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Abstract: The process of correctly identifying objects in an image is known as image classification. Effectively classifying 

high-resolution spatial images for huge remote sensing archives is known as remote sensing image classification. Better 

classification performance is directly correlated with effective feature extraction from images. The majority of feature extraction 

steps employed manually created low-level features that concentrated on basic components like color, form, and texture before 

deep learning was widely used in remote sensing image classification. However, because of their poor performance, these 

conventional handmade methods were swiftly superseded by Convolution Neural Networks (CNN’s), that successfully recovered 

abstract information. However, while creating deep Convolution Neural Networks, it is important to carefully consider the 

significant training constraints of CNNs. This research aims to investigate the primary training challenges encountered while 

training deep learning pre-trained models utilizing a transfer learning approach. 

Keywords: Image Classification, Convolution Neural Networks, Pre-Trained Models 

1 Introduction 

The extraction of salient features is crucial for image 

categorization and retrieval (Gu, 2019). Sharif et al. 

(2019) use machine learning and deep learning to extract 

crucial information from photos. The literature 

consistently demonstrates that deep learning methods 

outperform in both image classification and retrieval. 

Unlike machine learning, deep learning automatically 

performs feature extraction and classification in a single 

phase, as illustrated in figure 1. 

In multiclass classification, if a dataset has C classes, the 

query picture sample corresponds to one of them. CNN’s 

output neurons are equal to the dataset’s total number of 

classes, C. These output neurons generate vectors. The 

target vector (t) is a single ground truth vector with one 

positive and C-1 negative classes [1]. 

 

Figure 1: Feature Extraction and Classification approach Machine Learning/Deep Learning 

Figure 2: Multiclass Classification 

 

DeepCNN (Deep Convolutional Neural Network) is a 

multilayer neural architecture used in deep learning to handle 

massive volumes of data. Deep neural networks use 

neurons and convolution filters to classify objects, 

comparable to the human brain [2]. Traditional machine 
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learning approaches used filters such edge and texture 

histograms [3]. As seen in figure3, CNNs use a 

combination of layers to convert an image into output that 

the model may use for picture categorization. 

 

 

Figure 3: Convolution Neural Networks 

 

The convolutional layer builds the feature map by 

repeatedly scanning the full picture’s pixels with filters. 

CNN uses learnable filters [4]. CNN operates in two steps. 

The initial level is learning, which involves a convolution 

and pooling layer. This convolution layer is where 

learnable filters and feature extractors go to work. The 

pooling layer scales down the information produced by the 

convolutional layer. The pooling layer compresses data. 

A compact vector generated by the pooling layer is stored. 

The completely connected input layer reduces the outputs 

to a single vector [5]. The fully linked layer assigns 

weights to the inputs generated by the Dense Layer. The 

completely linked output layer provides the final 

probability for picture classification. Classification occurs 

in the final fully linked output layer [6]. CNNs are good at 

training with small quantities of data, but they suffer from 

overfitting or underfitting as the data size increases. This 

results in poor classification results when training with 

large-scale datasets [7]. This paper addresses key 

challenges encountered while training deep CNNs and 

provides confined strategies to address these training 

issues [8]. 

2 Related Literature Survey 

The researchers used a variety of machine learning and 

deep learning methods to extract and classify photos. [9] 

addressed the need for large labelled samples for training 

CNNs. The author proposed the SBS-CNN (Similarity 

Based Supervised Learning Using Convolution Neural 

Network) method, which is based on similarity learning 

and applies transfer learning to CNN training, transforming 

similarity learning into deep ordinal classification with CNN 

experts pre-trained on large-scale labelled everyday image 

sets. It computes picture similarity and applies pseudo 

labels for categorisation. SBS-CNN features a small 

network size, compact feature vectors, and faster retrieval 

times. Gradient descent is employed at each level to 

minimise errors. Major research problems include 

calculating gradient descent at each level to reduce 

error. Negative values are fed into the ReLU (Rectified 

Linear Unit) activation function, which turns them to 

zero, decreasing the model’s ability to fit or train from 

data properly. The author tested the Everyday ImageSet, 

UC-Merced, and PatterNet datasets, and the best ANMR 

obtained was 0.2185 on the benchmark dataset. Wang 

(2020) presented OSA-HSR + CNN (Object Scale 

Adaptive High Spatial Resolution Remote Sensing Image 

Classification with Convolution Neural Networks). 

There are two phases involved: segmentation and 

classification. Segmentation creates heterogeneous 

segments that are then utilised to extract features. 

