

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5076

Key Pointers for Developing Pre-Trained Convolutional Neural Networks

for Remote Sensing Image Classification

Nisha Gupta1, Ajay Mittal2, and Satvir Singh3

Submitted: 05/01/2024 Revised: 20/02/2024 Accepted: 12/03/2024

Abstract: The process of correctly identifying objects in an image is known as image classification. Effectively classifying

high-resolution spatial images for huge remote sensing archives is known as remote sensing image classification. Better

classification performance is directly correlated with effective feature extraction from images. The majority of feature extraction

steps employed manually created low-level features that concentrated on basic components like color, form, and texture before

deep learning was widely used in remote sensing image classification. However, because of their poor performance, these

conventional handmade methods were swiftly superseded by Convolution Neural Networks (CNN’s), that successfully recovered

abstract information. However, while creating deep Convolution Neural Networks, it is important to carefully consider the

significant training constraints of CNNs. This research aims to investigate the primary training challenges encountered while

training deep learning pre-trained models utilizing a transfer learning approach.

Keywords: Image Classification, Convolution Neural Networks, Pre-Trained Models

1 Introduction

The extraction of salient features is crucial for image

categorization and retrieval (Gu, 2019). Sharif et al.

(2019) use machine learning and deep learning to extract

crucial information from photos. The literature

consistently demonstrates that deep learning methods

outperform in both image classification and retrieval.

Unlike machine learning, deep learning automatically

performs feature extraction and classification in a single

phase, as illustrated in figure 1.

In multiclass classification, if a dataset has C classes, the

query picture sample corresponds to one of them. CNN’s

output neurons are equal to the dataset’s total number of

classes, C. These output neurons generate vectors. The

target vector (t) is a single ground truth vector with one

positive and C-1 negative classes [1].

Figure 1: Feature Extraction and Classification approach Machine Learning/Deep Learning

Figure 2: Multiclass Classification

DeepCNN (Deep Convolutional Neural Network) is a

multilayer neural architecture used in deep learning to handle

massive volumes of data. Deep neural networks use

neurons and convolution filters to classify objects,

comparable to the human brain [2]. Traditional machine

1Department of Computational Sciences, MRSPTU

Bathinda, India.

* nishasbs2019@gmail.com

2Department of Applied Sciences, Aryabhatta Group of

Institutes, Barnala, India.

* mittalajay@gmail.com

3Department of Electronics and Communication,

IKGPTU Kapurthala, India.

* drsatvir.in@gmail.com

*Address correspondence to:

nishasbs2019@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5077

learning approaches used filters such edge and texture

histograms [3]. As seen in figure3, CNNs use a

combination of layers to convert an image into output that

the model may use for picture categorization.

Figure 3: Convolution Neural Networks

The convolutional layer builds the feature map by

repeatedly scanning the full picture’s pixels with filters.

CNN uses learnable filters [4]. CNN operates in two steps.

The initial level is learning, which involves a convolution

and pooling layer. This convolution layer is where

learnable filters and feature extractors go to work. The

pooling layer scales down the information produced by the

convolutional layer. The pooling layer compresses data.

A compact vector generated by the pooling layer is stored.

The completely connected input layer reduces the outputs

to a single vector [5]. The fully linked layer assigns

weights to the inputs generated by the Dense Layer. The

completely linked output layer provides the final

probability for picture classification. Classification occurs

in the final fully linked output layer [6]. CNNs are good at

training with small quantities of data, but they suffer from

overfitting or underfitting as the data size increases. This

results in poor classification results when training with

large-scale datasets [7]. This paper addresses key

challenges encountered while training deep CNNs and

provides confined strategies to address these training

issues [8].

2 Related Literature Survey

The researchers used a variety of machine learning and

deep learning methods to extract and classify photos. [9]

addressed the need for large labelled samples for training

CNNs. The author proposed the SBS-CNN (Similarity

Based Supervised Learning Using Convolution Neural

Network) method, which is based on similarity learning

and applies transfer learning to CNN training, transforming

similarity learning into deep ordinal classification with CNN

experts pre-trained on large-scale labelled everyday image

sets. It computes picture similarity and applies pseudo

labels for categorisation. SBS-CNN features a small

network size, compact feature vectors, and faster retrieval

times. Gradient descent is employed at each level to

minimise errors. Major research problems include

calculating gradient descent at each level to reduce

error. Negative values are fed into the ReLU (Rectified

Linear Unit) activation function, which turns them to

zero, decreasing the model’s ability to fit or train from

data properly. The author tested the Everyday ImageSet,

UC-Merced, and PatterNet datasets, and the best ANMR

obtained was 0.2185 on the benchmark dataset. Wang

(2020) presented OSA-HSR + CNN (Object Scale

Adaptive High Spatial Resolution Remote Sensing Image

Classification with Convolution Neural Networks).

There are two phases involved: segmentation and

classification. Segmentation creates heterogeneous

segments that are then utilised to extract features.

Classification is performed using the obtained features.

The key research issues are the growing segmentation scale

of adjacent items and the decrease in classification quality.

Over segmentation and under segmentation may lead to

misclassification. OSA-HSR+CNN increases the

additional run time. The stochastic gradient is evaluated at

each step to reduce errors, which increases processing

time.

Experiments are carried out using aerial images obtained

by the Ohio Statewide Imagery Program. The total

computational time is 188 seconds. [10] proposed

EfficientNet-B3-Attn-2, which uses a pre-trained

EfficientNet-B3 CNN and an attention mechanism.

Experiments are carried out with a CNN feature extractor

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5078

that was constructed from scratch, transferred, trained, and

fine-tuned for the LCLU (Land Cover and Landuse)

classification system utilising remote sensed images.

The fine-tuned deep learning model fared better than

the UCM dataset in terms of accuracy. Experimental

results on six popular remote sensing datasets, namely

KSA, UC Merced, WHU-RS19, RSSCN7, OPTIMAL-31,

and AID, show that the proposed network performs

accurately and efficiently, reducing computation time and

improving accuracy in hyperspectral image classification.

Huang, Gao, Liu, Zhuang, Van Der Maaten, Laurens, and

Weinberger, Kilian Q (2017) [11] developed the DenseNet

(Dense Convolutional Network), which uses a feed-

forward approach to connect one layer to the next.

L layers are connected one after the other in traditional

convolutional networks. A network’s direct links are

(L(L+1))/2. The feature-maps of each layer were utilised

as input for following layers, while the feature-maps of

previous layers were used as input for this layer.

DenseNets resolves the issue of fading gradients. The tests

are carried out using four benchmark datasets: CIFAR-100

(Canadian Institute for Advanced Research), SVHN,

CIFAR- 10, and Imagenet. The author achieved an

accuracy of 97.44% on AID, 99.50% on UC-Merced,

95.89% on Optimal, and 94.98% on NWPU-RESIS45

datasets. Zhang Jianming, Lu Chaoquan, Li Xudong, Kim

Hye-Jin, and Wang Jin (2019) [12] discovered two

prevalent issues in Convolutional Neural Networks.

