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Abstract: Today, in computer science, a computational challenge exists in finding a globally optimized solution from an enormously large 
search space. Various metaheuristic methods can be used for finding the solution in a large search space. These methods can be explained 
as iterative search processes that efficiently perform the exploration and exploitation in the solution space. In this context, three such nature 
inspired metaheuristic algorithms namely Krill Herd Algorithm (KH), Firefly Algorithm (FA) and Cuckoo search Algorithm (CS) can be 
used to find optimal solutions of various mathematical optimization problems. In this paper, the proposed algorithms were used to find the 
optimal solution of fifteen unimodal and multimodal benchmark test functions commonly used in the field of optimization and then compare 
their performances on the basis of efficiency, convergence, time and conclude that for both unimodal and multimodal optimization Cuckoo 
Search Algorithm via Lévy flight has outperformed others and for multimodal optimization Krill Herd algorithm is superior than Firefly 
algorithm but for unimodal optimization Firefly is superior than Krill Herd algorithm. 
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1. Introduction 
In recent times, nature inspired metaheuristic algorithms are being 
widely used for solving optimization problems, including NP-hard 
problems which might need exponential computation time to solve 
in worst case scenario. In metaheuristics methods [1, 9] we might 
compromise on finding an optimal solutions just for the sake of 
getting good solutions in a specific period of time. The main aim 
of metaheuristic algorithms are to quickly find solution to a 
problem, this solution may not be the best of all possible solutions 
to the problem but still they stand valid as they do not require 
excessively long time to be solved. Two crucial characteristics of 
metaheuristic algorithms are intensification and diversification. 
The intensification searches around the current best solution and 
selects the best candidate or solution. The diversification ensures 
that the algorithm explores the search space more efficiently. 
Maintaining balance between diversification and intensification  is 
important because firstly we have to quickly find the  regions in 
the large search space with high quality solutions and secondly not 
to waste too much time in regions of the search space which are 
either already explored or which do not provide high quality 
solutions[3]. 
In this paper, we have used three metaheuristic algorithms Krill 
Herd Algorithm (KH) [4], Firefly Algorithm (FA) [1] and Cuckoo 
Search Algorithm (CS) [5].First is the Krill Herd Algorithm which 
was developed by Amir Hossein Gandomi and Amir Hossein Alavi 
in 2011. The KH algorithm is based on the simulation of the 
herding behaviour of Krill individuals. Second is the Firefly 
Algorithm (FA) which was developed by X.-S.Yang in 2007. It 
was inspired by the flashing pattern of fireflies. Third algorithm is 

the Cuckoo search Algorithm which was developed by X.-S.Yang 
and S.Deb in 2009. It is   based on the interesting breeding 
behaviour of certain species of cuckoos such as brood parasitism. 
This paper aims to provide the comparison study of the Krill Herd 
Algorithm (KH) with Firefly Algorithm (FA) and Cuckoo Search 
(CS) Algorithm via L´evy Flights against unimodal and 
multimodal test functions. Rest of the paper is organised as 
follows. First we will briefly explain the Krill Herd Algorithm, 
Firefly Algorithm, Cuckoo Search Algorithms and several 
Mathematical benchmark functions in section (2).Then 
experimental settings and results will be shown in section (3) and 
then finally we will conclude the paper. 

2. Nature Inspired Algorithms and Optimization 
2.1. Krill Herd Algorithm 

2.1.1. Krill Swarm’s Herding Behavior 

Many Research have been done in order to find the mechanism that 
lead to the development non- random formation of groups by 
various marine animals [11,12].The significant mechanisms 
identified are feeding ability, protection from predators, enhanced 
reproduction and environmental condition [6]. 
Krills from Antarctic region are one of the best researched marine 
animals. One of the most significant ability of krills is that they can 
form large swarms [13, 14].Yet there are number of uncertainties 
about the mechanism that lead to distribution of krill herd 
[15].There are proposed conceptual models to explain observed 
formation of krill heard [16] and result obtained from those models 
states that krill swarms form the basic unit of organization for this 
species. 
 Whenever predators (Penguins, Sea Birds) attack krill swarms, 
they take individual krill which leads in reducing the krill density. 
After the attack by predators, formation of krill is a multi- objective 
process mainly including two Goals: (1) Increasing Krill density 
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and (2) Reaching food. Attraction of Krill to increase density and 
finding food are used as objective function which finally lead the 
krills to herd around global minima. In this mechanism, all 
individual krill moves towards the best possible solution while 
searching for highest density and food. 
2.1.2. Krill Herd Algorithm 

As Predator remove individual from Krill swarm, the average krill 
density and distance of krill swarm from the food location 
decreases. We assume this process as the initialization phase in the 
Krill Herd Algorithm [4]. Value of objective function for each 
individual is supposed to be combination of distance from food and 
highest density of krill swarm. Three essential actions [6] 
considered by Krills to determine the time dependent position of 
an individual krill are: 
(i) Movement induced by other krill individuals 
(ii) Foraging activity 
(iii) Random Diffusion 
We know that all the optimization algorithm should have searching 
capability in space of arbitrary dimensionality. Hence we 
generalize Lanrangian model of krill herding to n dimensional 
decision space. 

𝑑𝑑𝑋𝑋𝑖𝑖 𝑑𝑑𝑑𝑑⁄ = 𝑁𝑁𝑖𝑖 + 𝐹𝐹𝑖𝑖 + 𝐷𝐷𝑖𝑖  (1) 

Here 𝑁𝑁𝑖𝑖 is the motion induced by other krill individuals, 𝐹𝐹𝑖𝑖 is the 
foraging motion and 𝐷𝐷𝑖𝑖 stands for physical diffusion for ith krill 
individuals.  
2.1.3. Motion Induced by other krill individual 

According to research krill individuals move due to the mutual 
effects by each other so as to maintain high density [6].Movement 
for the krill individual is defined as: 

𝑁𝑁𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼𝑖𝑖 + 𝜔𝜔𝑛𝑛𝑁𝑁𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜   (2) 

In Eq. (2) 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 stands for  maximum induced speed which is equal 
to 0.01 (m/s) [6] , 𝛼𝛼𝑖𝑖 is the direction of motion induced which is 
estimated from target swarm density and local swarm density, 𝜔𝜔𝑛𝑛 
is the inertia weight of the motion induced, 𝑁𝑁𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 is the last motion 
induced. 