Classification is performed using the obtained features. 

The key research issues are the growing segmentation scale 

of adjacent items and the decrease in classification quality. 

Over segmentation and under segmentation may lead to 

misclassification. OSA-HSR+CNN increases the 

additional run time. The stochastic gradient is evaluated at 

each step to reduce errors, which increases processing 

time. 

Experiments are carried out using aerial images obtained 

by the Ohio Statewide Imagery Program. The total 

computational time is 188 seconds. [10] proposed 

EfficientNet-B3-Attn-2, which uses a pre-trained 

EfficientNet-B3 CNN and an attention mechanism. 

Experiments are carried out with a CNN feature extractor 
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that was constructed from scratch, transferred, trained, and 

fine-tuned for the LCLU (Land Cover and Landuse) 

classification system utilising remote sensed images. 

The fine-tuned deep learning model fared better than 

the UCM dataset in terms of accuracy. Experimental 

results on six popular remote sensing datasets, namely 

KSA, UC Merced, WHU-RS19, RSSCN7, OPTIMAL-31, 

and AID, show that the proposed network performs 

accurately and efficiently, reducing computation time and 

improving accuracy in hyperspectral image classification. 

Huang, Gao, Liu, Zhuang, Van Der Maaten, Laurens, and 

Weinberger, Kilian Q (2017) [11] developed the DenseNet 

(Dense Convolutional Network), which uses a feed-

forward approach to connect one layer to the next. 

L layers are connected one after the other in traditional 

convolutional networks. A network’s direct links are 

(L(L+1))/2. The feature-maps of each layer were utilised 

as input for following layers, while the feature-maps of 

previous layers were used as input for this layer. 

DenseNets resolves the issue of fading gradients. The tests 

are carried out using four benchmark datasets: CIFAR-100 

(Canadian Institute for Advanced Research), SVHN, 

CIFAR- 10, and Imagenet. The author achieved an 

accuracy of 97.44% on AID, 99.50% on UC-Merced, 

95.89% on Optimal, and 94.98% on NWPU-RESIS45 

datasets. Zhang Jianming, Lu Chaoquan, Li Xudong, Kim 

Hye-Jin, and Wang Jin (2019) [12] discovered two 

prevalent issues in Convolutional Neural Networks. 

The first is that these models generate overfitting 

because they have too many parameters, and the second is 

because they are insufficiently deep to retrieve abstract 

data. To address these two issues, the author proposed a 

pre-trained DenseNet model for remote sensing image 

categorisation. DenseNet produces several reusable 

features using fewer convolutional kernels. Dense 

connections take the network to over 100 levels. 

Data augmentation is used. Experiments are conducted on 

the AID (Aerial Image Dataset), UCM, NWPU- 

RESISC45, and Optimal-31 datasets. The author achieved 

accuracy of 98.67% (50% training ratio), 99.50% (80% 

training ratio) on the UCM dataset, 95.37% (20% training 

ratio), 97.19% (50% training ratio) on the AID dataset, 

95.41% (80% training ratio) on optimal-31, and 92.90 (10% 

training ratio), 94.95 (20% training ratio) on the NWPU- 

RESISC45 dataset. 

  

 

Figure 4: Transfer Learning 

Tan, Pooi Shiang, Lim, Kian Ming, Tan, Cheah Heng, 

and Lee, Chin Poo (2023) [13] proposed using DenseNet- 

121 deep learning pre-trained with transfer learning 

technique to extract significant image attributes. DenseNet 

dramatically reduces processing resources. Experiments are 

run on three benchmark datasets: soundscapes1, sound- 

scapes2, and urbansound8k. The proposed pre-trained 

model DenseNet-121 with multilayer perceptron 

outperforms past studies on the soundscapes1, 

soundscapes2, and urbansound8k datasets, with F1- scores 

of 80.7%, 87.3%, and 69.6%, respectively. Li, Guoqing, 

Zhang, Meng, Li, Jiaojie, Lv, Feng, and Tong, Guodong 

(2021) [14] proposed two CNN architectures: DenseDsc 

and Dense2Net. 

These two CNNs are tightly connected, making it 
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simpler to reuse features across networks. Dense2net 

employs efficient group convolution, whereas DenseDsc 

employs more efficient separable convolution based on 

depth. Both solutions improved parameter efficiency. The 

proposed strategies are evaluated on the CIFAR and 

ImageNet datasets. The author achieved 74.2% accuracy on 

CIFAR-100 and 76.3% on ImageNet (top-1) using 

DenseDsc. CiFAR-100 achieved 73.68% accuracy, while 

ImageNet scored 77% using Dense2Net. Still, there is 

room for improvement in image classification. 