The first is that these models generate overfitting

because they have too many parameters, and the second is

because they are insufficiently deep to retrieve abstract

data. To address these two issues, the author proposed a

pre-trained DenseNet model for remote sensing image

categorisation. DenseNet produces several reusable

features using fewer convolutional kernels. Dense

connections take the network to over 100 levels.

Data augmentation is used. Experiments are conducted on

the AID (Aerial Image Dataset), UCM, NWPU-

RESISC45, and Optimal-31 datasets. The author achieved

accuracy of 98.67% (50% training ratio), 99.50% (80%

training ratio) on the UCM dataset, 95.37% (20% training

ratio), 97.19% (50% training ratio) on the AID dataset,

95.41% (80% training ratio) on optimal-31, and 92.90 (10%

training ratio), 94.95 (20% training ratio) on the NWPU-

RESISC45 dataset.

Figure 4: Transfer Learning

Tan, Pooi Shiang, Lim, Kian Ming, Tan, Cheah Heng,

and Lee, Chin Poo (2023) [13] proposed using DenseNet-

121 deep learning pre-trained with transfer learning

technique to extract significant image attributes. DenseNet

dramatically reduces processing resources. Experiments are

run on three benchmark datasets: soundscapes1, sound-

scapes2, and urbansound8k. The proposed pre-trained

model DenseNet-121 with multilayer perceptron

outperforms past studies on the soundscapes1,

soundscapes2, and urbansound8k datasets, with F1- scores

of 80.7%, 87.3%, and 69.6%, respectively. Li, Guoqing,

Zhang, Meng, Li, Jiaojie, Lv, Feng, and Tong, Guodong

(2021) [14] proposed two CNN architectures: DenseDsc

and Dense2Net.

These two CNNs are tightly connected, making it

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5079

simpler to reuse features across networks. Dense2net

employs efficient group convolution, whereas DenseDsc

employs more efficient separable convolution based on

depth. Both solutions improved parameter efficiency. The

proposed strategies are evaluated on the CIFAR and

ImageNet datasets. The author achieved 74.2% accuracy on

CIFAR-100 and 76.3% on ImageNet (top-1) using

DenseDsc. CiFAR-100 achieved 73.68% accuracy, while

ImageNet scored 77% using Dense2Net. Still, there is

room for improvement in image classification.

3 Transfer Learning

Neural networks trained on large datasets generate

knowledge, known as the network’s weights [15]. Only

learnt characteristics in the form of weights can be

retrieved and transferred to any other neural network,

rather than training the neural network from scratch.

Instead of beginning from scratch, pre-trained models are

trained on a massive dataset. Pre-trained models extract

features by removing the output layer [16]. Finally, the

network is transformed into a fixed feature extractor by

freezing the initial layer weights and retraining only the

higher layers with the new problem-specific dataset [17]. In

order to fine-tune pre-trained models, convolution operators

must first acquire generic properties in the first layer before

moving on to dataset-specific features. The model is trained

in the last layer. Transfer learning is performed on the

network’s early and central layers. It employs the tagged

data from the job upon which it was trained. Only the final

layers are retrained, as shown in figure 4.

Transfer learning can be used with data from

completely different but equally relevant source and

target areas.

 Pre-trained models are taught on the source domain and

then learn to produce significantly higher accuracy results

on the target task [18]. The correct network weights are

identified through multiple forward and backward rounds.

Pre- trained model weights and architecture can be

directly applied to our target problem of transfer learning

[19]. The ImageNet dataset, which contains millions of

annotated photographs from thousands of classifications, is

an excellent source for training deep learning pre-trained

models. The pre-trained model on the ImageNet dataset

learns a comprehensive set of features and weights, which

helps adapt the model to specific target tasks and enhances

accuracy [20]. AlexNet, ResNet, GoogleNet[21], VGG

(Visual Geometry Group variations include VGG16 and

VGG19)[22], and DenseNet[14] are some of the

commonly used convolution pre-trained models using

transfer learning. These pre-trained models vary in terms

of layered structure and convolution approaches.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5080

4 Pre-Trained Models

Pre-trained CNN models are neural networks that have been

trained on a large dataset, such as ImageNet, for general

image recognition and are now ready to use in different

applications. These models are trained to identify a wider

variety of characteristics and patterns in photos.

citekrishna2019deep. Pre-trained models use Transfer

Learning, which implies they are used as a starting point for

applications that differ from the model’s original training

domain [23]. Pre-trained models save time and computing

resources over training a neural network from scratch [24].

Transfer Learning, which involves fine-tuning pre-trained

models for a given application, needs less data to train.

5 Model Architecture Selection Image

Classification

The initial stage in image categorization is to choose the

suitable architecture. Experimenting with different designs

and layer configurations could produce better results. The

CNN design was chosen based on its lower mistake rates

and superior performance in similar problems. Keras

Applications enable deep learning pre-trained models.

Table 1 illustrates some cases with reduced error rates.

According to Keras Applications, the models are set up as

follows. The pre-trained models are used for feature

extraction and fine-tuning.

The top-1 and top-5 accuracy numbers show the

model’s performance on the large-scale ImageNet

validation dataset. Depth represents the network’s

topological depth. Depth is made up of activation layers,

batch normalization layers, and so on. The average time per

inference step is calculated using 30 batches and 10

repetitions. Depth refers

 to the number of layers and parameters. The experimental

set for training these models is as follows:

1. CPU: AMD EPYC Processor (with IBPB) (92 core)

2. RAM: 1.7T

3. GPU: Tesla A100

4. Batch size: 32

The accuracy of the top-1 and top-5 models, the model’s

depth, and the time required for each inference step are all

unquestionably trade-offs.

6 Experimented Datasets

Remote sensing image retrieval systems have grown in

popularity as new feature extraction approaches are

developed and tested on fresh datasets. Benchmark datasets

provide the foundation for performance evaluation and the

use of RSIR methodologies. The literature has seen

significant development in the creation of benchmark

datasets for the RSIR system. Datasets are classified into

two groups based on the retrieval strategy used. Unisource

retrieval occurs first, followed by cross-source retrieval.

Both the query and the images retrieved by unisource

retrieval are from the same source. Both the query and the

images obtained by cross-source retrieval come from two

different sources. The following sections describe popular

remote sensing datasets.

6.1 UC Merced Land Use Dataset

Another name for the dataset is UCM/UC-Merced. There

are 100 images and 21 classes at UCM. UCM has limited

classes and is small in size. These categories belong to the

land cover/land use category. Each image has 256x256 pixel

dimensions and the same spatial resolution. A series of large

aerial pictures with a spatial resolution of 0.3 meters were

obtained from the US Geological Survey’s USGS National

Map Urban Area. These images include Urban and Built

Environment (buildings, crossroads, motorways, overpasses,

parking lots, storage tanks, runways), Residential Areas

(sparse, dense, mobile home parks), Recreational and

Specialised Areas (baseball diamonds, tennis courts),

Natural and Agricultural Areas (farms, woods, beaches,

streams), Transportation and Infrastructure (aircraft,

harbours). [25][26].