𝛼𝛼𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑜𝑜𝑜𝑜𝑙𝑙𝑚𝑚𝑜𝑜 + 𝛼𝛼𝑖𝑖
𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡   (3) 

In Eq. (3) 𝛼𝛼𝑖𝑖𝑜𝑜𝑜𝑜𝑙𝑙𝑚𝑚𝑜𝑜  is the local effect due to the neighbors, and 
𝛼𝛼𝑖𝑖
𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡 is the target direction effect due to the best krill individual.  

Attractive or Repulsive effect of the neighbors on an individual 
krill movement can be formulated as: 

𝛼𝛼𝑖𝑖𝑜𝑜𝑜𝑜𝑙𝑙𝑚𝑚𝑜𝑜 = ∑ 𝐾𝐾�𝑖𝑖,𝑗𝑗𝑋𝑋�𝑖𝑖.𝑗𝑗𝑁𝑁𝑁𝑁
𝑗𝑗=1    (4) 

𝑋𝑋�𝑖𝑖.𝑗𝑗 = 𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖 �𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖‖ + 𝜀𝜀⁄    (5) 

𝐾𝐾𝚤𝚤,𝚥𝚥 =� 𝐾𝐾𝑖𝑖 −𝐾𝐾𝑗𝑗 𝐾𝐾𝑛𝑛𝑜𝑜𝑡𝑡𝑤𝑤𝑡𝑡 − 𝐾𝐾𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡⁄   (6) 

In Eq. (4) NN is the number of the neighbors. In Eq. (5) and Eq. 
(6) 𝐾𝐾𝑛𝑛𝑜𝑜𝑡𝑡𝑤𝑤𝑡𝑡and 𝐾𝐾𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡  are, the worst and the best fitness values of 
the krill individuals till now, 𝐾𝐾𝑖𝑖 represents the fitness value of the 
ith krill individual, 𝐾𝐾𝑗𝑗  is the fitness of jth neighbor and X represents 
the related positions. 
To choose the neighbor, using actual behavior of Krill individual, 
a sensing distance (ds) is calculated using 

𝑑𝑑𝑤𝑤,𝑖𝑖 = 1 5𝑁𝑁⁄ ∑ ‖𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗�𝑁𝑁
𝑗𝑗=1   (7) 

In Eq. (7) 𝑑𝑑𝑤𝑤,𝑖𝑖  is the sensing distance for the ith krill individual and 
N stands for number of krill individuals. Based on Eq. (7), two krill 

individuals are neighbor if the distance between them is less than 
𝑑𝑑𝑤𝑤. 
The effect of the individual krill having the best fitness on the ith 
individual krill is calculated as follow: 

𝛼𝛼𝑖𝑖
𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡 = 𝐶𝐶𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡𝐾𝐾�𝑖𝑖,𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡𝑋𝑋�𝑖𝑖,𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡  (8) 

In Eq. (8) 𝐶𝐶𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡  is the effective coefficient of the krill with the best 
fitness and is defined as: 

𝐶𝐶𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡 = 2(𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑 + 𝐼𝐼 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚⁄ )   (9) 

Where rand is a random value in the range [0, 1], I is the actual 
iteration number, and 𝐼𝐼𝐼𝐼𝑟𝑟𝐼𝐼 is the maximum number of iterations. 
2.1.4. Foraging motion 

Foraging motion is developed in terms of two main effective 
parameters. One is the food location and the second one is the 
previous experience about the food location. This motion can be 
explained for the 𝑖𝑖𝑑𝑑ℎ krill individual as follow:  

𝐹𝐹𝑖𝑖 = 𝑉𝑉𝑓𝑓𝛽𝛽𝑖𝑖 + 𝜔𝜔𝑓𝑓𝐹𝐹𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜   (10) 

Where  

𝛽𝛽𝑖𝑖 = 𝛽𝛽𝑖𝑖
𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 + 𝛽𝛽𝑖𝑖𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡   (11) 

In Eq. (10)  𝑣𝑣𝑓𝑓 is the foraging speed, 𝜔𝜔𝑓𝑓 is the inertia weight of the 
foraging motion in the range [0, 1] and 𝐹𝐹𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 is the last foraging 
motion. In Eq. (11) 𝛽𝛽𝑖𝑖

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 and 𝛽𝛽𝑖𝑖𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡 are the food attractive effect 
and best fitness of the 𝑖𝑖𝑑𝑑ℎ krill so far respectively. Measured values 
of the foraging speed [7] is 0.02(𝐼𝐼𝑚𝑚−1).  
The center of food is found at first and then food attraction is 
formulated. The virtual center of food concentration is estimated 
according to the fitness distribution of the krill individuals, which 
is inspired from ‘‘center of mass’’. The center of food for each 
iteration is formulated as: 

𝑋𝑋𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 = ∑ 1 𝐾𝐾𝑖𝑖⁄ 𝑋𝑋𝑖𝑖𝑁𝑁
𝑖𝑖−1 ∑ 1 𝐾𝐾𝑖𝑖⁄𝑁𝑁

𝑖𝑖−1⁄   (12) 

Hence, we can evaluate the food attraction for the 𝑖𝑖𝑑𝑑ℎ krill 
individual by following equation: 

𝛽𝛽𝑖𝑖
𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝐾𝐾�𝑖𝑖,𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑋𝑋�𝑖𝑖,𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  (13) 

In Eq. (13) 𝐶𝐶𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  is the food coefficient. As time passes the effect 
of food in the krill herding decrease and food coefficient is 
evaluated as: 

𝐶𝐶𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 = 2(1 −  𝐼𝐼 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚⁄ )   (14) 

The attraction towards food is defined to attract the krill swarm 
towards global optima. Based on this definition, the krill 
individuals normally herd around the global optima after some 
iteration. This can be considered as an efficient global optimization 
strategy which helps improving the global optima of the KH 
algorithm. 
The effect of the best fitness of the 𝑖𝑖𝑑𝑑ℎ krill individual is also 
handled using the following equation: 

𝛽𝛽𝑖𝑖𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡 = 𝐾𝐾�𝑖𝑖,𝑖𝑖𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡𝑋𝑋�𝑖𝑖,𝑖𝑖𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡  (15) 

In Eq. (15) 𝐾𝐾𝑖𝑖𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡is the best previously visited position of the 𝑖𝑖𝑑𝑑ℎ 
krill individual. 
2.1.5. Physical diffusion 

The physical diffusion of all the krills is basically a random 
process. We can express this motion in terms of maximum 
diffusion speed and a random directional vector. We can formulate 
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it as follows: 

𝐷𝐷𝑖𝑖 = 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝛿𝛿  (16) 

In Eq. (16)  𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum diffusion speed [8] and 𝛿𝛿 is the 
random directional vector and it includes random values in range 
[-1, 1]. As krills position gets better, random motion is also 
reduced. Thus, another term is added to the physical diffusion 
formula to consider this effect. The effects of the motion induced 
by other krill individuals and foraging motion gradually decrease 
increase in iterations. The physical diffusion is a random vector 
hence it does not steadily reduces with increase in number of 
iterations due to which another term is added to Eq. (16). This term, 
linearly decreases the random speed with time and works on the 
basis of a geometrical annealing schedule: 

𝐷𝐷𝑖𝑖 = 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝐼𝐼 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚⁄ )𝛿𝛿       (17) 

2.1.6. Motion Process of the KH Algorithm 

The defined motions frequently change the position of a krill 
individual toward the best fitness. The foraging motion and the 
motion induced by other krill individuals contain two global and 
two local strategies. KH a powerful algorithm as all these work in 
parallel. The formulations of these motions for the 𝑖𝑖𝑑𝑑ℎ krill 
individual show that, if fitness value of each of the above 
mentioned effective factor like𝐾𝐾𝑗𝑗 ,𝐾𝐾𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡, 𝐾𝐾𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜, 𝐾𝐾𝑖𝑖𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡 is better i.e. 
less than the fitness of the 𝑖𝑖𝑑𝑑ℎ krill, it has an attractive effect else 
it is a repulsive effect. We can notice from the above formulations 
that better fitness has more effect on the movement of 𝑖𝑖𝑑𝑑ℎ krill 
individual. The position vector of a krill individual during the 
interval t to t + ∆t is given by the following equation: 

𝑋𝑋𝑖𝑖(𝑑𝑑 + ∆𝑑𝑑) = 𝑋𝑋𝑖𝑖(𝑑𝑑) + ∆𝑑𝑑 𝑑𝑑𝑋𝑋𝑖𝑖 𝑑𝑑𝑑𝑑⁄   (18) 

∆t should be carefully set according to the optimization problem 
because this parameter works as a scale factor of the speed vector. 
∆t completely depends on the search space and it can be obtained 
simply by the following formula: 

∆𝑑𝑑 = 𝐶𝐶𝑡𝑡 ∑ �𝑈𝑈𝐵𝐵𝑗𝑗 − 𝐿𝐿𝐵𝐵𝑗𝑗�𝑁𝑁𝑁𝑁
𝑗𝑗=1    (19) 

In Eq. (19) NV is the total number of variables and 𝐿𝐿𝐵𝐵𝑗𝑗  and 𝑈𝑈𝐵𝐵𝑗𝑗  
are lower and upper bounds of the 𝑗𝑗𝑑𝑑ℎ variables respectively. It is 
empirically found that 𝐶𝐶𝑡𝑡is a constant 
Number between [0, 2]. Lower the values of 𝐶𝐶𝑡𝑡 more carefully the 
krill individuals will search. 
2.1.7. Crossover 

To improve the performance of the algorithm, genetic reproduction 
mechanisms are incorporated into the algorithm. One such 
algorithm is crossover. Crossover is a genetic operator used to vary 
the programming of chromosomes from one generation to the next. 
In this Algorithm, an adaptive vectored crossover scheme is 
employed.  
We can control crossover by a crossover probability,𝐶𝐶𝑟𝑟, and actual 
crossover can be performed in two ways: (1) binomial and (2) 
exponential. The binomial scheme performs crossover on each of 
the d components or variables/parameters. By generating a 
uniformly distributed random number between 0 and 1, the 𝐼𝐼𝑑𝑑ℎ 
component of𝑋𝑋𝑖𝑖, 𝐼𝐼𝑖𝑖,𝑚𝑚, is determined as: 

𝐼𝐼𝑖𝑖,𝑚𝑚 = �
𝐼𝐼𝑡𝑡,𝑚𝑚 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖,𝑚𝑚 < 𝐶𝐶𝑟𝑟
𝐼𝐼𝑖𝑖,𝑚𝑚 ,  𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒     (20) 

𝐶𝐶𝑟𝑟 = 0.2𝐾𝐾�𝑖𝑖,𝑏𝑏𝑛𝑛𝑤𝑤𝑡𝑡  (21) 

In Eq. (20)  r ∈ {1, 2,. . ., i _ 1, i + 1,. . .,N}. With this new crossover 

probability, the crossover probability for the global best is equal to 
zero and it increases with decrease in fitness. 