3 Transfer Learning 

Neural networks trained on large datasets generate 

knowledge, known as the network’s weights [15]. Only 

learnt characteristics in the form of weights can be 

retrieved and transferred to any other neural network, 

rather than training the neural network from scratch. 

Instead of beginning from scratch, pre-trained models are 

trained on a massive dataset. Pre-trained models extract 

features by removing the output layer [16]. Finally, the 

network is transformed into a fixed feature extractor by 

freezing the initial layer weights and retraining only the 

higher layers with the new problem-specific dataset [17]. In 

order to fine-tune pre-trained models, convolution operators 

must first acquire generic properties in the first layer before 

moving on to dataset-specific features. The model is trained 

in the last layer. Transfer learning is performed on the 

network’s early and central layers. It employs the tagged 

data from the job upon which it was trained. Only the final 

layers are retrained, as shown in figure 4. 

Transfer learning can be used with data from 

completely different but equally relevant source and 

target areas. 

 

 Pre-trained models are taught on the source domain and 

then learn to produce significantly higher accuracy results 

on the target task [18]. The correct network weights are 

identified through multiple forward and backward rounds. 

Pre- trained model weights and architecture can be 

directly applied to our target problem of transfer learning 

[19]. The ImageNet dataset, which contains millions of 

annotated photographs from thousands of classifications, is 

an excellent source for training deep learning pre-trained 

models. The pre-trained model on the ImageNet dataset 

learns a comprehensive set of features and weights, which 

helps adapt the model to specific target tasks and enhances 

accuracy [20]. AlexNet, ResNet, GoogleNet[21], VGG 

(Visual Geometry Group variations include VGG16 and 

VGG19)[22], and DenseNet[14] are some of the 

commonly used convolution pre-trained models using 

transfer learning. These pre-trained models vary in terms 

of layered structure and convolution approaches. 
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4 Pre-Trained Models 

Pre-trained CNN models are neural networks that have been 

trained on a large dataset, such as ImageNet, for general 

image recognition and are now ready to use in different 

applications. These models are trained to identify a wider 

variety of characteristics and patterns in photos. 

citekrishna2019deep. Pre-trained models use Transfer 

Learning, which implies they are used as a starting point for 

applications that differ from the model’s original training 

domain [23]. Pre-trained models save time and computing 

resources over training a neural network from scratch [24]. 

Transfer Learning, which involves fine-tuning pre-trained 

models for a given application, needs less data to train. 

5 Model Architecture Selection Image 

Classification 

The initial stage in image categorization is to choose the 

suitable architecture. Experimenting with different designs 

and layer configurations could produce better results. The 

CNN design was chosen based on its lower mistake rates 

and superior performance in similar problems. Keras 

Applications enable deep learning pre-trained models. 

Table 1 illustrates some cases with reduced error rates. 

According to Keras Applications, the models are set up as 

follows. The pre-trained models are used for feature 

extraction and fine-tuning. 

The top-1 and top-5 accuracy numbers show the 

model’s performance on the large-scale ImageNet 

validation dataset. Depth represents the network’s 

topological depth. Depth is made up of activation layers, 

batch normalization layers, and so on. The average time per 

inference step is calculated using 30 batches and 10 

repetitions. Depth refers 

 to the number of layers and parameters. The experimental 

set for training these models is as follows: 

1. CPU: AMD EPYC Processor (with IBPB) (92 core) 

2. RAM: 1.7T 

3. GPU: Tesla A100 

4. Batch size: 32 

The accuracy of the top-1 and top-5 models, the model’s 

depth, and the time required for each inference step are all 

unquestionably trade-offs. 

6 Experimented Datasets 

Remote sensing image retrieval systems have grown in 

popularity as new feature extraction approaches are 

developed and tested on fresh datasets. Benchmark datasets 

provide the foundation for performance evaluation and the 

use of RSIR methodologies. The literature has seen 

significant development in the creation of benchmark 

datasets for the RSIR system. Datasets are classified into 

two groups based on the retrieval strategy used. Unisource 

retrieval occurs first, followed by cross-source retrieval. 

Both the query and the images retrieved by unisource 

retrieval are from the same source. Both the query and the 

images obtained by cross-source retrieval come from two 

different sources. The following sections describe popular 

remote sensing datasets. 