6.2 AID

The vast collection of aerial pictures from Google Earth

Imagery is known as AID. The spatial resolution of the

scene photographs ranges between 0.5 and 8 meters.The

dataset includes the following classes: The dataset includes

thirty classes, including Urban Infrastructure and Built

Environment (Commercial, Industrial, Port, Railway Sta-

tion, Airport, Parking, Bridge, Viaduct, Storage tanks),

Residential Areas (Dense residential, Medium residential,

Sparse residential), Public and Recreational Spaces (Park,

Playground, Square, Stadium, Resort, School, Centre,

Church), Natural Landscapes and Landforms (Forest,

Desert, Mountain, River, Pond, Meadow, Farmland, Bare

land), Specialised Areas (Baseball pitch)[27][28].

6.3 PatterNet

PatterNet is a vast archive of high-resolution pictures from

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5081

Google Earth imagery collected for a select US sites via the

Google Map API. 800 256 × 256 pixel pictures are grouped

into 38 categories. Urban and built environment (coastal

mansion, nursing home, mobile home park, dense and

sparse residential, cemetery, transformer station,

wastewater treatment plant, storage tank).Transportation

and Infrastructure (freeway, highway, bridge, crosswalk,

intersection, railroad, runway, runway marking, closed

road, ferry terminal, harbour, shipping yard, aircraft),

Recreational and Specialised Areas (baseball field,

basketball court, football field, golf course, swimming

pool, tennis court), Natural and Agricultural Areas (beach,

forest, river, chaparral, Christmas tree farm, solar panel).

PatterNet is a good collection of tagged data for image

classification and retrieval in remote sensing. Deep

learning methods that need a lot of labelled data will profit

tremendously from this labelled data[29][30].

6.4 NWPU-RESISC45

The NWPU-RESISC45 benchmark dataset serves as the

basis for remote sensing scene classification. It features

forty-five scene classes. Each class includes seven

hundred photographs. There are 31,500 256 by 256 pixel

pho- tographs in total.It was created by Northwest

Polytechnic University, or NWPU. The image’s spatial

resolution ranges from 0.2 to 30 meters. The images in

this dataset belong to Urban and Built Environment

(Commercial area, Industrial area, Palace, Railway station,

Church, Thermal power station, Terrace, Parking lot,

Freeway, Fly- over, Roundabout, Intersection), Residential

Areas (Dense residential, Medium residential, Sparse

residential, Mobile home park), Transportation and

Infrastructure (Airport, Runway, Aeroplane, Harbour, Ship),

Recreational and Spe- cialised Areas (Baseball diamond,

Basketball court) [25][30].

Table 3: UC-MERCED:Remote Sensing Dataset

UC-Merced: Remote Sensing Dataset

Class 1. AGRICULTURAL

Class 2. AIRPLANE

Class 3. BASE BALL DIAMOND

Class 4. BEACH

Class 5. BUILDINGS

Class 6. CHAPARRAL

Class 7. DENSE RESIDENTIAL

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5082

Class 8. FOREST

Class 9. FREEWAY

Class 10. GOLF COURSE

Class 11. HARBOR

Class 12. INTERSECTION

Class 13. MEDIUM RESIDENTIAL

Class 14. MOBILE HOME PARK

Class 15. OVERPASS

Class 16. PARKING LOT

Class 17. RIVER

Class 18. RUNWAY

Class 19. SPARSE RESIDENTIAL

Class 20. STORAGE TANKS

Class 21. TENNIS COURT

Table 4: AID: Remote Sensing Dataset

REMOTE SENSING IMAGES DATASET : AID

Class 1. AIRPORT

Class 2. BARE LAND

Class 3. BASEBALL FIELD

Class 4. BEACH

Class 5. BRIDGE

Class 6. CENTER

Class 7. CHURCH

Class 8. COMMERCIAL

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5083

Class 9. DENSE RESIDENTIAL

Class 10. DESERT

Class 11. FARMLAND

Class 12. FOREST

Class 13. INDUSTRIAL

Class 14. MEADOW

Class 15. MEDIUM RESIDENTIAL

Class 16. MOUNTAIN

Class 17. PARK

Class 18. PARKING

Class 19. PLAYGROUND

Class 20. POND

Class 21. PORT

Class 22. RAILWAY STATION

Class 23. RESORT

Class 24. RIVER

Class 25. SCHOOL

Class 26. SPARSE RESIDENTIAL

Class 27. SQUARE

Class 28. STADIUM

Class 29. STORAGE TANK

Class 30. VIADUCT

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5084

Table 5: NWPU-RESISC45:Remote Sensing Dataset

REMOTE SENSING IMAGES DATASET : NWPU-RESISC45

Class 1. AIRFEILD

Class 2. ANCHORAGE

Class 3. BEACH

Class 4. DENSE RESIDENTIAL

Class 5. FARM

Class 6. FLYOVER

Class 7. FOREST

Class 8. GAME SPACE

Class 9. PARKING SPACE

Class 10. RIVER

Class 11. SPARSE RESIDENTIAL

Class 12. STORAGE CISTERNS

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5085

Table 6: PATTERNET: Remote Sensing Dataset

REMOTE SENSING IMAGES DATASET: PATTERNET

Class 1. AIRPLANE

Class 2. BASEBALL FIELD

Class 3. BASKETBALL COURT

Class 4. BEACH

Class 5. BRIDGE

Class 6. CEMETERY

Class 7. CHAPARRAL

Class 8. CHRISTMAS TREE FARM

Class 9. CLOSED ROAD

Class 10. COASTAL MANSION

Class 11. CROSSWALK

Class 12. DENSE RESIDENTIAL

Class 13. FERRY TERMINAL

Class 14. FOOTBALL FIELD

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5086

Class 15. FOREST

Class 16. FREEWAY

Class 17. GOLF COURSE

Class 18. HARBOR

Class 19. INTERSECTION

Class 20. MOBILE HOME PARK

Class 21. NURSING HOME

Class 22. OIL GAS FIELD

Class 23. OIL WELL

Class 24. OVERPASS

Class 25. PARKING LOT

Class 26. PARKING SPACE

Class 27. RAILWAY

Class 28. RIVER

Class 29. RUNWAY

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5087

Class 30. RUNWAY MARKING

Class 31. SHIPPING YARD

Class 32. SOLAR PANEL

Class 33. SPARSE RESIDENTIAL

Class 34. STORAGE TANK

Class 35. SWIMMING POOL

Class 36. TENNIS COURT

Class 37. TRANSFORMER STATION

Class 38. WASTEWATER TREATMENT PLANT

7 Estimating Cost Function to Accelerate

Classification Accuracy in DCNN’s

The cost function measures the difference in error between

actual and anticipated y at its current position. It provides

feedback to the model, allowing it to adjust the parameters

in order to find global and local minima and reduce error. It

iterates in the direction of the steepest decrease until the

cost function is 0 or near zero. The model decides to learn

at the sharpest gradient point. The loss function represents

one training example’s mistake. The cost function [31]

calculates the average error of an entire training set.

