
 

 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 269–282  |  269 

 

 A Novel Deep Learning Model for Cardiovascular Disease Prediction 

(MarCDP) 

Marwa Abdulrahman Al-Hadi1*, and Ghaleb Hamoud Al-Gaphari2 
 

Submitted: 02/12/2024     Revised: 22/01/2025      Accepted:  30/01/2025 

Abstract: Cardiovascular disease (CVD) is one of the leading causes of death worldwide, highlighting the critical need for efficient early 

identification. Early and accurate prediction is crucial for effective treatment. Despite various proposed solutions, a gap in prediction 

accuracy still persists. Therefore, this study introduces a novel deep learning model designed to enhance CVD prediction by utilization 

several advanced techniques. The model of Marwa Cardiovascular disease predication (MarCDP) leverages Recurrent Neural Networks 

(RNN) to capture patterns, employs Least Absolute Shrinkage and Selection Operator (LASSO) for feature selection, and utilizes the 

Synthetic Minority Over-sampling Technique (SMOTE) to address data imbalance. A range of optimization approaches is applied to 

fine-tune the model’s parameters, resulting in improved accuracy. The model was developed and evaluated using four benchmark 

datasets: Cleveland, Hungary, Switzerland, and Long Beach V. The proposed model achieved an accuracy of 98.05%, surpassing the 

performance of existing deep learning models. This novel approach offers a promising product for early CVD detection.  

Keywords:  Recurrent Neural Networks (RNN), Feature selection (LASSO), Synthetic Minority Over-sampling Technique (SMOTE), 

prediction accuracy. 

1. Introduction 

Cardiovascular disease (CVD) remains the primary cause of 

death worldwide, as reported by the World Health Organization 

(WHO) and the Centers for Disease Control and Prevention 

(CDC) [1]. In Yemen, CVD accounts for approximately 27,848 

deaths per 100,000 people, while globally, it contributes to 

around 19.39% of all deaths. CVD was ranked as the leading 

cause of death in the 2020 WHO report. As the risk of CVD 

continues to increase, researchers are actively exploring methods 

to reduce associated mortality rates. [2, 3]. Although numerous 

diseases impact human health, cardiovascular conditions are 

among the most widespread [4].  

The major risk factors for CVD include high blood pressure, high 

cholesterol, diabetes, smoking, and a family history of the disease 

[5]. Early detection and preventive measures are essential to 

mitigate CVD-related issues. 

Traditional methods for detecting CVD, such as 

electrocardiography (ECG) and stress testing, often exhibit 

limitations in sensitivity and specificity. In contrast, deep learning 

has emerged as a promising approach for CVD detection and 

prevention, due to its ability to identify complex patterns within 

large datasets [6]. 

Numerous studies have demonstrated the utility of artificial 

intelligence (AI), machine learning, and deep learning in 

enhancing forecasting and decision-making capabilities. AI refers 

to any machine or system capable of exhibiting intelligent 

behavior, which includes mimicking human cognitive functions 

such as learning, problem-solving, and decision-making [7]. 

Machine learning allows systems to enhance their performance 

over time through exposure to data, without the need for explicit 

programming. This field encompasses various methodologies, 

including supervised learning, unsupervised learning, and deep 

learning (DL) [8]. Supervised learning involves training models 

on labelled data, where the desired outcomes are known, such as 

an email spam filter that learns from emails classified as spam. In 

contrast, unsupervised learning identifies patterns in unlabeled 

data and uncovers hidden structures, such as grouping customers 

based on their purchase history. Deep learning, which is modelled 

after the structure and function of the human brain, employs 

artificial neural networks with multiple layers to process 

information [9]. This approach is particularly effective for 

handling complex tasks. Artificial intelligence (AI) is a broad 

field of research, with machine learning serving as a specific 

subset that focuses on knowledge acquisition from data. Deep 

learning, an advanced technique within machine learning, excels 

at addressing complex tasks[9].  

Challenges in AI, such as data dependency, complexity, and 

accuracy, continue to be addressed across various fields, 

including healthcare, architecture, smart homes, industrial 

automation, environmental prediction, and energy management 

[10]. Deep learning, which processes vast amounts of data, plays 

a critical role in addressing these challenges through the use of 

neural networks[11]. 

According to [12], deep learning algorithms are a powerful subset 

of machine learning, inspired by the structure and function of the 

human brain. These algorithms have revolutionized AI by 

enabling machines to perform complex tasks once reserved for 

humans. Deep learning relies on artificial neural networks, which 

are composed of multiple layers of interconnected nodes that 

process and transform information  [13]. These networks are 

trained on large datasets, adjusting the connections between 

nodes based on performance, to achieve the desired accuracy [14, 

15].  

Various deep learning algorithms, such as Recurrent Neural 

Networks (RNNs), Convolutional Neural Networks (CNNs), and 

Long Short-Term Memory (LSTM) networks, each possess 

specific strengths and applications. CNNs are particularly 

effective in image and video recognition, excelling at capturing 
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spatial relationships. RNNs are designed to process sequential 

data, making them ideal for tasks such as language translation 

and time series forecasting. LSTM networks, a variant of RNNs, 

overcome the vanishing gradient problem, which makes them 

suitable for applications like handwriting recognition and 

anomaly detection [16-18]. As deep learning continues to evolve, 

it holds tremendous potential for transformative applications, 

including personalized medicine, where it can analyse medical 

data to predict disease risk, customize treatment plans, and 

accelerate drug discovery  [19]. The selection of an optimal deep 

learning algorithm depends on the specific task, data type, and 

other factors. Therefore, the main contribution of this work are as 

follows: 

1. Create a novel algorithm that enhanced CVD 

prediction. 

2. Achieve high accuracy surpassing traditional methods 

and other deep learning approaches. 

3. Enhance performance metrics by excelling in precision, 

recall, and AU-ROC, which highlights the model's 

ability to minimize false positives and false negatives 

and ensures reliability for clinical applications. 

4. Reduce training time and improve interpretability by 

applying LASSO for feature selection, which 

effectively reduces dataset dimensionality while 

preserving key features relevant to CVD prediction, 

streamlining the training process and enhancing 

interpretability. 

5. Optimize convergence and performance through the use 

of a diverse set of optimizers (Adam, RMSprop, 

Adagrad, Adadelta, Adamax, and Nadam). 

2. Related Work 

This study aims to present a novel approach for predicting 

cardiovascular disease by utilizing benchmark datasets and 

advanced deep learning techniques. The methodology outlines the 

systematic process, encompassing data collection, preprocessing, 

model design, and performance evaluation. 

Several deep learning models have been proposed for 

cardiovascular disease (CVD) detection, including CNNs, RNNs, 

and LSTM networks. RNNs are particularly suited for tasks 

involving sequential data, such as ECG recordings, which can be 

beneficial for CVD prediction  [20]. A synthesis of the referenced 

studies is presented in Table 1. The combination of different 

optimization algorithms has been shown to enhance both 

convergence speed and accuracy in deep learning models 

compared to traditional optimizers [21]. 