6.1 UC Merced Land Use Dataset 

Another name for the dataset is UCM/UC-Merced. There 

are 100 images and 21 classes at UCM. UCM has limited 

classes and is small in size. These categories belong to the 

land cover/land use category. Each image has 256x256 pixel 

dimensions and the same spatial resolution. A series of large 

aerial pictures with a spatial resolution of 0.3 meters were 

obtained from the US Geological Survey’s USGS National 

Map Urban Area. These images include Urban and Built 

Environment (buildings, crossroads, motorways, overpasses, 

parking lots, storage tanks, runways), Residential Areas 

(sparse, dense, mobile home parks), Recreational and 

Specialised Areas (baseball diamonds, tennis courts), 

Natural and Agricultural Areas (farms, woods, beaches, 

streams), Transportation and Infrastructure (aircraft, 

harbours). [25][26]. 

6.2 AID 

The vast collection of aerial pictures from Google Earth 

Imagery is known as AID. The spatial resolution of the 

scene photographs ranges between 0.5 and 8 meters.The 

dataset includes the following classes: The dataset includes 

thirty classes, including Urban Infrastructure and Built 

Environment (Commercial, Industrial, Port, Railway Sta- 

tion, Airport, Parking, Bridge, Viaduct, Storage tanks), 

Residential Areas (Dense residential, Medium residential, 

Sparse residential), Public and Recreational Spaces (Park, 

Playground, Square, Stadium, Resort, School, Centre, 

Church), Natural Landscapes and Landforms (Forest, 

Desert, Mountain, River, Pond, Meadow, Farmland, Bare 

land), Specialised Areas (Baseball pitch)[27][28]. 

6.3 PatterNet 

PatterNet is a vast archive of high-resolution pictures from 
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Google Earth imagery collected for a select US sites via the 

Google Map API. 800 256 × 256 pixel pictures are grouped 

into 38 categories. Urban and built environment (coastal 

mansion, nursing home, mobile home park, dense and 

sparse residential, cemetery, transformer station, 

wastewater treatment plant, storage tank).Transportation 

and Infrastructure (freeway, highway, bridge, crosswalk, 

intersection, railroad, runway, runway marking, closed 

road, ferry terminal, harbour, shipping yard, aircraft), 

Recreational and Specialised Areas (baseball field, 

basketball court, football field, golf course, swimming 

pool, tennis court), Natural and Agricultural Areas (beach, 

forest, river, chaparral, Christmas tree farm, solar panel). 

PatterNet is a good collection of tagged data for image 

classification and retrieval in remote sensing. Deep 

learning methods that need a lot of labelled data will profit 

tremendously from this labelled data[29][30]. 

 

6.4 NWPU-RESISC45 

The NWPU-RESISC45 benchmark dataset serves as the 

basis for remote sensing scene classification. It features 

forty-five scene classes. Each class includes seven 

hundred photographs. There are 31,500 256 by 256 pixel 

pho- tographs in total.It was created by Northwest 

Polytechnic University, or NWPU. The image’s spatial 

resolution ranges from 0.2 to 30 meters. The images in 

this dataset belong to Urban and Built Environment 

(Commercial area, Industrial area, Palace, Railway station, 

Church, Thermal power station, Terrace, Parking lot, 

Freeway, Fly- over, Roundabout, Intersection), Residential 

Areas (Dense residential, Medium residential, Sparse 

residential, Mobile home park), Transportation and 

Infrastructure (Airport, Runway, Aeroplane, Harbour, Ship), 

Recreational and Spe- cialised Areas (Baseball diamond, 

Basketball court) [25][30].  

 

Table 3: UC-MERCED:Remote Sensing Dataset 

UC-Merced: Remote Sensing Dataset 

 

Class 1. AGRICULTURAL  

 

Class 2. AIRPLANE  

 

Class 3. BASE BALL DIAMOND  

 

Class 4. BEACH  

 

Class 5. BUILDINGS  

 

Class 6. CHAPARRAL  

 

Class 7. DENSE RESIDENTIAL  
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Class 8. FOREST  

 

Class 9. FREEWAY  

 

Class 10. GOLF COURSE  

 

Class 11. HARBOR  

 

Class 12. INTERSECTION  

 

Class 13. MEDIUM RESIDENTIAL  

 

Class 14. MOBILE HOME PARK  

 

Class 15. OVERPASS  

 

Class 16. PARKING LOT  

 

Class 17. RIVER  

 

Class 18. RUNWAY  

 

Class 19. SPARSE RESIDENTIAL  

 

