope for improvements. EAI Endorsed

Transactions on Scalable Information Systems,

10(6).

[18] Laassar, I., Hadi, M. Y., Arifullah, H. R., & Khan,

F. S. (2024). Proposed algorithm base

optimisation plan for feature selection-based

intrusion detection in cloud computing.

Indonesian Journal of Electrical Engineering and

Computer Science, 33(2), 1140-1149.

[19] Chaudhari, A., Gohil, B., & Rao, U. P. (2024). A

novel hybrid framework for cloud intrusion

detection system using system call sequence

analysis. Cluster Computing, 27(3), 3753-3769.

[20] Ziheng, G. E., & Jiang, G. A Novel Intrusion

Detection Mechanism in Cloud Computing

Environments based on Artificial Neural Network

and Genetic Algorithm. Telecommunications and

Radio Engineering.

[21] Polepally, V., Jagannadha Rao, D. B., Kalpana, P.,

& Nagendra Prabhu, S. (2024). Exponential

Squirrel Search Algorithm-Based Deep Classifier

for Intrusion Detection in Cloud Computing with

Big Data Assisted Spark Framework. Cybernetics

and Systems, 55(2), 331-350.

[22] Preethi, B. C., Vasanthi, R., Sugitha, G., &

Lakshmi, S. A. (2024). Intrusion detection and

secure data storage in the cloud were recommend

by a multiscale deep bidirectional gated recurrent

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3320–3330 | 3330

neural network. Expert Systems with

Applications, 255, 124428.

[23] Souri, A., Norouzi, M., & Alsenani, Y. (2024). A

new cloud-based cyber-attack detection

architecture for hyper-automation process in

industrial internet of things. Cluster Computing,

27(3), 3639-3655.

[24] Ali, S. Y., Farooq, U., Anum, L., Mian, N. A.,

Asim, M., & Alyas, T. (2024). Convolutional

Neural Network (CNN) approach to intrusion

detection system. Journal of Computing &

Biomedical Informatics, 6(02), 295-308.

[25] The Bot-Iot Dataset; IEEE: Piscataway, NJ, USA,

2019; Volume 5.

[26] Fan, C.; Chen, M.; Wang, X.; Wang, J.; Huang, B.

A Review on Data Preprocessing Techniques

toward Efficient and Reliable Knowledge

Discovery From Building Operational.