2.2. Firefly Algorithm 

2.2.1. Behavior and nature of Fireflies 

Fireflies are the creatures that can generate light inside of it. Light 
production in fireflies is due to a type of chemical reaction.  The 
primary purpose for firefly’s flash is to act as a signal system to 
attract other fireflies. Although they have many mechanisms, the 
interesting issues are what they do for any communication to find 
food and to protect themselves from enemy hunters including their 
successful reproduction. There are around two thousand firefly 
species, and most of them produce short and rhythmic flashes. The 
pattern observed for these flashes is unique specific species. The 
rhythm of the flashes, rate of flashing and the amount of time for 
which the flashes are observed together forms a pattern that attracts 
both the males and females to each other. Females of a species 
respond to individual pattern of the male of the same species. 
The light intensity at a particular distance from the light source 
follows the inverse square law. That is as the distance increases the 
light intensity decreases. Furthermore, the air absorbs light which 
becomes weaker and weaker as there is an increase of the distance. 
There are two combined factors that make most fireflies visible 
only to a limited distance that is usually good enough for fireflies 
to communicate each other. The flashing light can be formulated 
in such a way that it is associated with the objective function to be 
optimized. This makes it possible to formulate new metaheuristic 
algorithms. 
2.2.2. Firefly algorithm 

The firefly (FA) algorithm [1, 9, 10] is a metaheuristic algorithm, 
inspired by the flashing behavior of fireflies. The primary purpose 
for a firefly's flash is to act as a signal system to attract other 
fireflies. 
Xin-She Yang formulated this firefly algorithm by taking three 
assumptions [1] 

i. All fireflies are unisexual, so that one firefly will be attracted 
to all other fireflies; 

ii. Attractiveness is proportional to their brightness, and for any 
two fireflies, the less bright one will be attracted by (and thus 
move to) the brighter one; however, the brightness can 
decrease as their distance increases; 

iii. If there are no fireflies brighter than a given firefly, it will 
move randomly. 

2.2.3. Light Intensity and Attractiveness  

Two core issues in firefly algorithm are (i) The variation of light 
intensity, (ii) The formulation of the attractiveness. 
For simplicity, it is assumed that the attractiveness of a firefly is 
determined by its brightness which in turn is associated with the 
encoded objective function of the optimization problems. In the 
simplest case for maximum optimization problems, the brightness 
I of a firefly for a particular location x could be chosen as I(x) ∝  
f(x). Even so, the attractiveness β is relative, it should be judged by 
the other fireflies. Thus, it will differ with the distance 𝑟𝑟𝑖𝑖𝑗𝑗 between 
firefly i and firefly j. In addition, light intensity decreases with the 
distance from its source, and light is also absorbed by the media, 
so we should allow the attractiveness to vary with the varying 
degree of absorption. 
Since a firefly’s attractiveness is proportional to the light intensity 
seen by adjacent fireflies, attractiveness β of a firefly can be 
defined as   

𝛽𝛽(𝑟𝑟) = 𝛽𝛽𝑜𝑜𝑒𝑒−𝛾𝛾𝑡𝑡
𝑚𝑚, (m≥1  (22) 
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In Eq. (22), r or 𝑟𝑟𝑖𝑖𝑗𝑗 is the distance between the ith and jth fireflies.  
𝛽𝛽𝑜𝑜 Is the attractiveness at r = 0 and γ is a fixed light absorption 
coefficient. The distance between any two fireflies ith and jth at 𝐼𝐼𝑖𝑖 
and 𝐼𝐼𝑗𝑗  is the Cartesian distance and can be calculated as: 

 𝑟𝑟𝑖𝑖𝑗𝑗 =  �𝐼𝐼𝑖𝑖 −  𝐼𝐼𝑗𝑗� = �∑ (𝐼𝐼𝑖𝑖,𝑘𝑘 − 𝐼𝐼𝑗𝑗,𝑘𝑘)2𝑜𝑜
𝑘𝑘=1  (23) 

In Eq. (23), 𝐼𝐼𝑖𝑖𝑘𝑘 is the kth component of the ith firefly (𝐼𝐼𝑖𝑖). The 
movement of ith firefly, to another more attractive (brighter) jth 
firefly, is determined by 

𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑖𝑖 + 𝛽𝛽𝑜𝑜𝑒𝑒−𝛾𝛾𝑡𝑡𝑖𝑖,𝑗𝑗
2
�𝐼𝐼𝑗𝑗 − 𝐼𝐼𝑖𝑖� + 𝛼𝛼(𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑 −          0.5)  (24) 

In Eq. (3) the second term is due to the attraction while the third 
term is the randomization with α being the randomization 
parameter. Rand is a random number generator uniformly 
distributed in the range of [0, 1]. For most cases in the 
implementation, 𝛽𝛽𝑜𝑜 = 1 and α ∈ [0, 1]. Furthermore, the 
randomization term can easily be extended to a normal distribution 
N (0, 1) or other distributions. 

2.3. Cuckoo Search Algorithm via Lévy Flight 

2.3.1. Cuckoo’s breeding behaviour 

Cuckoo is an interesting bird species, known not only for the 
beautiful sound they make, but also for their aggressive 
reproductive strategy. Cuckoos are extremely diverse group of 
birds with regards to breeding system.  Many Cuckoo species 
follow the strategy of brood parasitism by using host individuals 
either of the same or different species to raise the young of the own. 
Cuckoo species such as Anis and Guira lay their eggs in communal 
nest though they may remove others eggs to increase the survival 
probability of their own eggs.  Some host birds can engage in direct 
conflict with the intruding cuckoos. On recognition of parasitic 
eggs, the host may kick the parasites eggs out, or build a new nest. 
Female parasitic cuckoos who are specialized in mimicry lay eggs 
that closely which resemble the eggs of their host which reduces 
the probability of their eggs being abandoned. 
Parasitic  cuckoos often choose a nest where host bird have just 
laid their eggs .The cuckoo egg hatches earlier as compared to the  
host's, and the cuckoo chick grows faster than them;. In most cases 
the chick evicts the eggs laid by host species, which increases the 
cuckoo chick’s share of food provided by its host bird. Some 
cuckoo chick can even replicate the call of host chicks to gain 
access to more feeding opportunity.   
2.3.2. Lévy flight 