Class 20. STORAGE TANKS  

 

Class 21. TENNIS COURT  

 

 

Table 4: AID: Remote Sensing Dataset 

REMOTE SENSING IMAGES DATASET : AID 

Class 1. AIRPORT  

 

Class 2. BARE LAND  

 

Class 3. BASEBALL FIELD  

 

Class 4. BEACH  

 

Class 5. BRIDGE  

 

Class 6. CENTER  

 

Class 7. CHURCH  

 

Class 8. COMMERCIAL  
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Class 9. DENSE RESIDENTIAL  

 

Class 10. DESERT  

 

Class 11. FARMLAND  

 

Class 12. FOREST  

 

Class 13. INDUSTRIAL  

 

Class 14. MEADOW  

 

Class 15. MEDIUM RESIDENTIAL  

 

Class 16. MOUNTAIN  

 

Class 17. PARK  

 

Class 18. PARKING  

 

Class 19. PLAYGROUND  

 

Class 20. POND  

 

Class 21. PORT  

 

Class 22. RAILWAY STATION  

 

Class 23. RESORT  

 

Class 24. RIVER  

 

Class 25. SCHOOL  

 

Class 26. SPARSE RESIDENTIAL  

 

Class 27. SQUARE  

 

Class 28. STADIUM  

 

Class 29. STORAGE TANK  

 

Class 30. VIADUCT  
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Table 5: NWPU-RESISC45:Remote Sensing Dataset 

REMOTE SENSING IMAGES DATASET : NWPU-RESISC45 

Class 1. AIRFEILD  

 

Class 2. ANCHORAGE  

 

Class 3. BEACH  

 

Class 4. DENSE RESIDENTIAL  

 

Class 5. FARM  

 

Class 6. FLYOVER  

 

Class 7. FOREST  

 

Class 8. GAME SPACE  

 

Class 9. PARKING SPACE  

 

Class 10. RIVER  

 

Class 11. SPARSE RESIDENTIAL  

 

Class 12. STORAGE CISTERNS  
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Table 6: PATTERNET: Remote Sensing Dataset 

REMOTE SENSING IMAGES DATASET: PATTERNET 

Class 1. AIRPLANE  

 

Class 2. BASEBALL FIELD  

 

Class 3. BASKETBALL COURT  

 

Class 4. BEACH  

 

Class 5. BRIDGE  

 

Class 6. CEMETERY  

 

Class 7. CHAPARRAL  

 

Class 8. CHRISTMAS TREE FARM  

 

Class 9. CLOSED ROAD  

 

Class 10. COASTAL MANSION  

 

Class 11. CROSSWALK  

 

Class 12. DENSE RESIDENTIAL  

 

Class 13. FERRY TERMINAL  

 

Class 14. FOOTBALL FIELD  
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Class 15. FOREST  

 

Class 16. FREEWAY  

 

Class 17. GOLF COURSE  

 

Class 18. HARBOR  

 

Class 19. INTERSECTION  

 

Class 20. MOBILE HOME PARK  

 

Class 21. NURSING HOME  

 

Class 22. OIL GAS FIELD  

 

Class 23. OIL WELL  

 

Class 24. OVERPASS  

 

Class 25. PARKING LOT  

 

Class 26. PARKING SPACE  

 

Class 27. RAILWAY  

 

Class 28. RIVER  

 

Class 29. RUNWAY  
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Class 30. RUNWAY MARKING  

 

Class 31. SHIPPING YARD  

 

Class 32. SOLAR PANEL  

 

Class 33. SPARSE RESIDENTIAL  

 

Class 34. STORAGE TANK  

 

Class 35. SWIMMING POOL  

 

Class 36. TENNIS COURT  

 

Class 37. TRANSFORMER STATION  

 

Class 38. WASTEWATER TREATMENT PLANT  

 

 

7 Estimating Cost Function to Accelerate 

Classification Accuracy in DCNN’s 

The cost function measures the difference in error between 

actual and anticipated y at its current position. It provides 

feedback to the model, allowing it to adjust the parameters 

in order to find global and local minima and reduce error. It 

iterates in the direction of the steepest decrease until the 

cost function is 0 or near zero. The model decides to learn 

at the sharpest gradient point. The loss function represents 

one training example’s mistake. The cost function [31] 

calculates the average error of an entire training set. 