7.1 Forward and Backward Propagation to Compute

Cost

A neural network consists of an input layer, one or more

hidden layers, and one output layer. During forward

propagation, CNN weights are randomly assigned. At each

hidden layer node, the input attributes are multiplied by the

relevant weights [32]. Every node contributes a bias to the

overall total. An activation function is then employed to

transform this value into the node’s output. The output is

obtained by multiplying the network’s weights and bias

values with the hidden layer output [33]. An activation

function is used to change the total. Figure 5 illustrates

how the network predicts a value for a specific input value.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5088

∂w

Figure 5: CNN Output Generation

The loss function (C) indicates how effectively the

network predicted the output while producing it.

Backprop- agation is utilised by the network to mitigate

losses. Back propagation techniques reduce loss function

by altering neural network weights and biases [34]. This

method computes the gradient of the loss function for each

network weight. In back propagation, a node’s new

weight Wnew is calculated by multiplying its old weight

Wold by the learning rate (η) and the loss function

gradient ∂c.

∂c Wnew = Wold − η ∗
∂w

(1)

The gradient of the loss function is calculated using the

chain rule of partial derivatives as a product of the

gradients of each node’s activation function relative to its

weight. As a result, the gradients of each node’s activation

function influence how the network’s node weights

change. Fine-tuning involves iteratively updating weights

to minimize loss [11].

Figure 6: Forward and Backward Propagation

Deep learning neural network models enable machines

to identify and grasp intricate patterns in order to make

intelligent judgements based on large quantities of data fed

into the model for learning (a process known as training; see

zhou2020theory). The problem of training deep learning

models is complex. The next part discusses the primary

research topics that were highlighted during the

classification-based training of the pre-trained models, as

well as the steps taken to reduce loss and increase

accuracy.

8 Remote Sensing Image Classification based

on Pre-Trained Models

Certain pre-trained models, such as VGG-19, Inception-

v3, and DenseNet, among others, serve as the foundation

for the research. The model that performs the best in terms

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5089

of testing accuracy and test loss for image classification

among all of these models may be used for the

classification and retrieval system of remote sensing.

8.1 General Flow of Transfer Learning Algorithm for

Remote Sensing Image Classi- fication

• Load the remote sensing datasets selected for experiments

The dataset is partitioned into train, test, and validation

splits, with 70% and 30% ratios. The model is trained using

pictures from the training dataset. The validation dataset

includes all of the pictures used to validate the model at

each epoch. They are used to calculate training and

validation accuracies, as well as loss, during each epoch of

model training. The test dataset includes all of the

previously unseen photographs from the Remote Sensing

dataset.

• Set the size of input image given as input to pre-

trained model (224,224).

Pre-trained models often take 224 × 224 photos from remote

sensing datasets as input, despite the images in the dataset

having different dimensions. The photographs in the

collection must thus be scaled to fit the required

dimensions.

Figure 7: Remote Sensing Image Classification based on Pre-Trained Models

• Model Training

1. Model building

(a) Load pre-trained base model with its pre-trained weights.

(b) Customise the mode by changing the last layer based on the number of classes contained in the dataset.

(c) Multiclass classification is performed using the Softmax activation function at the dense output layer.

2. Compiling Model

The Adam optimiser is used to evaluate the categorical cross-entropy function. Adam optimiser determines the optimal training

rate for model compilation.

3. Fitting the Model

Now the model is ready to train. Early stopping is used to cease training the model if the loss from continued validation

grows.

4. Performance Evaluation

The accuracy and loss learning curves are plotted. Accuracy, precision, recall, and F1-scores are evaluated.

General flow of transfer learning is presented in figure8.

9 Evaluation Metrics

The evaluation of algorithms is a crucial component of every research project. The Confusion Matrix, Accuracy, Precision,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5090

Recall, and F1-Score are common evaluation measures used by scholars.

Figure 8: Remote Sensing Image Classification based on Transfer Learning

9.1 Confusion Matrix

Confusion measures are utilised for binary classification scenarios, such as having two classes: YES or NO, as seen in table7.

True positives are those where the classifier predicted yes and the outcome was also yes. True negatives happen when the

classifier predicted no and the result was also no. False positives occur when a classifier predicts yes but the outcome is

negative. A false negative happens when the classifier predicted no but the actual outcome was yes.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5091

9.2 Accuracy

The accuracy is defined as the number of forecasts divided by the total number of predictions. The proportion of correct

predictions made by our model is known as its accuracy. Accuracy is calculated by dividing the number of true positive and

negative outcomes by the total number of samples.

9.3 Precision

Precision is defined as the ratio of actual positive results to those predicted by the classifier.

9.4 Recall

Precision = TruePositives+ TotalPositives

FalsePositives

(3)

The ratio of accurate positive results to the total number of real samples is known as recall.

Recall = TruePositives

TruePositives + FalseNegatives

(4)

9.5 F1-Score

The F1-Score is the average of precision and recall.

F 1Score = 2P × R

P + R

(5)

The F1-Score ranges from 0 to 1. It shows the classifier’s

accuracy by measuring the proportion of examples it

correctly classifies and does not overlook. The F1 Score is

calculated by balancing recall and precision. Low recall

and high accuracy produce incredibly accurate results, but

they miss many difficult-to-classify occurrences. F1 score,

accuracy, precision, and recall all improve as the chosen

model performs better.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5092

9.6 Training Accuracy

The model’s accuracy is based on the training dataset

samples. In general, the model’s accuracy improves as the

number of epochs grows.

9.7 Validation Accuracy

Testing accuracy, also known as validation accuracy, is a

statistic obtained using datasets that were not used to train

the model. During training, the model was not shown these

dataset instances. It exhibits the model’s generalisability. It

is assumed that the validation accuracy will be lower or

equal to the training accuracy. Validation and training

accuracy vary greatly, indicating underfitting and

overfitting, respectively.

9.8 Training Loss

It is used to update the model’s parameters in order to

decrease loss on training data. It shows how well the

model fit the training data. The model gradually

deteriorates as it learns from the input.

9.9 Validation Loss

During training, the non-training data is set aside as a

validation set. It evaluates how well the model performs

using the validation set. Throughout training, it assesses the

model’s capacity to generalise to new situations. When

validation loss grows while training loss decreases,

overfitting occurs.

10 Key Issues Considerations while Training

CNN’s for Image Classifi- cation

A model with too many parameters may perform well on

training data but struggle extrapolating to test or unknown

data. We refer to this phenomenon as "over-fitting." Long-

term training with many parameters and little training data

causes overfitting [24]. The suggested pre-trained models

leverage CNN’s regularization technique to avoid

overfitting. Regularization is the process of assigning

significant weights to the model. The dropping strategy is

another option. Dropping refers to the random elimination

of neurons during training. Because it is no longer

dependent on a single neuron, it optimizes the model [35].