In [22], an artificial neural network (ANN) with multiple levels 

of perceptron's and weights was compared with Support Vector 

Machines (SVM), K-Nearest Neighbors (KNN), and Decision 

Trees (DT). The findings demonstrate that ANN surpasses these 

machine learning algorithms in prediction accuracy, although it 

demands more time for generating predictions. 

In  [23], the Enhanced Deep Learning-assisted (EDCNN) was 

proposed to improve heart disease diagnosis by analyzing patient 

clinical test data. This system, deployed on the Internet of 

Medical Things (IoMT) platform, employs a deeper architecture 

and regularization learning approaches to enhance efficiency and 

assess heart disease risk levels more effectively than conventional 

methods. 

In [24],  involved feature grouping using DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) and the 

TSA-EDL (Tunicate Swarm Algorithm and Ensemble Deep 

Learning). The TSA-EDL algorithm, utilized on datasets from the 

University of California, Irvine (UCI) and various CVD datasets, 

showed enhancements in performance metrics, including 

accuracy, recall, specificity, precision, and the likelihood of 

misclassification error. 

In  [25], the Cuckoo Search-Based Conv LSTM Classifier was 

applied to the PIMA dataset to address gaps in manual heart 

disease prediction and reduce errors. The method achieved 

approximately 97% accuracy with nine features. It emphasizes 

the importance of studying feature relationships to ensure 

accurate predictions. 

According to  [26]  an ensemble model combining RNNs and 

LSTMs with optimization techniques like Artificial Flora 

Optimization (AFO) and Modified Artificial Flora Optimization 

(MAFO) demonstrated high prediction accuracy. This approach 

addressed challenges in smart frameworks and predictive models, 

although it may affect prediction time. 

While in [27],  utilized 918 samples from five independent 

centres' (Cleveland, Hungarian, Switzerland, Long Beach, and 

Stalog) with 12 clinical features to develop a model using Sparse 

Autoencoder and Convolutional Classifier. The model showed 

that prediction could be impacted by human error and delays, 

despite its effectiveness. 

In [28] , data collected from five different sources was used to 

build an Oversampled Quinary Feed Forward Network (OQFFN) 

with 11 medically relevant parameters. This network provided 

real-time and highly accurate predictions of heart disease 

probability, though further efforts are needed to enhance 

intelligent resource allocation. 

The research presented in [29] developed a deep learning-based 

ensemble classifier, SWCDTO, for early heart disease detection. 

This method, which combines pre-processed data and feature 

fusion, outperforms other heart disease prediction algorithms in 

specificity, accuracy, and sensitivity while reducing 

computational time. 

Bootstrapping ensemble strategies improve prediction outcomes 

and are recommended for information fusion and medical drug 

recommendations. Advances in AI and IoT have facilitated early 

detection and treatment through AI-assisted diagnostic models, 

offering benefits like cost reduction, infection control, and 

reduced mortality [30]. 

In  [31], an enhanced ensemble learning approach for heart 

disease prediction was proposed using boosting algorithms such 

as Gradient Boost, XGBoost, and AdaBoost. Data preprocessing 

techniques, such as outlier detection and missing value 

imputation, substantially enhanced model performance, with 

Gradient Boost achieving the highest accuracy of 92.20%. 

In [32],  utilized self-attention mechanisms and transformer 

networks to predict CVD risk, incorporating multiple layers and 

modified attention processes. While this model shows promise, it 

still requires performance enhancement and handling of 

additional data. 

Research in [33] introduced the Gradient Squirrel Search 

Algorithm-Deep Maxout Network (GSSA-DMN) for heart 

disease detection. This approach, involving data preprocessing, 

feature selection using Relief, and training with the Gradient 

Squirrel Search Algorithm, achieved high accuracy, specificity 

and sensitivity. 

The new Set of Convolutional Neural Network (HCNN) design 

for heart disease prediction demonstrated its ability to extract 

detailed features and identify minor trends in cardiovascular 

health datasets. The HCNN's high accuracy and predictive power 

suggest significant potential for improving patient outcomes and 

healthcare decisions [34]. 

The DeepVAQ model, designed to predict vascular access quality 

from Photoplethysmography (PPG) sensors, achieved an 

accuracy of 0.9213 and a precision of 0.9614, surpassing 

traditional models such as Decision Tree, Naive Bayes, and K-

Nearest Neighbours (KNN). This progress in non-invasive 

diagnostics has the potential to enhance patient outcomes and 

reduce mortality rates[35]. 

This study aims to advance CVD prediction by introducing a 

robust and effective solution with a focus on feature selection, 

data balancing, and prediction accuracy. The proposed model 

presents an innovative strategy for disease prediction by dealing 

with Lasso feature selection techniques, SMOTE data balancing, 
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Table 1. Cardiovascular Disease Prediction Using Deep Learning 

Ref.  Dataset Contribution Pros.  Limitations  Featur

e taken  

Model accuracy 

[22] 

 

Set of datasets 

collected from 

Kaggle  

ANN 

which has various levels 

and each level has various 
perceptions' output 

depends on the weight  

Comparing machine learning and 

ANN. ANN is more accurate than 

machine learning. 

It may take more time for prediction. 14 85.24 

[23] Heart Disease 
(Hungary, 

Cleveland, 

Switzerland, 
and Long 

Beach.) 

Enhanced Deep learning 
assisted Convolutional 

Neural Network 

(EDCNN) 

EDCNN, an IoMT platform, can 
predict heart disease risk with high 

accuracy, improving efficiency and 

reducing manual feature engineering. It 
also enables remote prediction from 

wearable devices and potential 

scalability for large patient populations. 

The EDCNN-IoMT platform faces 
challenges in data security, 

interpretability, training data bias, 

limited availability, and technical 
expertise. Its accuracy depends on the 

quality and diversity of training data, 

and its implementation may require 
specialized expertise in certain 

healthcare settings. 

14 93.2 

[24] Two datasets 
(Cleveland 

University of 

California 
Irvine (UCI) 

and CVD) 

Set of TSA-EDL (Set of 
Tunicate Swarm 

Algorithm and Ensemble 

Deep Learning) 

HEDTSA enhances heart disease 
predictions by combining deep 

learning's pattern learning with TSA's 

optimization, reducing noise and 
feature selection, and reducing the risk 

of overfitting to a specific dataset. 

HEDTSA is a complex, 
computationally expensive, data-

dependent, and limited explainable 

deep learning model that faces 
challenges in implementation, 

interpretation, and explainability, 

particularly in the medical field. 

14 (97.5%) in UCI. 

[25] PIMA dataset  Cuckoo Search-Based 

Conv LSTM Classifier 

Solve the problem of the manual 

detection process is found. This process 
can be time-intensive and may lead to 

detection errors that impact diagnostic 

accuracy. 
 

Number of features taken may affect 

on the final prediction while adding 
studying the relationship between 

features could increase the assurance of 

this method more than before. 