 

7.1 Forward and Backward Propagation to Compute 

Cost 

A neural network consists of an input layer, one or more 

hidden layers, and one output layer. During forward 

propagation, CNN weights are randomly assigned. At each 

hidden layer node, the input attributes are multiplied by the 

relevant weights [32]. Every node contributes a bias to the 

overall total. An activation function is then employed to 

transform this value into the node’s output. The output is 

obtained by multiplying the network’s weights and bias 

values with the hidden layer output [33]. An activation 

function is used to change the total. Figure 5 illustrates 

how the network predicts a value for a specific input value. 
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∂w 

 

 

Figure 5: CNN Output Generation 

 

The loss function (C) indicates how effectively the 

network predicted the output while producing it. 

Backprop- agation is utilised by the network to mitigate 

losses. Back propagation techniques reduce loss function 

by altering neural network weights and biases [34]. This 

method computes the gradient of the loss function for each 

network weight. In back propagation, a node’s new 

weight Wnew is calculated by multiplying its old weight 

Wold by the learning rate (η) and the loss function 

gradient ∂c. 

 

∂c Wnew = Wold − η ∗ 
∂w 

(1) 

The gradient of the loss function is calculated using the 

chain rule of partial derivatives as a product of the 

gradients of each node’s activation function relative to its 

weight. As a result, the gradients of each node’s activation 

function influence how the network’s node weights 

change. Fine-tuning involves iteratively updating weights 

to minimize loss [11]. 

 

 

Figure 6: Forward and Backward Propagation 

Deep learning neural network models enable machines 

to identify and grasp intricate patterns in order to make 

intelligent judgements based on large quantities of data fed 

into the model for learning (a process known as training; see 

zhou2020theory). The problem of training deep learning 

models is complex. The next part discusses the primary 

research topics that were highlighted during the 

classification-based training of the pre-trained models, as 

well as the steps taken to reduce loss and increase 

accuracy. 

8 Remote Sensing Image Classification based 

on Pre-Trained Models 

Certain pre-trained models, such as VGG-19, Inception-

v3, and DenseNet, among others, serve as the foundation 

for the research. The model that performs the best in terms 
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of testing accuracy and test loss for image classification 

among all of these models may be used for the 

classification and retrieval system of remote sensing. 

8.1 General Flow of Transfer Learning Algorithm for 

Remote Sensing Image Classi- fication 

• Load the remote sensing datasets selected for experiments 

The dataset is partitioned into train, test, and validation 

splits, with 70% and 30% ratios. The model is trained using 

pictures from the training dataset. The validation dataset 

includes all of the pictures used to validate the model at 

each epoch. They are used to calculate training and 

validation accuracies, as well as loss, during each epoch of 

model training. The test dataset includes all of the 

previously unseen photographs from the Remote Sensing 

dataset. 

• Set the size of input image given as input to pre-

trained model (224,224). 

Pre-trained models often take 224 × 224 photos from remote 

sensing datasets as input, despite the images in the dataset 

having different dimensions. The photographs in the 

collection must thus be scaled to fit the required 

dimensions. 

  

Figure 7: Remote Sensing Image Classification based on Pre-Trained Models 

• Model Training 

1. Model building 

(a) Load pre-trained base model with its pre-trained weights. 

(b) Customise the mode by changing the last layer based on the number of classes contained in the dataset. 

(c) Multiclass classification is performed using the Softmax activation function at the dense output layer. 

2. Compiling Model 

The Adam optimiser is used to evaluate the categorical cross-entropy function. Adam optimiser determines the optimal training 

rate for model compilation. 

3. Fitting the Model 

Now the model is ready to train. Early stopping is used to cease training the model if the loss from continued validation 

grows. 

4. Performance Evaluation 

The accuracy and loss learning curves are plotted. Accuracy, precision, recall, and F1-scores are evaluated. 

General flow of transfer learning is presented in figure8. 

9 Evaluation Metrics 

The evaluation of algorithms is a crucial component of every research project. The Confusion Matrix, Accuracy, Precision, 
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Recall, and F1-Score are common evaluation measures used by scholars. 

 

  

Figure 8: Remote Sensing Image Classification based on Transfer Learning 

 

9.1 Confusion Matrix 

Confusion measures are utilised for binary classification scenarios, such as having two classes: YES or NO, as seen in table7. 

 

 

True positives are those where the classifier predicted yes and the outcome was also yes. True negatives happen when the 

classifier predicted no and the result was also no. False positives occur when a classifier predicts yes but the outcome is 

negative. A false negative happens when the classifier predicted no but the actual outcome was yes. 
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9.2 Accuracy 

The accuracy is defined as the number of forecasts divided by the total number of predictions. The proportion of correct 

predictions made by our model is known as its accuracy. Accuracy is calculated by dividing the number of true positive and 

negative outcomes by the total number of samples. 