Under fittingWhen the model is underfit, it performs

Figure 9: Overfitting and Underfitting

badly on both training and validation data samples because

it cannot understand the patterns in the data [36].

Increasing the model’s complexity by adding more layers

or neurons—basically, more data—resolves underfitting

and helps the model interpret complex patterns efficiently

[37]. Figure 9 depicts both overfitting and underfitting.

CNNs, because to their relatively shallow architecture (less

than 30 layers), may fail to capture the complex elements

included in remote sensing photos, which is required for

more successful picture categorisation that involves the

extraction of high-level semantic properties. Deeper

networks can extract more abstract and significant

information from incoming data (Shao 2020, Multilabel).

Transfer learning has been demonstrated to increase

classification accuracy by addressing overfitting and

underfitting in CNN’s deep learning pre-trained models,

such as AlexNet, ResNet, GoogleNet, etc. [1].

Figure 10: Vanishig Gradient

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5093

10.1 Insufficient or Imbalanced Data

A small or imbalanced dataset produces poor classification

results. With only 21 classes, the suggested UC-Merced

dataset is limited and may not give useful results. To

improve training samples and avoid underfitting,

transforma- tions like as flipping, scaling, and rotation are

applied to existing dataset images to generate new dataset

samples. The phrase [38] refers to data augmentation.

10.2 Vanishing and Exploding Gradients

The model struggles to train when the gradients during

backpropagation grow too small, a phenomenon known as

disappearing gradients. When gradients are large and

multiply exponentially over time, the model becomes

unstable and incapable of learning new data. This is called

the exploding gradient problem [39]. The use of the

sigmoid function limits the neural network’s ability to learn

during forward propagation. A sigmoid function is a

logarithmic function whose output value ranges from 0 to

1. It activates the output layers in binary classification

[40].

σ (x) = 1/1 + e−x (6)

First derivatives of sigmoid functions are bell curves having

values ranging from 0 to 0.25.

The partial derivative of nodes with sigmoid activation

functions reaches a maximum of 0.25. As the number of

network layers increases, the derivative value product falls

until a certain point. The partial derivative disappears as the

loss function’s partial derivative approaches zero. The

network weights in deep networks remain constant once

the derivative is removed. To lower the loss function during

back propagation, a neural network learns by adjusting its

weights and bias parameters.

The vanishing gradient problem occurs when a network’s

performance rapidly degrades because its weights cannot be

adjusted, stopping it from learning. The disappearing

gradient problem is caused by the derivative of the sigmoid

activation function (Hanin 2018). For experimentation, the

activation function ReLU (Rectified Linear Units) is

employed instead of the sigmoid. When applied to

positive input values, ReLU gives a positive linear output

[41]. When given negative input, the function will return

zero.

The derivative of a ReLU function is 1 for larger-than-

zero inputs and 0 for negative inputs. The graph below

shows the derivative of a ReLU function.

Figure 11: ReLu Activation Function

Figure 12: ReLu Derivative

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5094

The vanishing gradient research problem is handled

utilising the ReLU activation function instead of the

sigmoid function. This prevents the gradient from fading

since the partial derivative of the loss function will be

either 0 or 1. Previously trained models The VGG-19

DenseNet pre-trained model solves the vanishing gradient

research problem with the ReLu activation function.

10.3 Batch Normalization

Batch normalization stabilises gradients by ensuring

constant mean and variance for each neural network layer

[42].This optimising technique accelerates and stabilises

deep neural network training by decreasing the loss function

[42]. The current batch’s means=0 and variance=1 are

fixed, and activation functions from the hidden layer are

normalized [43].

The nonlinear function is applied either before or after the

normalization step. Furthermore, batch normalization

reduces the internal covariate shift, which is a shift in the

network activation function distribution caused by changes

to network parameters during training [44]. Batch

normalization introduces higher learning rates while

avoiding deviating from local minima. Batch normalization

regularizes the model by reducing the need for

dropouts[44]. The following is a mathematical depiction of

adding a batch normalisation layer to a minibatch β:

Figure 13: Caption

yi = γxi + β = BNγ,β (xi) (10)

10.4 To Locate Local Minima and Global Minimum

The loss function is optimized using both local and global

minima. The loss function computes the difference between

the ground truth and a model’s predictions [45]. A local

minimum is a point in the parameter space where the local

neighborhood’s loss function is at its lowest. A global

minimum occurs when the loss function is globally

minimised in the parameter space [46]. When the cost

function reaches 0 or near to zero, the model stops

learning.

Minima local attempts to approximate the global minimum

form. On both sides of the current point, the slope of the

cost function increases. Global minima produce a saddle

point, which is a local minimum [47]. A saddle point

occurs when the slope of the cost function rises on both

sides of the current point. A saddle point has a negative

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5095

gradient on one side, which leads to a local minimum on

the opposite side [48].

10.5 Gradient Descent

Gradient descent helps neural networks learn more

consistently by computing the cost function. By altering

the parameters, the cost function is computed iteratively

[49]. To give as little inaccuracy as feasible, the model

adjusts its parameters until the function approaches or

equals zero. Gradient descent acts as a watchdog, ensuring

the model’s accuracy at each iterative step until it reaches

or equals zero loss[50].

The recommended strategy employs the gradient

descent optimisation method. Gradient descent begins at a

randomly chosen position. The parameters are

progressively adjusted in the direction of the steepest fall.

Gradient descent eventually converges to a local

minimum. Although gradient descent may trap a local

minimum, it does not find the global minimum.To avoid

overfitting and trapping in local minima, the proposed

technique employs regularisation [51]. Gradient descent

methods are classified into three types: batch, stochastic,

and mini-batch.

Batch gradient descent calculates the total of errors for

each point in a training set. Once each data sample has

been trained, the model is updated. This is referred to as

an epoch.

Stochastic Gradient Descent Stochastic Gradient

Descent (SGD) runs a training epoch for each sample in

the training dataset.It updates the parameters of each

training sample one by one [52]. They are easy to store in

memory because only one training sample is kept at a time.

However, these regular adjustments lead to losses. Thus,

batch gradient descent is more computationally efficient

than SGD [53]. It is still regarded to be a superior method

for avoiding local minima and locating global ones.

Mini Batch Gradient Descent Mini-batch gradient

descent combines batch and stochastic gradient descent

techniques (Hinton, 2012). The training dataset is separated

into manageable batches. It updates each of the batches.

Mini batch gradient maintains a balance between

stochastic gradient descent for speed and batch gradient

descent for computational efficiency [54][55].