9  97.591%,95.874%, 

and 97.094% of 
accuracy 

[26] Three-

datasets 
(Cleveland  , 

Hungarian 

and 
Switzerland) 

Ensemble 

RNN and LSTM. Then 
using of optimization 

techniques like AFO and 

MAFO 

Handle the lack of smart framework, 

such systems are unable to manage 
high-dimensional datasets derived from 

various data sources during the 

prediction of heart disease. 

Examine the weights of RNN to 

utilize this model for diagnosing 
another biomedical research context. 

14  97.3 

[27] 

 

Sample from 

(Cleveland, 
Hungarian, 

Switzerland, 

Long Beach, 
stalog) 

Multitasking classifier 

with CNN (combines the 
Sparse Autoencoder and 

the Convolutional 

Classifier) 

Diagnoses may not be fully objective 

and are prone to human error. 

May it take more time to predicate 

the result.  

12 

 

90.09 

[28] Heart Failure 

Prediction 
Dataset 

Oversampled Quinary 

Feed Forward Network 
(OQFFN) 

Delivering highly accurate and real-

time predictions of heart disease 
probability. 

 

Greater emphasis is required on the 

development of intelligent resource 
allocation strategies for the entire 

model, both at the edge and on the 

server. 

12 89.25 

[29] Heart Disease 

(Cleveland) 

Feature fusion results are 

then utilized for heart 

disease prediction 
classification through the 

proposed Social Water 

Cycle Driving Training 
Optimization (SWCDTO) 

ensemble classifier, which 

combines the driver 
training-based 

optimization algorithm 

with the social water cycle 

algorithm. 

 

Deep learning enhances heart disease 

predictions by learning complex data 

patterns. Ensemble learning reduces 
reliance on a single model, while 

feature fusion enhances performance. 

SWCDTO optimizes ensemble 
classifier training, resulting in faster 

convergence and better performance. 

Complexity: 

The approach involves several 

components (deep learning, ensemble 
methods, SWCDTO), making it more 

complex. 

Computational Cost : 
Deep learning models frequently 

necessitate substantial computational 

resources during training, particularly 
when handling large datasets. 

Data Dependency : 

The effectiveness of the model 

heavily relies on the quality and size of 

the training data.  

14 95.84%, 94.80%, 

and 95.36% 

[30]  Medical 
Dataset 

Bootstrapping ensemble 
strategy creates multiple 

subsets of a single dataset. 

Voting enhances 
prediction outcomes. An 

ensemble learning model 

is suggested for 
applications involving 

information fusion and 

drug recommendations 
within the medical field. 

Deep learning models can enhance 
accuracy, discover anomalies earlier, 

save money, and provide 

individualized treatment 
recommendations. They can evaluate 

enormous volumes of medical data, 

lowering risk and avoiding unneeded 
procedures. This technology can also 

evaluate massive volumes of data to 

improve diagnosis. 

Deep learning models are 
sophisticated, data-dependent, and 

difficult to comprehend, causing 

problems for clinicians. They can also 
be computationally costly, which raises 

issues about data security and privacy, 

particularly when using IoT devices. 

11 94.21 
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and a recurrent neural network (RNN) prediction model, along with 

a comprehensive set of optimizers. 
By utilizing advanced feature selection techniques, the model 

emphasizes the significance of pertinent features while mitigating 

the influence of noise. The use of optimization techniques 

enhances the model’s performance across varied datasets. 

Adopting this model leverages the strengths of various methods 

and addresses the limitations identified in existing studies, 

presenting a promising solution for CVD prediction. 

3. Materials and Methods 

This study aims to present a novel approach for predicting 

cardiovascular disease by utilizing benchmark datasets and 

advanced deep learning techniques. The methodology outlines the 

systematic process followed, from data collection and 

preprocessing to model design and performance evaluation. 

The approach consists of several stages: acquiring cardiovascular 

datasets, preprocessing to ensure data consistency, applying 

LASSO for feature selection,  

balancing the data with SMOTE, then training and prediction a 

recurrent RNN optimized with cutting-edge algorithms. To enhance 

the accuracy and reliability of the novel deep learning model for 

cardiovascular disease prediction, mathematical proofs are 

employed to validate the efficacy of this work starting from feature 

selection and preprocessing methods until predication. It also 

provided for the effectiveness of the standard scaler in normalizing 

features, which is crucial for maintaining model performance. The 

methodology is thoroughly designed and detailed as follows: 

 

3.1.  Data Collection and Data Preprocessing 

Data were sourced and collected from four widely recognized 

benchmark datasets: Hungary, Cleveland, Long Beach V, and 

Ref.  Dataset Contribution Pros.  Limitations  Feature 

taken  

Model 

accuracy 

[31] cardiovascu

lar diseases 
(Cleveland, 

Hungary, 

Switzerland
, and Long 

Beach.) 

ensemble learning 

approach for heart disease 
prediction, highlighting 

the effectiveness of 

gradient boosting 
algorithms. 

Comprehensive data preprocessing 

techniques, including outlier detection, 
data imputation, and normalization, 

were utilized, significantly enhancing 

the model’s robust performance. 
The use of ensemble learning methods, 

improved the predictive performance 

over individual classifiers. 

limit the generalizability of the 

model to larger and more 
diverse populations. 

There is still a potential risk, 

especially if the model is not 
properly regularized or if 

hyperparameters are not well-

tuned. 
Lack of Real-time Application, 

which is critical for practical 
healthcare applications. 

14 92.20 

[32] 

 

Cleveland 

dataset 

Self-attention model with 

CNN   
 

developed a novel attention-based 

transformer model which improve 
accuracy  

There is a need to improve 

performance, particularly in 
managing situations with 

limited labeled data. 

14  

 
 

 96.51 

 

[7] cardiovascu
lar diseases, 

clinical 

datasets 

An ensemble   
extra tree   

classifier feature   

selection based ( 
SVM, KNN  , 

EX, NB, LDA  , 

MLP, and LR) 

The study demonstrates that extra tree 
feature selection improves accuracy in 

classifiers, reduces feature space, and 

focuses on important features for heart 
disease diagnosis, potentially leading to 

faster training times and better 

understanding of the disease. 

The effectiveness of feature 
selection can vary depending on 

the chosen classifier. Some 

classifiers in the study achieved 
similar performance with or 

without feature selection. 

Removing features, even if they 
seem irrelevant, might lead to 

discarding some informative 

data. 
The study only investigates the 

extra tree approach. Other 

feature selection techniques 
might be even more effective 

for certain datasets or 

classifiers. 

5 97 

[33] contains of 

four 

databases, 
such as 

Cleveland, 

Hungary, 
Switzerland

, and Long 

Beach. 

Heart disease 

identification was carried 

out using the Gradient 
Squirrel Search 

Algorithm-Deep Maxout 

Network (GSSA-DMN). 
 