 

9.3 Precision 

Precision is defined as the ratio of actual positive results to those predicted by the classifier. 

 

 

 

9.4 Recall 

Precision = TruePositives+ TotalPositives 

FalsePositives 

(3) 

The ratio of accurate positive results to the total number of real samples is known as recall. 

 

Recall = TruePositives 

TruePositives + FalseNegatives 

(4) 

9.5 F1-Score 

The F1-Score is the average of precision and recall. 

F 1Score = 2P × R 

P + R 

(5) 

The F1-Score ranges from 0 to 1. It shows the classifier’s 

accuracy by measuring the proportion of examples it 

correctly classifies and does not overlook. The F1 Score is 

calculated by balancing recall and precision. Low recall 

and high accuracy produce incredibly accurate results, but 

they miss many difficult-to-classify occurrences. F1 score, 

accuracy, precision, and recall all improve as the chosen 

model performs better. 
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9.6 Training Accuracy 

The model’s accuracy is based on the training dataset 

samples. In general, the model’s accuracy improves as the 

number of epochs grows. 

 

9.7 Validation Accuracy 

Testing accuracy, also known as validation accuracy, is a 

statistic obtained using datasets that were not used to train 

the model. During training, the model was not shown these 

dataset instances. It exhibits the model’s generalisability. It 

is assumed that the validation accuracy will be lower or 

equal to the training accuracy. Validation and training 

accuracy vary greatly, indicating underfitting and 

overfitting, respectively. 

 

9.8 Training Loss 

It is used to update the model’s parameters in order to 

decrease loss on training data. It shows how well the 

model fit the training data. The model gradually 

deteriorates as it learns from the input. 

9.9 Validation Loss 

During training, the non-training data is set aside as a 

validation set. It evaluates how well the model performs 

using the validation set. Throughout training, it assesses the 

model’s capacity to generalise to new situations. When 

validation loss grows while training loss decreases, 

overfitting occurs. 

10 Key Issues Considerations while Training 

CNN’s for Image Classifi- cation 

A model with too many parameters may perform well on 

training data but struggle extrapolating to test or unknown 

data. We refer to this phenomenon as "over-fitting." Long-

term training with many parameters and little training data 

causes overfitting [24]. The suggested pre-trained models 

leverage CNN’s regularization technique to avoid 

overfitting. Regularization is the process of assigning 

significant weights to the model. The dropping strategy is 

another option. Dropping refers to the random elimination 

of neurons during training. Because it is no longer 

dependent on a single neuron, it optimizes the model [35]. 

Under fittingWhen the model is underfit, it performs 

Figure 9: Overfitting and Underfitting 

badly on both training and validation data samples because 

it cannot understand the patterns in the data [36]. 

Increasing the model’s complexity by adding more layers 

or neurons—basically, more data—resolves underfitting 

and helps the model interpret complex patterns efficiently 

[37]. Figure 9 depicts both overfitting and underfitting. 

CNNs, because to their relatively shallow architecture (less 

than 30 layers), may fail to capture the complex elements 

included in remote sensing photos, which is required for 

more successful picture categorisation that involves the 

extraction of high-level semantic properties. Deeper 

networks can extract more abstract and significant 

information from incoming data (Shao 2020, Multilabel). 

Transfer learning has been demonstrated to increase 

classification accuracy by addressing overfitting and 

underfitting in CNN’s deep learning pre-trained models, 

such as AlexNet, ResNet, GoogleNet, etc. [1]. 

 

 

 

Figure 10: Vanishig Gradient 
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10.1 Insufficient or Imbalanced Data 

A small or imbalanced dataset produces poor classification 

results. With only 21 classes, the suggested UC-Merced 

dataset is limited and may not give useful results. To 

improve training samples and avoid underfitting, 

transforma- tions like as flipping, scaling, and rotation are 

applied to existing dataset images to generate new dataset 

samples. The phrase [38] refers to data augmentation. 

 

10.2 Vanishing and Exploding Gradients 

The model struggles to train when the gradients during 

backpropagation grow too small, a phenomenon known as 

disappearing gradients. When gradients are large and 

multiply exponentially over time, the model becomes 

unstable and incapable of learning new data. This is called 

the exploding gradient problem [39]. The use of the 

sigmoid function limits the neural network’s ability to learn 

during forward propagation. A sigmoid function is a 

logarithmic function whose output value ranges from 0 to 

1. It activates the output layers in binary classification 

[40]. 