10.6 Adam Optimization

Adam stands for Adaptive Moment Estimation. The Adam

optimiser, which trains neural networks by changing

model parameters to minimise loss, is based on gradient

descent [56]. It evaluates each person’s adaptive learning

rate based on a variety of parameters. Adam is known as the

Adaptive Learning Rate Algorithm. Rapid convergence

accelerates neural network training [57]. Adam can be

represented mathematically as:

Θ = Θ − α ∗ βt (11)

WhereΘ = Model parameters α = Learning rate, gt =

Gradient of the cost function with respect to the parameters.

To minimise loss, this update adjusts the parameters Θ in

the negative direction of the gradient. The learning rate, α,

defines the step size. The traditional gradient descent

technique begins with a high learning rate, manually adjusts

the alpha in increments, and maintains a fixed learning rate

α. A extremely high learning rate at the start may miss the

minima, as indicated in gradient descent, but a lesser

learning rate causes very slow convergence. Adam

addresses this issue by modifying the learning rate α for

each parameter Θ, resulting in faster convergence compared

to using a constant global learning rate and standard

gradient descent. Adam encounters two stages:

momentum and root mean square propagation.

10.7 Momentum

Momentum accelerates gradients in the correct direction

by adding a fraction of the preceding gradient to the

current gradient, which speeds up training [58]. When the

momentum term proportional to the prior gradients

accumulates, the optimisation will move faster in that

direction [59]. If the previous few steps were all in the

same direction, momentum encourages the current step to

follow suit and take fewer steps. The purpose of

momentum is to accelerate in predictable directions [58].

Vt = γ ∗ Vt−1 + η ∗ gt (12)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5096

θ = θ − Vt (13)

Since Vt is a function of the prior momentum vector vt−1, it

is the momentum vector at any given time. The learning

rate utilised to take the step in the gradient’s negative

direction is η, while the hyperparameter γ is the

momentum decay that exponentially decays the previous

momentum vector.

Root Mean Square Propagation (RMSPROP) To

adaptively update the learning rate, RMSProp examines the

steepness of the error surface for each parameter. Smaller

steps are utilised to update parameters with steep

gradients. Larger steps are utilised to update low gradients

(kurbiel2017training). Adam employs the hyperparam-

eters β1 and β2 to combine momentum and RMSPROP.

Adam begins when mt−1 and vt−1 reach zero in the final

version. The t value varies depending on the number of

steps taken. Adam outperformed other adaptive learning

rate algorithms due to its stability over difficulties and faster

convergence [60]. α -Step size for optimization β1-Decay

rate for momentum. (Typical value is 0.9) β2-Decay rate for

squared gradients.(Typical value is 0.999) ϵ -Small value to

prevent division by 0.(Typically around 8)

Figure 14: Categorical Cross Entropy

10.8 Computing Categorical Cross Entropy Loss

Categorical cross entropy loss refers to the usage of the

Softmax activation function with cross entropy loss. To

generate a probability over the C classes for each image, it

will train proposed pre-trained models [61]. Figure 14

shows the categorical cross entropy function for multiclass

categorisation.

The associated labels in multiclass categorisation are

extremely popular. Loss is just the responsibility of the

positive class Cp. As with ti = tp, there is only one non-

zero target vector (t). Equation (2) can be changed as

follows by removing the summing elements that are 0 due

to their target labels:

 Where Sp is the CNN score for the positive

classification. After defining the loss, the next step is to

compute the gradient of CE loss with respect to CNN

output neurones, which translates to computing loss with

respect to each CNN class score in S. CNN optimises the

loss function by tuning net parameters [62].

For classes that are negative, the loss is 0. However,

because the Softmax of the positive class is equally

determined by the scores of the negative classes, the

negative classes’ loss gradient is not removed. With the

exception of the ground truth class Cp, where the score of

CP (SP) appears in the nominator, all classes C will have

the identical gradient expression. In terms of positive

classes, the derivative is:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5097

The first equation represents gradient variance, often

known as the weighted moving average of squared gradients.

In the θ update, the learning rate divides the square root of

the moving average of squared gradients. This means that

when the gradient variance is large, we reduce the learning

rate to get smaller updates. To come closer to the optima,

increase the learning rate while keeping the gradient

variance to a minimum. Adam is presented as follows:

Figure 15: Caption

10.9 Learning Rate or Step Size

The learning rate refers to the number of steps taken to

reach the minimum. The cost function analyses and updates

the extremely low value [63]. Higher alpha or learning

rate values result in larger steps, but it is possible that the

minimum will be exceeded. Smaller steps correspond to

lower levels of α or learning rate. It has high precision but

requires longer calculation time to produce minima [64].

The suggested method sets the learning rate at 0.1. The

learning rate determines how often the neural network

changes the weights it has learnt. The complex data patterns

can be learnt by increasing the training epochs [65].

10.10 Early Stopping

At the epoch when model training loses improvement score,

training is ended if the validation loss does not improve

further with increasing epochs [66]. We call this an early

stop. The ratios of photos in the train, validation, and test

datasets are randomised to prevent the model from

encountering the same collection of images repeatedly

across batches[67].The term "patience" refers to how many

epochs should elapse before an early stop is made in the

case that the validation set does not improve.

10.11 Slow Learning

Deep learning model training can take a significant amount

of time. Training the massive ImageNet dataset requires a

significant amount of time. Mini-batch gradient descent is

used to train models on smaller datasets [68]. This

expedites the training process. GPUs are utilised to

parallelise the training process.

10.12 Softmax output Activation Function

Prior to calculating loss, activation functions are employed

to transform the output vectors (S) produced by neurones.

During the training phase, activation functions are used to

adjust vectors before calculating the loss [69]. The output

vector S is activated using the Softmax function. The class

probabilities are displayed in the output. It calculates the

likelihood of each possible outcome [70]. The

probabilities in output vector S add up to 1 for each

possible class outcome (Sharma, 2017). Because Si

corresponds to each element of S, the softmax function can

be applied separately to each Si. Figure 14 shows the

mathematical representation of the Softmax function for

each Si class.

11 Conclusion

This paper’s main objective is to make clear the crucial

elements to take into account when training pre-trained

models and how to steer clear of research issues in order to

optimise validation accuracy and reduce validation loss by

adjusting the parameters influencing model training during

transfer learning. Batch normalisation, gradient descent, the

Adam optimiser, estimating categorical cross entropy loss,

and the softmax activation function have all been examined

in this study. Taking these training elements into account

would undoubtedly improve the pre-trained models’ training

process in an efficient manner, resulting in increased

testing accuracy and reduced testing loss.

References

[1] I. Dimitrovski, I. Kitanovski, D. Kocev, and N.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5098

Simidjievski, “Current trends in deep learning for earth

observa- tion: An open-source benchmark arena for image

classification,” ISPRS Journal of Photogrammetry and

Remote Sensing, vol. 197, pp. 18–35, 2023.

[2] K. O’shea and R. Nash, “An introduction to

convolutional neural networks,” arXiv preprint

arXiv:1511.08458, 2015.

[3] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B.