A Lévy flight is a random walk in which the step-lengths have a 
probability distribution that is heavy-tailed. Research works have 
shown that flight behavior of many animals and insects 
demonstrated the typical characteristics of Lévy flights [17, 18, 19, 
20]. Fruit flies or Drosophila melanogaster, explore their landscape 
using a series of straight flight paths punctuated by a sudden 90 
degree turn, leading to a Lévy -flight-style intermittent scale free 
search pattern was shown in a study conducted by Reynolds and 
Frye. Many researches shows that Lévy flights interspersed with 
Brownian motion can describe the animals' hunting patterns [24, 
25]. Even light can be related to Lévy flights [23]. Latterly, such 
behavior has been applied to optimization and optimal search, and 
preliminary results show its promising capability [18, 20, 21, 22]. 
2.3.3. Cuckoo Search Algorithm 

Each egg in the nest represents solution, and Cuckoo egg 
represents new solution. The aim is to use the new and potentially 
better solutions (Cuckoos) to replace not-so-good or inferior 

solution in the nests. In the simplest form, each nest has one egg. 
The algorithm [5] can be extended to more complicated cases in 
which each nest has multiple eggs representing a set of solutions. 
Cuckoo search is based on three idealized rules which states that  

i. Each Cuckoo lays one egg, which represents a set of solution 
coordinates, at a time, and dumps it in a random nest. 

ii. A fraction of the nests containing the best eggs, or solutions, 
will be carried over to the next generation. 

iii. The number of nests is fixed and there is a probability that a 
host can discover an alien egg. If this happens, the host can 
either discard the egg or the nest and this result in building a 
new nest in a new location.  

When generating new solutions  𝐼𝐼𝑡𝑡+1 for the ith Cuckoo, Lévy 
Flight is performed. 

𝐼𝐼𝑖𝑖𝑡𝑡 = 𝐼𝐼𝑖𝑖𝑡𝑡+1 + 𝛼𝛼⨁𝐿𝐿𝑒𝑒𝑣𝑣𝐿𝐿(𝜆𝜆)   (25) 

In equation (25), α > 0 is the step size which should be related to 
the scales of the problem       of interest. In most cases, we can use 
α = O(L/10) where L is the characteristic scale of the problem of 
interest. The above equation is essentially the stochastic equation 
for a random walk. The product ⊕ means entry wise 
multiplications.  
The Lévy flight essentially provides a random walk whose random 
step length is drawn from a Lévy distribution 

Lévy ~ u = 𝑑𝑑−𝜆𝜆 , (1 < 𝜆𝜆 < 3) (26) 

This has an infinite variance with an infinite mean. Here the steps 
essentially form a random walk process with a power-law step-
length distribution with a heavy tail. Some of the new solutions 
should be generated by Lévy walk around the best solution 
obtained so far, this will speed up the local search. To ensure that 
that the system will not be trapped in a local optimum, a substantial 
fraction of the new solutions should be generated by far field 
randomization whose locations should be far enough from the 
current best solution. 

2.4. Testing Optimization Functions 

In Literature [26] there are many benchmark test functions which 
are designed to test the performance of optimization algorithms. In 
this paper we will compare and validate above mentioned 
algorithms against these benchmark functions. Seventeen 
functions [27,28,29] including many multimodal functions are 
used in this paper in order to compare and verify efficiency and 
convergence of all three above mentioned Nature Inspired 
Algorithms. Certain test functions used in our simulations are as 
follows: 
Ackley Function is multimodal function widely used for testing 
optimizat1ion algorithms. 

𝒇𝒇(𝒙𝒙) = −𝟐𝟐𝟐𝟐 𝒆𝒆𝒙𝒙𝒆𝒆

⎣
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With a global minimum 𝑓𝑓(𝐼𝐼∗) = 0 at 𝐼𝐼∗ = (0,0, … . ,0) in the range 
of 𝐼𝐼𝑖𝑖 ∈ [-32.768, 32.768], for all 𝑖𝑖 = 1,2, …, d. 
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Beale function is 2- dimensional multimodal function, with sharp 
peaks at the corners of the input domain.  
 

 

Which has minimum  𝑓𝑓(𝐼𝐼∗) = 0, 𝑟𝑟𝑑𝑑 𝐼𝐼∗ = (3,0.5) in range 𝐼𝐼𝑖𝑖∈ [-
4.5, 4.5], for all i = 1, 2.  

 

Branin function is multimodal with three global minima. The 
recommended values of a, b, c, r, s and t are: a = 1, b = 5.1 ⁄ (4π2), 
c = 5 ⁄ π, r = 6, s = 10 and t = 1 ⁄ (8π). 

 

With a global minimum 𝑓𝑓(𝐼𝐼∗) = 0.397887 at 𝐼𝐼∗ =
(−𝜋𝜋, 12.275), (𝜋𝜋, 2.275) 𝑟𝑟𝑟𝑟𝑑𝑑 (9.42478,2.475 in the range 𝐼𝐼𝑖𝑖∈ [-
5, 10] and x2 ∈ [0, 15].  

 

Colville is a unimodal test function. 

 

Which has minimum  𝑓𝑓(𝐼𝐼∗) = 0, 𝑟𝑟𝑑𝑑 𝐼𝐼∗ = (1,1,1,1) in range 𝐼𝐼𝑖𝑖∈ [-
10, 10], for all i = 1, 2, 3, 4.  
DIXON-PRICE’s unimodal test function  

 

With a global minimum 𝑓𝑓(𝐼𝐼∗) = 0 at 𝐼𝐼𝑖𝑖 = 2−
2𝑖𝑖−2
2𝑖𝑖   bin the range of 

𝐼𝐼𝑖𝑖 ∈ [-10, 10], for all 𝑖𝑖 = 1, 2, …, d. 

 

Easom function has several local minima. It is unimodal, and the 
global minimum has a small area relative to the search space.  
 