The GSSA-DMN methodology, which 

integrates Gradient Descent 

Optimization with the Squirrel Search 
Algorithm, demonstrates significant 

effectiveness in heart disease detection. 

This approach may enhance training 
efficiency and accuracy by leveraging 

data preprocessing and feature 

selection techniques. 

The study on GSSA-DMN lacks 

transparency and external 

validation, requiring further 
research for its effectiveness. 

14 93.2 

[34] Heart 

Disease 

Dataset 
(Cleveland) 

Set of Convolutional  

Neural Network (HCNN) 

Strong performance across accuracy, 

highly effective in predicting heart 

disease. 
This model could lead to more robust 

predictions. 

Flexibility and Generalizability 

inner workings difficult to 

interpret and it may take time.  

 

14 92 

[35] Clinical 

dataset 

The DeepVAQ model 

utilizes a CNN to analyze 

data from PPG sensors, 
identifying particular 

frequencies and patterns 

that signify the quality of 
ventricular arrhythmias 

(VA). 

Deep VAQ, a non-invasive, cost-

effective tool, uses 

Photoplethysmography sensors for 
predicting VA quality, demonstrating 

high accuracy and reliability compared 

to the expensive UDT technique. 

Limited generalizability, and 

specific information on PPG 

sensor features for VA quality 
prediction, necessitating further 

validation on external datasets  

6 92.13 
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Switzerland. These datasets are pivotal to cardiovascular disease 

(CVD) research, offering diverse patient records with various 

features related to CVD health. They were aggregated to form a 

comprehensive dataset, establishing a robust foundation for 

training and evaluating of the proposed model. The 

cardiovascular disease dataset was obtained from Kaggle's web 

platform (https://www.kaggle.com/datasets/Johnsmith88/heart-

disease-dataset). It comprises 1,025 instances and 14 attributes, 

with data collected in 1988. The "target" field represents the 

presence or absence of cardiac disease, where 0 signifies no 

disease and 1 signifies the presence of disease. The features 

included in the dataset are detailed in Table 2. Following the 

aggregation of these datasets, data preprocessing becomes the 

subsequent step, which plays a critical role in refining the raw 

data for model training. This process is described as follows: 

• Handling Missing Values: Missing or incomplete data 

entries were addressed by removing affected records, 

thereby ensuring the integrity and accuracy of the 

dataset for further analysis. 

• Normalization: Features were normalized to guarantee 

that all variables contributed equally toward the model. 

This step was essential to prevent any single feature 

from disproportionately influencing the model due to 

differences in scale. 

Table 2. Descriptions Of Dataset's Attributes 

No  Feature Code Feature Description Value 

1.  age  Age 29-77 

2.  sex  Gender 1=male 

0=female 

3.  cp  chest pain types 0=Atypical 

angina, 

1=typical angina,  

2=asymptotic, 

3=non angina 

pain 

4.  trestbps  Resting blood pressure 94-200 

5.  Chol serum cholesterol in mg/dl 126-564 

6.  Fbs fasting blood sugar  

, <=120  mg/dl normal 

0=false 

    >=120 not normal 1=true 

7.  restecg 

  

resting electrocardiographic 

results (values 0,1,2) 

0=normal 

1=ST-T wave  

abnormalities 

2= left 

ventricular  

Hypertrophy 

8.  Thalach maximum heart rate achieved 71-202 

9.  Exang exercise induced angina 0=no 

1=yes 

10.  Oldpeak ST depression induced by 

exercise related to rest 

0.0-6.2 

11.  Slope the slope of the peak exercise 

ST segment 

0= un sloping 

1=flat 

2=down sloping 

12.  Ca Count of main vessels (0-3) 

colored by Fluoroscopy 

0-3 

13.  Thal Thallium Scan  0 = normal;  

1 = fixed defect;  

2 = reversable 

defect 

14.  Target Class Attribute 0=no 

1=yes 

The dataset comprises 14 numerical attributes, which are 

summarized in Table 2. The age attribute ranges from 29 to 77 

years. Epidemiological studies have consistently shown that the 

incidence of heart disease is notably low among individuals over 

65 years of age [36, 37]. Gender is coded as 1 for male and 0 for 

female; evidence suggests that males have a higher likelihood of 

developing cardiovascular disease compared to females. 

However, female patients with diabetes are at a higher risk of 

cardiovascular disease than their male counterparts. The dataset 

includes four types of chest pain: non-anginal pain, atypical 

angina, asymptomatic and typical angina. Typical angina results 

from reduced blood circulation to the cardiac muscle due to a 

shortage of oxygen-rich blood, while atypical angina is triggered 

by through or psychological stress. Asymptomatic pain does not 

signify a cardiac condition. The TRESTBPS attribute, measured 

in mmHg, represents an individual's resting blood pressure. 

Serum cholesterol denotes the total cholesterol content in the 

blood, with Low-Density Lipoprotein (LDL) known as "bad 

cholesterol" that contributes to arterial narrowing, and High-

Density Lipoprotein (HDL), or "good cholesterol," which 

decreases the likelihood of heart attacks. The Fasting Blood 

Sugar (FBS) attribute indicates an individual's blood sugar level, 

with a value of 0 if FBS is less than 120 mg/dl and 1 if it exceeds 

120 mg/dl. Elevated blood sugar levels due to improper insulin 

response are correlated with a significant risk of cardiovascular 

disease. The Resting Electrocardiogram (RESTECG) results are 

recorded as 0 for normal, 1 for abnormal ST-T wave, and 2 for 

left ventricular hypertrophy. The Maximum Heart Rate Achieved 

(MHR) reflects the highest heart rate attained. Exercise-Induced 

Angina (EIA) is recorded as 0 if absent and 1 if present, with 

angina typically manifesting as pain in the chest or shoulders. An 

Oldpeak value represents the ST-segment depression during an 

exercise stress test compared to the resting state. A value of 0.0 

mm is considered normal, indicating no significant ischemia. 

However, any depression greater than 0 mm, typically ranging 

from 0.1 to 6.2 mm, is generally considered abnormal. The slope 

of the peak exercise ST segment during an exercise stress test 

provides valuable insights into heart function under physical 

exertion. An upsloping ST segment (value of 0) is generally 

considered normal and less indicative of ischemia, though further 

evaluation may sometimes be needed. A flat ST segment (value 

of 1) is typically considered abnormal, suggesting possible 

ischemia or inadequate blood flow to the heart. A down-sloping 

ST segment (value of 2) is clearly abnormal and is often 

associated with significant ischemia, indicating a higher 

likelihood of CVD. Ca (count of major vessels), assessed by 

fluoroscopy, measures the number of major coronary arteries 

(ranging from 0 to 3) that are visible or "colored," helping to 

detect blockages or narrowing. A count of 0 is considered normal, 

indicating no significant obstruction in the major vessels. 