Shuai, T. Liu, X. Wang, G. Wang, J. Cai, et al., “Recent

advances in convolutional neural networks,” Pattern

recognition, vol. 77, pp. 354–377, 2018.

[4] N. Ketkar, J. Moolayil, N. Ketkar, and J. Moolayil,

“Convolutional neural networks,” Deep Learning with

Python: Learn Best Practices of Deep Learning Models

with PyTorch, pp. 197–242, 2021.

[5] J. S. Ren, L. Xu, Q. Yan, and W. Sun, “Shepard

convolutional neural networks,” Advances in neural

information processing systems, vol. 28, 2015.

[6] W. Zhou, H. Guan, Z. Li, Z. Shao, and M. R.

Delavar, “Remote sensing image retrieval in the past

decade: Achievements, challenges, and future directions,”

IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 2023.

[7] H. Habibi Aghdam, E. Jahani Heravi, H. Habibi

Aghdam, and E. Jahani Heravi, “Convolutional neural net-

works,” 2017.

[8] U. Markowska-Kaczmar and H. Kwaśnicka, “Deep

learning—a new era in bridging the semantic gap,”

Bridging the Semantic Gap in Image and Video

Analysis, pp. 123–159, 2018.

[9] Y. Liu, L. Ding, C. Chen, and Y. Liu, “Similarity-

based unsupervised deep transfer learning for remote

sensing image retrieval,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 58, no. 11, pp.

7872–7889, 2020.

[10] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “A

new deep convolutional neural network for fast hy-

perspectral image classification,” ISPRS journal of

photogrammetry and remote sensing, vol. 145, pp. 120–

147, 2018.

[11] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q.

Weinberger, “Densely connected convolutional networks,”

in Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 4700–4708, 2017.

[12] J. Zhang, C. Lu, X. Li, H.-J. Kim, and J. Wang, “A

full convolutional network based on densenet for remote

sensing scene classification,” Mathematical Biosciences

and Engineering, vol. 16, no. 5, pp. 3345–3367, 2019.

[13] P. S. Tan, K. M. Lim, C. H. Tan, and C. P. Lee,

“Pre-trained densenet-121 with multilayer perceptron for

acoustic event classification.,” IAENG International

Journal of Computer Science, vol. 50, no. 1, 2023.

[14] G. Li, M. Zhang, J. Li, F. Lv, and G. Tong, “Efficient

densely connected convolutional neural networks,” Pattern

Recognition, vol. 109, p. 107610, 2021.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“Imagenet classification with deep convolutional neural

networks,”

Advances in neural information processing systems, vol.

25, 2012.

[16] L. Zhen, P. Hu, X. Peng, R. S. M. Goh, and J. T.

Zhou, “Deep multimodal transfer learning for cross-modal

retrieval,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 33, no. 2, pp. 798–810, 2020.

[17] Y. Wang, R. Xiao, J. Qi, and C. Tao, “Cross-sensor

remote-sensing images scene understanding based on

transfer learning between heterogeneous networks,” IEEE

Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5,

2021.

[18] E. d. S. Puls, M. V. Todescato, and J. L. Carbonera,

“An evaluation of pre-trained models for feature extraction

in image classification,” arXiv preprint arXiv:2310.02037,

2023.

[19] C. Desai, “Image classification using transfer

learning and deep learning,” International Journal of

Engineering and Computer Science, vol. 10, no. 9, pp.

25394–25398, 2021.

[20] A. Alem and S. Kumar, “Deep learning models

performance evaluations for remote sensed image

classification,”

IEEE Access, vol. 10, pp. 111784–111793, 2022.

[21] C. Wang, D. Chen, L. Hao, X. Liu, Y. Zeng, J. Chen,

and G. Zhang, “Pulmonary image classification based on

inception-v3 transfer learning model,” IEEE Access, vol.

7, pp. 146533–146541, 2019.

[22] S. Zhou, W. Liang, J. Li, and J.-U. Kim, “Improved

vgg model for road traffic sign recognition,” Computers,

Materials & Continua, vol. 57, no. 1, pp. 11–24, 2018.

[23] U. Muhammad, W. Wang, S. P. Chattha, and S. Ali,

“Pre-trained vggnet architecture for remote-sensing image

scene classification,” in 2018 24th International

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5099

Conference on Pattern Recognition (ICPR), pp. 1622–

1627, IEEE, 2018.

[24] V. Risojević and V. Stojnić, “Do we still need

imagenet pre-training in remote sensing scene

classification?,” arXiv preprint arXiv:2111.03690, 2021.

[25] S. Jiang, H. Zhao, W. Wu, and Q. Tan, “A novel

framework for remote sensing image scene lassification,”

The International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, vol.

42, pp. 657–663, 2018.

[26] Y. Dong and Q. Zhang, “A combined deep learning

model for the scene classification of high-resolution remote

sensing image,” IEEE Geoscience and Remote Sensing

Letters, vol. 16, no. 10, pp. 1540–1544, 2019.

[27] G.-S. Xia, J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, L.

Zhang, and X. Lu, “Aid: A benchmark data set for

performance evaluation of aerial scene classification,”

IEEE Transactions on Geoscience and Remote Sensing,

vol. 55, no. 7, pp. 3965–3981, 2017.

[28] W. Zhang, P. Tang, and L. Zhao, “Remote sensing

image scene classification using cnn-capsnet,” Remote

Sensing, vol. 11, no. 5, p. 494, 2019.

[29] W. Zhou, S. Newsam, C. Li, and Z. Shao,

“Patternnet: A benchmark dataset for performance

evaluation of remote sensing image retrieval,” ISPRS

journal of photogrammetry and remote sensing, vol. 145,

pp. 197–209, 2018.

[30] Y. Liu, Y. Liu, C. Chen, and L. Ding, “Remote-

sensing image retrieval with tree-triplet-classification

networks,” Neurocomputing, vol. 405, pp. 48–61, 2020.

[31] B. B. Traore, B. Kamsu-Foguem, and F. Tangara,

“Deep convolution neural network for image recognition,”

Ecological informatics, vol. 48, pp. 257–268, 2018.

[32] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi,

“A survey of the recent architectures of deep convolutional

neural networks,” Artificial intelligence review, vol. 53,

pp. 5455–5516, 2020.

[33] W. Zhou, S. Newsam, C. Li, and Z. Shao, “Learning

low dimensional convolutional neural networks for high-

resolution remote sensing image retrieval,” Remote

Sensing, vol. 9, no. 5, p. 489, 2017.

[34] J. Wang, Y. Zheng, M. Wang, Q. Shen, and J. Huang,

“Object-scale adaptive convolutional neural networks for

high-spatial resolution remote sensing image

classification,” IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, vol. 14, pp. 283–

299, 2020.

[35] S. Salman and X. Liu, “Overfitting mechanism and

avoidance in deep neural networks,” arXiv preprint

arXiv:1901.06566, 2019.