 

Which has minimum  𝑓𝑓(𝐼𝐼∗) = −1, 𝑟𝑟𝑑𝑑 𝐼𝐼∗ = (π,π) in range 𝐼𝐼𝑖𝑖∈ [-
100,100], for all i = 1, 2, 
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Shubert function an multimodal test function has several local 
minima and many global minima. Its equation is  

 

Which has minimum  𝑓𝑓(𝐼𝐼∗) = −186.7309,  in range 𝐼𝐼𝑖𝑖∈ [-10, 10], 
for all i = 1, 2, 

 

Levy Test function is multimodal function. Its equation is 

 

With a global minimum 𝑓𝑓(𝐼𝐼∗) = 0 at 𝐼𝐼𝑖𝑖 = (1, … ,1)  which is 
evaluated in the range of 𝐼𝐼𝑖𝑖 ∈ [-10, 10], for all 𝑖𝑖 = 1,2, …, d. 

 

Rastrigin function has several local minima. It is highly 
multimodal, but locations of the minima are regularly distributed. 

 

With a global minimum 𝑓𝑓(𝐼𝐼∗) = 0 at 𝐼𝐼∗ = (0,0, … . ,0)  evaluated 
in the range of 𝐼𝐼𝑖𝑖 ∈ [-5.12, 5.12], for all 𝑖𝑖 = 1, 2, …, d. 

 

Rosenbrock function is unimodal, and the global minimum lies in 
a narrow, parabolic valley. 

 

With a global minimum 𝑓𝑓(𝐼𝐼∗) = 0 at 𝐼𝐼𝑖𝑖 = (1, … ,1)  which is 
evaluated in the range of 𝐼𝐼𝑖𝑖 ∈ [-5, 10], for all 𝑖𝑖 = 1,2, …, d. 

 

Zakharov function has no local minima except the global one. It’s 
a unimodal function and its equation is  

 

With a global minimum 𝑓𝑓(𝐼𝐼∗) = 0 at 𝐼𝐼𝑖𝑖 = (0, … ,0)  which is 
evaluated in the range of 𝐼𝐼𝑖𝑖 ∈ [-5, 10], for all 𝑖𝑖 = 1,2, …, d. 



32  |  IJISAE, 2014, 2(3), 26–37 International Journal of Intelligent Systems and Applications in Engineering 

 

Griewank function has many widespread local minima, which are 
regularly distributed. It is a multimodal test function. 

 

With a global minimum 𝑓𝑓(𝐼𝐼∗) = 0 at 𝐼𝐼𝑖𝑖 = (0, … ,0)  which is 
evaluated in the range of 𝐼𝐼𝑖𝑖 ∈ [-600, 600], for all i = 1, …, d.  

 

Trid function has no local minimum except the global one. It is a 
unimodal function. 

 

With a global minimum 𝑓𝑓(𝐼𝐼∗) = −50 for d=6 and  𝑓𝑓(𝐼𝐼∗) = −200 
at d=10 which is evaluated in the range of 𝐼𝐼𝑖𝑖 ∈ [-𝑑𝑑2, 𝑑𝑑2], for all 𝑖𝑖 
= 1,2, …, d. 

 

Powell Function is a unimodal function 

 

This function is usually evaluated on the region xi ∈  
[-4, 5], for all i = 1, …, d. having minima  𝑓𝑓(𝐼𝐼∗) = 0 at 𝐼𝐼𝑖𝑖 =
(3,−1,0,1, … .3,−1,0) 
Eggholder function is a difficult function to optimize, because of 
the large number of local minima. It is multimodal test function. 

 

Which has minimum  𝑓𝑓(𝐼𝐼∗) = −959.6407,𝑟𝑟𝑑𝑑 𝐼𝐼∗ =
(512,404.2319) in range 𝐼𝐼𝑖𝑖∈ [-512, 512], for all i = 1, 2.  

 

3. Implementation and Numerical Experiments 
In this section we will compare the performance of Krill Herd 
algorithm Firefly algorithm, Cuckoo search algorithm for various 
benchmark test functions. The benchmarks function include both 
unimodal and multimodal with both low and high dimensional 
problems are described in Section 2.4 and for evaluation all 
computational procedures described above has been implemented 
in MATLAB™ computer program.  In order to compare these 
algorithms we have carried out extensive simulations and each 
algorithm has been run 50 times so as to carry out meaningful 
analysis. The maximum number of function evaluations is set as 
10,000 for high dimensional functions and 1000 for low 
dimensional functions. 
Here for Krill Herd Algorithm 𝐶𝐶𝑡𝑡 is set to 0.5 and the inertia 
weights (𝜔𝜔𝑛𝑛 ,𝜔𝜔𝑓𝑓) are equal to 0.9 at beginning of search and it 
linearly decreases to 0.1 at the end. For Firefly algorithm certain 
constants are fixed as 𝛼𝛼 = 0.5, 𝛽𝛽 = 0.2 and 𝛾𝛾 = 1 for simulation. 
For cuckoo search algorithm probability for host bird is fixed 
as 𝑝𝑝𝛼𝛼 = 0.25. For simulation we have used various population 
sizes from n = 10 to 150, and found that for most problems, it is 
sufficient to use n = 15 to 50. Therefore, we have used a fixed 
population size of n = 50 in all our simulations for comparison. 
Now we will divide this section in two parts comprising 
comparison of algorithms for unimodal test function in first section 
and comparison of algorithms for multimodal test functions in 
another. For both the section we will be comparing KH algorithm, 
FA Algorithm and CS Algorithm via Lévy Flights on the basis of 
three criteria i.e. Optimization fitness (efficiency), Convergence 
and processing time. 
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3.1. Optimization for Unimodal Test Function 

In this section we have compared KH algorithm, FA Algorithm 
and CS Algorithm via Lévy Flights on Eight Unimodal benchmark 
functions popular for optimization. Unimodal functions are those 
function which have only single local minima and these function 
easier to optimize. 
3.1.1. Optimization fitness 

Here we have calculated the mean fitness value using the above 
mentioned algorithms for all unimodal test functions mentioned 
above. Optimized fitness result where global optima is reached are 
summarized in Table 1. 