However, a count between 1 and 3 is typically abnormal, 

suggesting that one or more coronary arteries are blocked or 

narrowed, which may indicate the presence of CVD. he Thal 

(Thallium Scan) is used to assess blood flow to the heart muscles 

and detect areas of damage or reduced perfusion. A value of 0 

indicates a normal result, meaning there is no significant defect in 

blood flow. A value of 1 represents a fixed defect, which suggests 

permanent damage to the heart tissue, often from a previous heart 

attack. A value of 2 indicates a reversible defect, meaning blood 

flow is temporarily reduced during stress but returns to normal at 

rest, which may signal ischemia or coronary artery disease. Both 

values 1 and 2 are considered abnormal and indicative of 

potential heart issues. Finally, the "Target" attribute is the class 

label, with a value of 1 representing the existence of 

cardiovascular disease and 0 representing its absence. 

To validate the integrity of the combined dataset, it is crucial to 

verify that the aggregation process maintains the statistical 

properties of the original datasets. Specifically, the mathematical 

proof for data aggregation is detailed below:  

▪ Let  denote the integrated with  samples and m 

features. 

▪  Each sample   where  a range from 1 to   as 

 

https://www.kaggle.com/datasets/Johnsmith88/heart-disease-dataset
https://www.kaggle.com/datasets/Johnsmith88/heart-disease-dataset
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▪ Each feature represented as where  range from 1 to  

as  

▪ Let   denote a missing value, if  is missing value 

then  

▪ While the cleaned dataset mentioned as  therefore: 

     (1) 

                     (2)         

The aggregation and preprocessing of the datasets were 

rigorously validated. These proofs will confirm that the combined 

dataset retains the statistical properties of the original datasets 

and that the data cleaning methods effectively address missing 

values, thereby maintaining the integrity of the dataset. 

3.2. Dataset Splitting  

The dataset was divided into training and testing subsets, 

with a split of 80:20. The training set was utilized for 

model fitting, while the testing set provided an unbiased 

evaluation of model performance. Common splits include 

80/20 or 70/30, with 80/20 cross-validation applied here 

for more robust estimation[38, 39]. Of the 1025 samples, 

total of 820 instances were designated for training the 

model, while the remaining 205 instances were set aside 

for testing to evaluate the model work.  

▪ Let the overall number of samples in the dataset be 

denoted by ,where =1025. 

▪ Training set size: 

 

 (3) 
▪ Testing set size: 

 (4) 
Thus, out of 1025 total samples, 820 are used for training, 

and 205 are used for testing. This division ensures the 

model is trained on the common of data while 

maintaining a portion for unbiased evaluation. 

3.3. Feature Selection 

To improve model performance and decrease computational 

complexity, feature selection was conducted using the Least 

Absolute Shrinkage and Selection Operator (LASSO) regression 

[40]. LASSO is particularly effective in selecting a subset of 

relevant features by penalizing the coefficients of less important 

variables, thus reducing the number of dimensions in the dataset 

while retaining the most critical features for cardiovascular 

disease prediction [41].Before feeding the dataset into the RNN 

model, LASSO feature selection was applied to determine the 

most significant features, enhancing both the model's 

interpretability and performance. 

LASSO regression is a technique used for regularization, where 

the alpha parameter controls the strength of the penalty applied to 

the coefficients. In this study, the alpha parameter was set to 0.1. 

A higher alpha value forces more coefficients to shrink to zero, 

leading to the exclusion of less important features. The model 

fitting was performed on the training data   (features) and  

 (target labels). During training, LASSO estimates the 

weights (coefficients) of the features, with non-zero weights 

indicating important features. Features with zero coefficients are 

excluded from the model. This approach mitigates overfitting by 

focusing on the most relevant features, thereby improving model 

performance[42]. Knowing that lasso is used for minimize the 

cost and it clarified as below: 

  

= ( )                                                  

(5)  

Where: 

•  

•  

•  

•  

•  

• 

 

 

While  which shrinking some coefficients βj towards 

zero, effectively excluding the less relevant features. When a 

coefficient   the corresponding feature is excluded from 

the model, means lasso has identified it excluding the less 

relevant features.  

Therefore, the overall extracted features from data are represented 

as  which represents the optimal value of the 

coefficient vector. 

3.4. Data Balancing  

While the selected features were identified, the process of 

prediction still faces the issue of data imbalance, which can lead 

to inaccurate predictions. To address this challenge of imbalance 

in the cardiovascular disease dataset, the Synthetic Minority 

Over-sampling Technique (SMOTE) was applied following 

feature selection using LASSO. SMOTE is specifically employed 

to mitigate class imbalance in datasets, particularly in medical 

data where there is often a significant disparity between the 

number of positive (disease-present) and negative (disease-

absent) instances. This imbalance can bias the model toward the 

majority class, leading to skewed predictions [43]. SMOTE is 

effective in generating synthetic samples for the minority class 

(e.g., disease-positive cases), thus preventing the model from 

overfitting to the majority class during training. The technique 

works by selecting instances from the minority class, identifying 

their k-nearest neighbors, and generating synthetic data points 

along the line segments connecting them. This method increases 

the representation of the minority class without duplicating data, 

ensuring a more balanced and robust training process [44]. In this 

work, SMOTE was applied before model training to create a 

more balanced dataset, enhancing the model’s ability to predict 

both classes accurately and reducing the risk of overfitting. The 

mathematical formulation of SMOTE is detailed as follows: 

Let represent the training data matrix 

after applying lasso 

o Where n is the number of samples and m is the 

number of features. 

- Let  be the corresponding class labels 

o Where: 

▪   represents the minority class  

▪   represents the majority class 
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- Given the imbalanced dataset ( ), applying 

SMOTE to produce synthetic sample for the minority 

class to balance the dataset. 

- Let minority class denoted as 

o  (  and 

- Let majority class denoted as 

o  (  

Knowing that, the goal of SMOTE is to generate synthetic 

samples (  such that the number of samples in the 

minority class is equalized to the number of samples in the 

majority class. This is achieved by interpolating between the 

minority class samples and their nearest neighbors and nearest 

neighbor in minority class is clarified as: 

- For each sample 

o   SMOTE  

o selects a random nearest neighbor 

 

o Where the distance between   and   is 

calculated using a distance matric such as 

Euclidean distance:                                                   

 (6) 

 Where  and   represents the  the features of  and  

,respectively. While synthetic sample generations and work 

as:   

- For each sample  a new synthetics 

sample  is produced by linearly interpolating 

between  and one of its randomly chosen nearest 

neighbors  . The interpolation is given by: 

o  (7) 

Where  is a random number generated uniformly within 

the interval . 

It repeated until the number of synthetic samples generated equal 

the difference in size between majority and minority classes 

therefore Data Balancing will be: 

o  

o  

 

3.5. Recurrent Neural Network (RNN) 

Several deep learning models have been applied for CVD 

detection, including CNNs, RNNs, and LSTMs. While RNNs are 

highly suitable for tasks that involve sequential data, making 

them effective for processing and analyzing such data [20]. This 

research utilizes an RNN to model the relationships present in 

cardiovascular data. After feature selection using LASSO and 

data balancing with SMOTE, the selected balanced features are 

fed into the RNN. The choice of RNN is driven by its ability to 

effectively process sequential data, which is crucial for accurate 

prediction[20]. 