[36] J. Li, C. Xu, W. Yang, C. Sun, and D. Tao,

“Discriminative multi-view interactive image re-ranking,”

IEEE Transactions on Image Processing, vol. 26, no. 7,

pp. 3113–3127, 2017.

[37] H. Alhichri, A. S. Alswayed, Y. Bazi, N. Ammour,

and N. A. Alajlan, “Classification of remote sensing

images using efficientnet-b3 cnn model with attention,”

IEEE access, vol. 9, pp. 14078–14094, 2021.

[38] J. Xin, F. Ye, Y. Xia, Y. Luo, and X. Chen, “A new

remote sensing image retrieval method based on cnn and

yolo,” Journal of Internet Technology, vol. 24, no. 2, pp.

233–242, 2023.

[39] S. Hochreiter, “The vanishing gradient problem

during learning recurrent neural nets and problem

solutions,” International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, vol. 6, no. 02,

pp. 107–116, 1998.

[40] B. Hanin, “Which neural net architectures give rise

to exploding and vanishing gradients?,” Advances in

neural information processing systems, vol. 31, 2018.

[41] Y. Hu, A. Huber, J. Anumula, and S.-C. Liu,

“Overcoming the vanishing gradient problem in plain

recurrent networks,” arXiv preprint arXiv:1801.06105,

2018.

[42] N. Bjorck, C. P. Gomes, B. Selman, and K. Q.

Weinberger, “Understanding batch normalization,”

Advances in neural information processing systems, vol.

31, 2018.

[43] P. Luo, X. Wang, W. Shao, and Z. Peng, “Towards

understanding regularization in batch normalization,”

arXiv preprint arXiv:1809.00846, 2018.

[44] S. Ioffe and C. Szegedy, “Batch normalization:

Accelerating deep network training by reducing internal

covariate shift,” in International conference on machine

learning, pp. 448–456, pmlr, 2015.

[45] K. Kawaguchi, “Deep learning without poor local

minima,” Advances in neural information processing

systems, vol. 29, 2016.

[46] H. Li and A. Yezzi, “Local or global minima:

Flexible dual-front active contours,” IEEE transactions on

pattern analysis and machine intelligence, vol. 29, no. 1,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5100

pp. 1–14, 2006.

[47] C. A. Floudas and H. T. Jongen, “Global

optimization: local minima and transition points,” Journal

of Global Optimization, vol. 32, pp. 409–415, 2005.

[48] F. Boselie, “Local versus global minima in visual

pattern completion,” Perception & Psychophysics, vol.

43,

pp. 431–445, 1988.

[49] S.-i. Amari, “Backpropagation and stochastic gradient

descent method,” Neurocomputing, vol. 5, no. 4-5, pp. 185–

196, 1993.

[50] M. Andrychowicz, M. Denil, S. Gomez, M. W.

Hoffman, D. Pfau, T. Schaul, B. Shillingford, and N. De

Freitas, “Learning to learn by gradient descent by gradient

descent,” Advances in neural information processing

systems, vol. 29, 2016.

[51] L. Mason, J. Baxter, P. Bartlett, and M. Frean,

“Boosting algorithms as gradient descent,” Advances in

neural information processing systems, vol. 12, 1999.

[52] W. A. Gardner, “Learning characteristics of

stochastic-gradient-descent algorithms: A general study,

analysis, and critique,” Signal processing, vol. 6, no. 2,

pp. 113–133, 1984.

[53] N. Ketkar and N. Ketkar, “Stochastic gradient

descent,” Deep learning with Python: A hands-on

introduction,

pp. 113–132, 2017.

[54] J. Konečnỳ, J. Liu, P. Richtárik, and M. Takáč,

“Mini-batch semi-stochastic gradient descent in the

proximal setting,” IEEE Journal of Selected Topics in

Signal Processing, vol. 10, no. 2, pp. 242–255, 2015.

[55] X. Qian and D. Klabjan, “The impact of the mini-

batch size on the variance of gradients in stochastic

gradient descent,” arXiv preprint arXiv:2004.13146, 2020.

[56] D. P. Kingma and J. Ba, “Adam: A method for

stochastic optimization,” arXiv preprint arXiv:1412.6980,

2014.

[57] D. Yi, J. Ahn, and S. Ji, “An effective

optimization method for machine learning based on

adam,” Applied Sciences, vol. 10, no. 3, p. 1073, 2020.

[58] Y. Yan, T. Yang, Z. Li, Q. Lin, and Y. Yang, “A

unified analysis of stochastic momentum methods for

deep learning,” arXiv preprint arXiv:1808.10396, 2018.

[59] N. B. Kovachki and A. M. Stuart, “Analysis of

momentum methods,” arXiv preprint arXiv:1906.04285,

2019.

[60] T. O. Hodson, “Root mean square error (rmse) or

mean absolute error (mae): When to use them or not,”

Geoscientific Model Development Discussions, vol. 2022,

pp. 1–10, 2022.

[61] P. Li, X. He, X. Cheng, M. Qiao, D. Song, M. Chen,

T. Zhou, J. Li, X. Guo, S. Hu, et al., “An improved

categorical cross entropy for remote sensing image

classification based on noisy labels,” Expert Systems with

Applications, vol. 205, p. 117296, 2022.

[62] P. Murugan, “Implementation of deep convolutional

neural network in multi-class categorical image classifica-

tion,” arXiv preprint arXiv:1801.01397, 2018.

[63] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V.

Le, “Don’t decay the learning rate, increase the batch

size,”

arXiv preprint arXiv:1711.00489, 2017.

[64] R. A. Jacobs, “Increased rates of convergence

through learning rate adaptation,” Neural networks, vol. 1,

no. 4,

pp. 295–307, 1988.

[65] Z. Zhang, W. Lu, X. Feng, J. Cao, and G. Xie, “A

discriminative feature learning approach with

distinguishable distance metrics for remote sensing image

classification and retrieval,” IEEE Journal of Selected

Topics in Applied Earth Observations and Remote

Sensing, vol. 16, pp. 889–901, 2022.

[66] Y. Yao, L. Rosasco, and A. Caponnetto, “On early

stopping in gradient descent learning,” Constructive

Approx- imation, vol. 26, no. 2, pp. 289–315, 2007.

[67] L. Prechelt, “Automatic early stopping using cross

validation: quantifying the criteria,” Neural networks, vol.

11, no. 4, pp. 761–767, 1998.

[68] T. Anthony, Z. Tian, and D. Barber, “Thinking fast

and slow with deep learning and tree search,” Advances in

neural information processing systems, vol. 30, 2017.

[69] B. Asadi and H. Jiang, “On approximation

capabilities of relu activation and softmax output layer in

neural networks,” arXiv preprint arXiv:2002.04060, 2020.

[70] B. Wang, X. Luo, Z. Li, W. Zhu, Z. Shi, and S.

Osher, “Deep neural nets with interpolating function as

output activation,” Advances in neural information

processing systems, vol. 31, 2018

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 5076–5100 | 5101