Table 1.  Comparison of Optimization Fitness for Unimodal Test 
Functions 

Function/ 
Algorithms 

KH Algorithm FFA 
Algorithm 

CS Algorithm 

Dixon-Price(d=20) 0.6975 0.6668 0.6667 

Rosenbrock (d=20) 31.89 14.49 2.63e-14 

Zakharov(d=20) 5.973 3.19e-06 2.77e-28 

Powell(d=20) 0.0299 0.002269 5.27e-09 

Trid(d=20) 9.34e+2 1.52e+03 1.52e+03 

Beale 2.92e-11 5.49e-10 1.34e-30 

Easom -0.96 -0.86 -1 

Colville -1.40e+09 -1.56e+07 -7.57e+17 

Here we can see that Cuckoo Search algorithm has outperformed 
both Krill Herd and Firefly algorithm. For all Unimodal test 
function, fitness value of CS algorithm is much closer to global 
optima as compared to other two algorithms. But if we just 
compare the other two algorithms i.e. Firefly and Krill herd 
algorithm, their result are very close to each other, but  on average, 
results obtained using Firefly algorithm are slightly better than 
results obtained using Krill Herd algorithm. As per results from 
Table 1 it is visible that performance of Krill Herd algorithm is 
better for low dimensional functions and as we move from low 
dimensional function to high dimensional functions fitness value 
for krill herd decreases i.e. distance from global minima increases. 
According to results in Table 1 performance of Firefly algorithm 
is better than Krill Herd algorithm for high dimensional functions 
but for low dimensional function result using Krill Herd algorithm 
are better than Firefly algorithm. Also in Krill Herd algorithm we 
have varied dimensions from d= 5 to 20 and observed that as we 
increases the dimensions, fitness value for function decreases. 
3.1.2. Processing time 

Here we will compare above mentioned algorithms on basis on 
processing time. Processing time is basically time consumed by 
algorithm to process single simulation. It includes time consumed 
by fixed number of iteration to solve the problem. 

Table 2. Comparison of processing time in seconds for Unimodal Test 
Functions 

Function/ 
Algorithms 

KH Algorithm FFA Algorithm CS Algorithm 

Dixon-Price(d=20) 141.73 125.56 19.69 

Rosenbrock (d=20) 137.18 123.44 21.58 

Zakharov (d=20) 137.66 125.66 22.92 

Powell(d=20) 172.44 138.95 63.35 

Trid(d=20) 155.12 146.04 30.72 

Beale 13.034 11.18 1.64 

Easom 12.69 12.13 2.46 

Colville 13.33 12.92 2.59 

From Table 2 it is quite easily visible that time taken or consumed 
by Cuckoo search algorithm is much less than the other two 
algorithms We can also compute from the Table 2 that time 
consumed by Firefly algorithm is less than Krill Herd Algorithm 
although difference is not much, In term of processing time 
Cuckoo search algorithm again outperform other two algorithms. 
3.1.3. Convergence 

In this section convergence plots of the benchmark functions for 
three different algorithm i.e. Krill Herd, Firefly, Cuckoo Search are 
compared for fixed number of iteration i.e. 10,000 iterations for 
high dimensional function and 1000 iteration for low dimensional 
function. Here we will estimate which algorithm gives potentially 
better and quicker convergence towards optimality. Below In 
Figure 1-8 Convergence Graph is plotted for all above mentioned 
Unimodal benchmark functions. 

 
Fig. 1. Convergence Plot for Beale Function 

 
Fig. 2. Convergence Plot for Rosenbrock Function 
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Fig. 3. Convergence Plot for Zakharov Function 

 
Fig. 4. Convergence Plot for Dixon-Price Function 

 
Fig. 5. Convergence Plot for Easom Function 

 
Fig. 6. Convergence Plot for  Colville Function 

 
Fig. 7. Convergence Plot for Powel Function 

 
Fig. 8. Convergence Plot for Trid Function 

In Fig.5, Fig.6 and Fig.8 we have plotted the absolute value of the 
fitness function. For Trid, Easom, Colville function, value of 
global minima is negative and so to plot them on convergence 
graph we took their absolute vale. 
From Fig 1-8 we can interpret that the algorithm that quickly 
converges to its optimal solution is Krill Herd Algorithm. When 
we compare them on the number of iteration, Krill Herd Algorithm 
takes least number of iteration to converge whereas solution of 
other two algorithm are better in terms of fitness value. It can also 
be seen from Fig. 1-8 that for most of the test functions, the other 
two algorithms i.e. Firefly Algorithm and Cuckoo search algorithm 
do not converge till 10,000 iterations and for functions for which 
these two algorithm converges before 10,000 iterations, it is the 
cuckoo search algorithm which converges quickly than firefly for 
more of function as compare to number of function for which 
firefly algorithm converges faster than cuckoo search algorithm. 

3.2. Optimization for Multimodal Test Function 

In this section we have compared KH algorithm, FA Algorithm 
and CS Algorithm via Lévy Flights on Seven Multimodal 
benchmark functions popular for optimization. Multimodal 
functions are those function which have many number local 
minima and these function comparatively more difficult to 
optimize. 
3.2.1. Optimization fitness 

Here we have calculated the mean fitness value using the above 
mentioned algorithms for all multimodal test functions mentioned 
in Section 2.4. Optimized fitness result where global optima is 
reached are summarized in Table 3.  
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Table 3. Comparison of Optimization Fitness for Multimodal Test 
Functions 

Function/ 
Algorithms 

KH Algorithm FFA Algorithm CS Algorithm 

Ackley(d=20) 1.19e-05 7.36e-03 4.44e-15 

Levy(d=20) 0.066 2.28e-06 1.14e-06 

Rastrigin 
(d=20) 

8.69 20.36 2.84 

Griewank 
(d=20) 