The RNN architecture comprises multiple layers. The model is 

trained using a hybrid optimization approach that utilizes multiple 

optimization algorithms, ensuring efficient convergence and 

minimizing the risk of overfitting. 

The RNN generates predictions based on historical data, 

enhancing its ability to forecast cardiovascular disease with high 

accuracy. This approach leverages temporal patterns, which are 

essential for predicting outcomes in time-sensitive medical data. 

The mathematical formulation used for RNN model with 

optimizer utilization algorithms to predict cardiovascular disease 

is as follows: 

- Let  represent the training 

selected balanced data  

- Let the model output is as  

While the architecture of RNN model can be described as 

follows: 

1. Input layer: the input data at time step  is 

. 

Where: 

• n is the number of samples and 

• m is the number of features after feature 

selection  

2. Simple recurrent neural network layer: the 

hidden state  at time  in the simple RNN layer 

with  hidden units is calculated as: 

o  (8) 

Where: 

▪ K refers to the number of neurons (or units) 

in the hidden layer 

▪  is the weight matrix for input, 

▪  is the weight matrix for the 

recurrent connection,  

▪  is the bias term, 

▪  is the Sigmoid activation function  

▪  is the hidden state from the previous 

time step.  

The output of this layer is the hidden state vector at the last time 

step. 

3. Dense output layer: the final output  is 

calculated using a dense layer with a sigmoid 

activation function for binary classification: 

 (9) 

Where: 

▪  is the weight matrix for the 

dense layer, 
▪  is the total number of time steps. 

While the sigmoid function is defined as: 

  (10) 

This output  represents the predicted probabilities of the 

samples belonging to class 0 or class 1, and to enhance model 

performance while minimizing potential loss functions, an 

optimizer is utilized.  
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Therefore, the model is compiled and trained using multiple 

optimizers to evaluate their performance via: 

Let the set of optimizers be denoted by 

, while the optimization problem aims to 

minimize the loss function  

 

(11) 

Where: 

▪  is the ground truth for the ith sample  

▪  is the predicated probability for sample i, 

▪  is the total number of samples. 

Fig. 1. MarCDP Deep Learning Model for Cardiovascular Disease Prediction 
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For each optimizer , the model is trained by updating the 

weights  and biases  using gradient-based methods. 

Mathematically, the weight update rule for a given 

optimizer is: 

         (12) 

where: 
▪  is the learning rate(optimizer-specific), 

▪  is the gradient of the loss 

function with respect to the weights. 

The difference among optimizers lies in how  and the gradient 

updated are computed for each optimizer. 

3.6.  MarCDP Deep Learning Model for 
Cardiovascular Disease Prediction  

Marwa Cardiovascular disease predication (MarCDP) Deep 

Learning Model for Cardiovascular Disease Prediction is 

designed to enhance predictive accuracy and model performance 

through a systematic and scientifically grounded approach. This 

model incorporates several key components, each playing a vital 

role in improving effectiveness in identifying cardiovascular 

disease cases. 

The model begins with LASSO for feature selection, with an 

alpha parameter set to 0.1. By performing regularization and 

dimensionality reduction, LASSO removes irrelevant or 

redundant features, ensuring that only the most significant 

variables are included. This reduces overfitting and improves the 

generalization of the model, which is essential for handling the 

complexity of real-world cardiovascular disease data. By 

streamlining the dataset, LASSO helps focus the model's 

attention on critical features, thus enhancing prediction accuracy. 

Following feature selection, the SMOTE is applied to tackle class 

imbalance in the dataset. Cardiovascular disease datasets often 

exhibit a higher number of negative (disease-free) cases 

compared to positive (disease-present) ones. SMOTE generates 

synthetic samples for the minority class (positive cases) by 

interpolating between existing data points. This improves the 

balance between classes and ensures that the model receives 

sufficient training on both positive and negative cases. By 

addressing class imbalance, SMOTE reduces bias towards the 

majority class, thereby enhancing the model’s ability to 

accurately predict minority (disease-present) instances. 

The Recurrent Neural Network (RNN) at the core of the MarCDP 

model is well-suited for handling sequential data, which is 

particularly beneficial in analyzing time-dependent 

cardiovascular data (e.g., patient history, diagnostic metrics over 

time). The RNN architecture can capture patterns, leading to 

more nuanced predictions. By learning dependencies in the input 

sequence, the RNN enhances the model's capacity to understand 

complex relationships between features, thus improving overall 

prediction performance. 

The utilization of optimizers further boosts the performance of 

the MarCDP model by improving the efficiency of the training 

process. These optimizers combine the strengths of multiple 

optimization techniques, ensuring faster convergence, reduced 

error, and better fine-tuning of the model parameters. As a result, 

the model can achieve a higher level of precision and recall, 

which are critical metrics in disease prediction tasks. 

MarCDP Deep Learning Model leads to a more robust model that 

generalizes well to unseen data, providing more accurate, reliable, 

and timely predictions for cardiovascular disease. By addressing 

key challenges like feature redundancy, class imbalance, and 

complex data patterns, the MarCDP model offers a significant 

improvement over traditional models, making it a valuable tool 

for medical diagnosis and risk assessment. The proposed model is 

presented as algorithm in Table 3 and Figure 1.  

4. Evaluation Criteria's  

The model was trained on the identified, selected, pre-processed 

and balanced dataset. The training process involved adjusting the 

weights of the RNN using the set of optimizer strategy. To assess 

the model's performance, a range of evaluation metrics was 

employed, including accuracy, precision, recall, and Receiver 

Operating Characteristic Area Under Curve(ROC-AUC) [45]. It  

will be employed to assess the performance of the proposed 

model. The proposed model employs the test-holdout approach 

for validation, utilizing eighty percent of the data for training and 

reserving twenty percent for testing, in accordance with the 80-20 

train-test validation method. The sklearn library is used for 

evaluation process as it clarified in Table 4. 

 

Table 4. Metrics Used to Evaluate the Performance of the 

 Proposed Model  

Metric  Equation 

Accuracy  

 
Precision 

 
Recall  

 

AU-ROC 

 

Table 3. Pseudo Code For MarCDP Deep Learning Model For 

Cardiovascular Disease Prediction 

Start 

  //1.data collection and data preprocessing as in (equation (1,2)) 

loading and gathering datasets  

preprocessing 

//2.data splitting (equation (3,4)) 

Split integrated dataset (training, testing set)  
//3. feature selection as in (equation (5)) 

Initialize lasso and set alpha value  

Fit model 

Identify features  

Create dataset of the selected features  

//4.data balancing as in (equation (6,7)) 
Identify minority class 

if it’s a minority class 

    Compute k-NN 

    Generate synthetic samples 

    Add synthetic sample to dataset  

//5.RNN as in (equation (8,9)) 

   Initialize weight 

   Input sequence 

   Start time step t=1 

   Calculate hidden state 

   Calculate Output 

    t=t+1  

    If all time steps  

       Back-propagations  

       Generate output  

//6. Enhance RNN as in (equation (10,11,12)) 
       Enhance RNN result with optimizer 

       Calculate activation function  

       Calculate loss function   

End 
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5. Results And Discussion  

The proposed healthcare prediction model, which utilizes RNN 

with LASSO feature selection, SMOTE data balancing, and a set 

of optimizer strategy, was evaluated using four benchmark 

datasets: Cleveland, Hungary, Switzerland, and Long Beach V. 