1.37e-09 5.89e-04 0 

Branin 0.3979 0.3981 0.3981 

Shubert  -186.7309 -186.7309 -186.7309 

Eggholder -893.0205 -930.2513 -959.6407 

From Table 3 we can see that Cuckoo Search algorithm has 
outperformed both Krill Herd and Firefly algorithm in multimodal 
optimization as well. For all Multimodal test function, fitness value 
of CS algorithm is much closer to global optima as compared to 
other two algorithms. But if we together compare the other two 
algorithms i.e. Firefly and Krill herd algorithm for multimodal test 
functions, result for them are in contradiction with results in 
previous section for unimodal test functions. In multimodal 
optimization for most of the low dimensional function ,result for 
both the algorithms are almost  equivalent, for most of the time 
both are able to find the global optima but for high dimensional 
multimodal functions fitness value obtained  using Krill Herd is 
better than fitness value obtained using Firefly Algorithm. Results 
in Table 3 are in contradiction with results in Table 1 as in 
unimodal test function optimization fitness for high dimensional 
function  using firefly was better than krill herd but in multimodal 
function  optimization fitness using krill herd algorithm is better 
than firefly algorithm for high dimensional function. 
3.2.2. Processing time 

In this section we will compare Krill Herd, Firefly, Cuckoo Search 
algorithms on basis on processing time for multimodal 
optimization functions. Processing time is basically time 
consumed by algorithm to process single simulation. It includes 
time consumed by fixed number of iteration to solve the problem. 

Table 4. Comparison of processing time in seconds for Multimodal Test 
Functions 

Function/ 
Algorithms 

KH Algorithm FFA 
Algorithm 

CS Algorithm 

Ackley(d=20) 138.06 123.49 24.78 

Levy(d=20) 169.37 129.03 38.86 

Rastrigin(d=20) 139.55 126.31 24.58 

Griewank(d=20) 137.18 123.44 21.58 

Branin 13.36 11.28 1.91 

Shubert 13.83 11.33 2.56 

Eggholder 13.04 11.23 2.83 

Results in Table 4 are quite similar with the results in Table 2. In 
multimodal optimization function as well, time taken or consumed 
by Cuckoo search algorithm is much less than the other two 
algorithms It can also be interpreted from the Table 4 that time 
consumed by Firefly algorithm is less than Krill Herd Algorithm 
although difference is not much, In term of processing time 
Cuckoo search algorithm again outperform other two algorithms. 
3.2.3. Convergence 

Here convergence plots of the benchmark functions for three 

different algorithm i.e. Krill Herd, Firefly, Cuckoo Search are 
compared for fixed number of iteration i.e. 10,000 iterations for 
high dimensional function and 1000 iteration for low dimensional 
functions. Here we will estimate which algorithm gives potentially 
better and quicker convergence towards optimality. Convergence 
Graph for all above mentioned Multimodal benchmark functions 
are plotted in Figure 9-15. 

 
Fig. 9. Convergence Plot  for  Branin Function 

 
Fig. 10.  Convergence Plot  for  Ackley Function 

 
Fig. 11.  Convergence Plot  for  Levy function 



36  |  IJISAE, 2014, 2(3), 26–37 International Journal of Intelligent Systems and Applications in Engineering 

 
Fig.12 . Convergence Plot  for  Rastrigin Function 

 
Fig. 13.  Convergence Plot  for  Griewank Function 

 
Fig. 14 . Convergence Plot  for  Eggholder Function 

 
Fig. 15.  Convergence Plot  for  Shubert Function 

In Fig.14, and Fig.15 we have plotted the absolute value of the 

fitness function. In multimodal optimization Shubert and 
Eggholder function value of global minima is negative and so to 
plot them on convergence graph we took their absolute vale. 
From Fig 9-15 we can interpret that although for many function all 
the algorithms are not able to converge before 10,000th iteration 
but for test functions like Rastrigin, Branin, Griewank, Levy and 
Eggholder, Krill herd algorithm is the fastest to converge to its 
optimal solution. When we compare them on the number of 
iteration, Krill Herd Algorithm takes least number of iteration to 
converge. If we see Fig.10 it is visible that for Ackley function 
Cuckoo Search Algorithm is the fastest to converge to its optimal 
solution others are not able to converge before 10,000th iteration. 
Also in Fig. 11 Cuckoo Search Algorithm is second fastest after 
Krill Herd algorithm to converge. From Fig 9-15 we can interpret 
that Firefly algorithm don not converge to its optimal solution for 
any of the high dimensional functions till 10,000th iteration. For 
multidimensional functions it is the Krill herd algorithm which is 
fastest to converge to its optimal solution, then after Krill Herd 
algorithm it is cuckoo search algorithm to converge to its optimal 
solution and at last is Firefly algorithm. 

4. Conclusion 
In this paper we have compared latest metaheuristic algorithms 
such as Krill Herd Algorithm, Firefly Algorithm and Cuckoo 
Search algorithm via Lévy Flights on basis of three criteria i.e. 
optimization fitness (efficiency), time processing and 
convergence. Results obtained by simulation of theses algorithms 
on unimodal and multimodal test functions shows that Cuckoo 
search algorithm is superior for both unimodal and multimodal test 
function in terms of optimization fitness and time processing 
whereas when comparison  comes down to line between Krill Herd 
Algorithm and Firefly Algorithm, KH Algorithm is superior than 
FFA algorithm for multimodal optimization of both high and low 
dimensional functions whereas for unimodal optimization FFA 
algorithm is superior than KH Algorithm for High dimensional 
function but KH algorithm is superior for low dimensional 
functions but in terms of time processing FFA Algorithm is 
surpasses KH Algorithm for both unimodal and multi modal 
optimization. When we compare these algorithms on basis of 
convergence Krill Herd is the fastest of all to converge to its 
optimal solution after which comes the Cuckoo search algorithm 
and at last comes the  Firefly algorithm which do not converge for 
most of the function to it optimal solution. 
During simulation we also noticed that as we increase the 
dimension, fitness value or optimization fitness for KH algorithm 
decreases although it outperformed FFA algorithm for high 
dimensional multimodal function but on average as dimension 
increases optimization fitness for KH algorithm decreases. 
As all these powerful optimization strategy are able to optimize 
both unimodal and multimodal test function effectively hence we 
can easily extend them to study multi objective optimization 
applications with various constraints and even to NP-hard 
problems. 
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