Feature selection is a crucial step in improving the performance 

and interpretability of deep learning models. In this study, the 

LASSO was utilized to identify the most relevant features for 

cardiovascular disease prediction. LASSO not only helps in 

reducing the dimensionality of the dataset by eliminating 

irrelevant or redundant features, it also enhances model 

performance by focusing on the most significant predictors. Table 

5 provides a detailed summary of the features selected by LASSO 

versus those that were excluded. This information highlights the 

key features used in the model and offers insights into which 

variables contribute most to predicting cardiovascular disease. 

Knowing that, understanding the relative importance of different 

features is critical for interpreting the performance and results of 

predictive models. In this study, using of LASSO regression 

technique to identify and evaluate the significance of each feature 

in predicting cardiovascular disease is a critical point of success. 

LASSO helps in feature selection by applying the coefficients of 

less important features, effectively shrinking them towards zero 

and thereby highlighting the most impactful features. 

 In Figure 2, it illustrates the importance of features based on the 

coefficients obtained from the LASSO model. Each bar 

represents a feature, with its length corresponding to the 

magnitude of its coefficient. Features with larger coefficients are 

deemed more significant in the prediction process. This 

visualization provides intuitive way to assess which features are 

most influential, offering valuable insights into the underlying 

factors contributing to cardiovascular disease predictions. It 

visualizes the importance of different features in a deep learning 

model, as determined by their LASSO coefficients. 

Understanding that, LASSO is a regularization technique that 

tends to shrink less important feature coefficients towards zero. 

The features cp and old peak have the highest absolute coefficient 

values, indicating their significant influence on the model's 

predictions. The features thalach, thal, exang, and ca have 

moderate coefficient values. The feature sex has the smallest 

coefficient value, indicating its minimal impact on the model's 

predictions. Based on the LASSO coefficients, the model 

suggests that cp and oldpeak are the most critical factors 

influencing the target variable. These features likely contribute 

significantly to the model's ability to make accurate predictions. 

  

Table 5. Feature Selection Results 

No Feature Code Selected  

1.  age  No  

2.  sex  Yes  

3.  cp  Yes  

4.  trestbps  No  

5.  Chol No  

6.  Fbs No  

7.  restecg  No  

8.  Thalach Yes  

9.  Exang Yes  

10.  Oldpeak Yes  

11.  Slope No  

12.  Ca Yes  

13.  Thal Yes  

 

 
 

Fig. 2.  Coefficient value for each feature selected 

 

To address the class imbalance in the cardiovascular disease 

datasets, the SMOTE was applied. Class imbalance can 

significantly impact the performance of deep learning models, 

leading to biased predictions where the minority class may be 

underrepresented. SMOTE works by generating synthetic 

samples for the minority class, thus balancing the dataset and 

improving the model's ability to generalize. Table 6 illustrates the 

distribution of classes before and after the application of SMOTE. 

This balancing act ensures that the model is not biased toward the 

majority class and provides a more accurate evaluation of its 

performance across different classes as clarified in Table VI. 

Figure 3 presents comparing the distribution of classes before and 

after applying the SMOTE algorithm. The Class Distribution 

Before SMOTE shows an imbalance in the dataset, with a 

significantly higher number of instances in one class (likely class 

0) compared to the other class (class 1). The Class Distribution 

After SMOTE demonstrates that the SMOTE technique has 

successfully balanced the dataset by increasing the number of 

instances in the minority class (class 1).  

 The application of SMOTE has effectively addressed the class 

imbalance issue in the dataset. This is generally considered 

beneficial for deep learning models, as imbalanced datasets can 

lead to biased models that perform poorly on the minority class. 

 

Fig. 3.  Class distribution using SMOTE 

 

Table 6. SMOTE Balancing Results 

CLASS BEFORE SMOTE AFTER SMOTE 

CLASS 0 800 800 

CLASS 1 200 800 
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The training and validation loss/accuracy curves is essential for 

understanding how well a model is learning and generalizing over 

time. These curves provide insights into the model’s performance 

during training and help identify potential issues such as 

overfitting or underfitting. Training Loss/Accuracy Curves plots 

show the progression of the model's performance on the training 

dataset over epochs. The training loss curve reflects how well the 

model is minimizing the error on the training data, while the 

training accuracy curve indicates how accurately the model 

classifies the training samples. Validation Loss/Accuracy Curves 

track the model's performance on a separate validation dataset, 

providing an estimate of how well the model will perform on 

data. A decreasing validation loss and increasing validation 

accuracy proposed that the model is learning to generalize well. 

Figure 4 illustrates the loss and accuracy curves for different 

optimizers used in training RNN. These visualizations help assess 

the effectiveness of each optimizer in improving model 

performance and ensuring robust learning. Training Loss 

decreases steadily over epochs, indicating the model is learning 

from the training data. 

 

Fig. 4.  coefficient Training loss, validation loss, training accuracy and 
validation accuracy 

 

Validation Loss shows a similar trend to training loss, though 

with slight fluctuations. This suggests that the model is 

generalizing well to data. No Overfitting and no gap between 

training and validation loss is relatively small, indicating a low 

risk of overfitting. Training Accuracy steadily increases, reaching 

a around 0.99, suggesting the model is learning to classify 

training samples accurately. Validation Accuracy is Also 

increases and stabilizes, with a slight gap compared to training 

accuracy. This indicates good generalization performance. 

Confusion matrix is also used to visualize the performance of this 

model in classifying different classes. Visualizing the results 

enables a deeper understanding of the model's strengths and 

limitations in predicting cardiovascular disease cases. The 

following heatmap displays the confusion matrix for each 

optimizer used, highlighting how the model's predictions compare 

to the actual outcomes as it described in Figure 5. The model 

correctly classified 102 + 100 = 202 out of 205 instances, 

resulting in an accuracy of 98.5%. The dataset appears to be 

balanced, with approximately equal numbers of instances in Class 

0 and Class 1. While Misclassifications is represented as 0 

instances of Class 0 were incorrectly predicted as Class 1 (false 

positives), 3 instances of Class 1 were incorrectly predicted as 

Class 0 (false negatives). The model correctly identified 102 out 

of 102 true negative instances (Class 0), resulting in a specificity 

of 100%. The model correctly identified 100 out of 103 true 

positive instances (Class 1), resulting in a sensitivity of 97.09%. 

Overall, the model demonstrates high accuracy, specificity, and 

sensitivity, suggesting it performs well in classifying both Class 0 

and Class 1 instances. The evaluation metrics are clarified in 

Table 7. It demonstrates the model's strong performance in 

predicting cardiovascular diseases. 

As clarified in Table VII, the model achieved an accuracy of 

98.05%, indicating that nearly all predictions made by the model 

were correct. This high level of accuracy highlights the 

effectiveness of the model in distinguishing between patients with  

and without cardiovascular disease, making it a reliable tool for 

clinical decision-making. While with a precision score of 

99.01%, the model showed an exceptional ability to correctly 

identify positive instances of cardiovascular disease while 

minimizing false positives. This is critical in a healthcare setting 

where false can lead to unnecessary interventions and increased 

healthcare costs. Whereas the recall score of 97.09% reflects the 

model's ability to correctly identify the majority of actual cases of 

cardiovascular disease as it clarified in Figure 6. A high recall is 

crucial for ensuring that patients with the disease are accurately 

diagnosed, thus reducing the likelihood of missed diagnoses that 

could lead to adverse outcomes. In addition, using of ROC AUC 

underscores its superior discriminatory power in distinguishing 

between healthy and diseased patients. The model's ROC AUC 

score of 99.83% as it clarified in Figure 7. This near-perfect score 

indicates that the model performs exceptionally well across 

various thresholds, making it highly effective in clinical scenarios 

where both sensitivity and specificity are vital. 

Fig. 5.  confusion matrix of model performance 

 

 

Table 7. Performance Metrics 

Metric Proposed Model 

Accuracy 98.05% 

Precision 99.01% 

Recall 97.09% 

ROC AUC 99.83% 
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Fi
Fig.6.  precision and recall accuracy curve 

Fig7.  Roc Model performance  

 

Evaluated the Precision-Recall (PR) curve provides more 

nuanced view of a model's performance, particularly in the 

context of class imbalance. Precision represents the proportion of 

true positive predictions among all positive predictions made by 

the model, while recall (or sensitivity) represents the proportion 

of true positives among all actual positive cases. By plotting these 

metrics against each other at various thresholds, the PR curve 

offers insights into the trade-off between precision and recall 

across different decision boundaries. This is especially valuable 

in medical applications where both false positives and false 

negatives have significant implications. 

The ROC curve represents, true Positive Rate (TPR) against the 

False Positive Rate (FPR) at various threshold settings.   The 

ideal point for an ROC curve is at the top-left corner (TPR=1, 

FPR=0), indicating perfect classification.   The diagonal line 

represents the performance of a purely random classifier.   

Analysis of the Provided ROC Curve: 

• Perfect Classification: The ROC curve is a straight 

horizontal line at the top (TPR=1) with an area under 

the curve (AUC) of 1.00. This indicates a perfect 

classifier. 

• No False Positives: The curve lies along the y-axis, 

meaning there are no false positives (FPR=0) at any 

threshold setting. 

• All True Positives: The curve reaches the top-left 

corner, indicating that all true positives are correctly 

identified. 

Therefore, This ROC curve demonstrates an exceptional model 

performance. It perfectly discriminates between the positive and 

negative classes without any errors. Such a result is often seen in 

ideal scenarios or with perfectly separable datasets. 

Table 8. Comparing Proposed Study to Previous Studies. 

Ref.  Dataset Feature 

taken  

Model accuracy 

[22] 

 

Set of datasets collected 

from Kaggle  

14 85.24 

[23] Heart Disease 

(Cleveland, Hungary, 

Switzerland, and Long 

Beach.) 

14 93.2 

[24] Two datasets (Cleveland 

University of California 

Irvine (UCI) and 

cardiovascular disease 

(CVD)) 

14 (97.5%) in UCI. 

[25] PIMA dataset  9  97.591%,95.874%

, and 97.094% of 

accuracy 

[26] Three-datasets 

(Cleveland  , 

Hungarian and 

Switzerland) 

14  97.3 

[27] 

 

Sample from (Cleveland, 

Hungarian, Switzerland, 

Long Beach, stalog ) 

12 

 

90.09 

[28] Heart Failure Prediction 

Dataset 

12 89.25 

[29] Heart Disease 

(Cleveland) 

14 95.84%, 94.80%, 

and 95.36% 

[30]  Medical 

Dataset 

11 94.21 

[31] cardiovascular diseases 

(Cleveland, Hungary, 

Switzerland, and Long 

Beach.) 

14 92.20 

[32] 

 

Cleveland dataset 14  

 

 

 96.51 

 

[7] cardiovascular diseases, 

clinical datasets 

5 97 

[33] comprises of four 

databases, such as 

Cleveland, Hungary, 

Switzerland, and Long 

Beach. 

14 93.2 

[34] Heart Disease Dataset 

(Cleveland) 

14 92 

[35] Clinical dataset 6 92.13 
Proposed 

work( 

MarCDP )  

Four datasets 

(Cleveland, Hungary, 

Switzerland, and Long 

Beach) 

14 98.05 

 

Comparing MarCDP to other studies that have the same number 

of features and same datasets as it represented in Table 8, the 

proposed work presents a novel work with higher predication 

result as 98.5 model accuracy. The compared studies as [23], 

[31], and [33]  with the proposed work, MarCDP presents a clear 

enhancement in accuracy as it presents in Figure 8. Additionally, 

the model incorporates a set of optimizer strategy to further 

enhance prediction performance.  

This novel approach addresses the gaps in the existing models by 

enhancing feature selection, improving data balance, and 
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achieving higher prediction accuracy, thereby offering a more 

robust and reliable healthcare prediction solution. 

 

Fig. 8.  Comparison of our proposal with the model with the same datasets and 

features 

6. Conclusion And Future Work 

This article introduces a novel deep learning model aimed at 

enhancing the accuracy of cardiovascular disease (CVD) 

prediction. Through the utilization of Recurrent Neural Networks 

(RNN) for sequence learning, LASSO for feature selection, and 

SMOTE for handling data imbalance, the model achieved a 

significant prediction accuracy of 98.05% on four benchmark 

datasets and a precision of 99.01%, a recall of 97.09%, and an 

ROC AUC of 99.83%. These results surpass existing methods, 

demonstrating the model’s potential to assist in early detection 

and prevention of CVD. This work contributes to advancing the 

field of predictive healthcare, offering a more precise tool for 

identifying at-risk patients. 

Future work will focus on expanding the model's capabilities by 

incorporating real-time data from wearable IoT devices, allowing 

for continuous monitoring and dynamic prediction of CVD risk. 

Additionally, exploring the integration of more sophisticated deep 

learning architectures and larger, more diverse datasets could 

further enhance model performance. Another direction involves 

developing a user-friendly mobile health application that provides 

real-time CVD risk assessment, making the model more 

accessible and applicable in clinical practice and incorporate this 

work with [46, 47]. 
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