σ (x) = 1/1 + e−x (6) 

First derivatives of sigmoid functions are bell curves having 

values ranging from 0 to 0.25. 

The partial derivative of nodes with sigmoid activation 

functions reaches a maximum of 0.25. As the number of 

network layers increases, the derivative value product falls 

until a certain point. The partial derivative disappears as the 

loss function’s partial derivative approaches zero. The 

network weights in deep networks remain constant once 

the derivative is removed. To lower the loss function during 

back propagation, a neural network learns by adjusting its 

weights and bias parameters. 

The vanishing gradient problem occurs when a network’s 

performance rapidly degrades because its weights cannot be 

adjusted, stopping it from learning. The disappearing 

gradient problem is caused by the derivative of the sigmoid 

activation function (Hanin 2018). For experimentation, the 

activation function ReLU (Rectified Linear Units) is 

employed instead of the sigmoid. When applied to 

positive input values, ReLU gives a positive linear output 

[41]. When given negative input, the function will return 

zero. 

The derivative of a ReLU function is 1 for larger-than-

zero inputs and 0 for negative inputs. The graph below 

shows the derivative of a ReLU function. 

 

 

 

Figure 11: ReLu Activation Function 

Figure 12: ReLu Derivative 
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The vanishing gradient research problem is handled 

utilising the ReLU activation function instead of the 

sigmoid function. This prevents the gradient from fading 

since the partial derivative of the loss function will be 

either 0 or 1. Previously trained models The VGG-19 

DenseNet pre-trained model solves the vanishing gradient 

research problem with the ReLu activation function. 

10.3 Batch Normalization 

Batch normalization stabilises gradients by ensuring 

constant mean and variance for each neural network layer 

[42].This optimising technique accelerates and stabilises 

deep neural network training by decreasing the loss function 

[42]. The current batch’s means=0 and variance=1 are 

fixed, and activation functions from the hidden layer are 

normalized [43]. 

The nonlinear function is applied either before or after the 

normalization step. Furthermore, batch normalization 

reduces the internal covariate shift, which is a shift in the 

network activation function distribution caused by changes 

to network parameters during training [44]. Batch 

normalization introduces higher learning rates while 

avoiding deviating from local minima. Batch normalization 

regularizes the model by reducing the need for 

dropouts[44]. The following is a mathematical depiction of 

adding a batch normalisation layer to a minibatch β: 

 

 

  

Figure 13: Caption 

 

yi = γxi + β = BNγ,β (xi)         (10) 

10.4 To Locate Local Minima and Global Minimum 

The loss function is optimized using both local and global 

minima. The loss function computes the difference between 

the ground truth and a model’s predictions [45]. A local 

minimum is a point in the parameter space where the local 

neighborhood’s loss function is at its lowest. A global 

minimum occurs when the loss function is globally 

minimised in the parameter space [46]. When the cost 

function reaches 0 or near to zero, the model stops 

learning. 

Minima local attempts to approximate the global minimum 

form. On both sides of the current point, the slope of the 

cost function increases. Global minima produce a saddle 

point, which is a local minimum [47]. A saddle point 

occurs when the slope of the cost function rises on both 

sides of the current point. A saddle point has a negative 
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gradient on one side, which leads to a local minimum on 

the opposite side [48]. 

10.5 Gradient Descent 

Gradient descent helps neural networks learn more 

consistently by computing the cost function. By altering 

the parameters, the cost function is computed iteratively 

[49]. To give as little inaccuracy as feasible, the model 

adjusts its parameters until the function approaches or 

equals zero. Gradient descent acts as a watchdog, ensuring 

the model’s accuracy at each iterative step until it reaches 

or equals zero loss[50]. 

The recommended strategy employs the gradient 

descent optimisation method. Gradient descent begins at a 

randomly chosen position. The parameters are 

progressively adjusted in the direction of the steepest fall. 

Gradient descent eventually converges to a local 

minimum. Although gradient descent may trap a local 

minimum, it does not find the global minimum.To avoid 

overfitting and trapping in local minima, the proposed 

technique employs regularisation [51]. Gradient descent 

methods are classified into three types: batch, stochastic, 

and mini-batch. 

Batch gradient descent calculates the total of errors for 

each point in a training set. Once each data sample has 

been trained, the model is updated. This is referred to as 

an epoch. 

Stochastic Gradient Descent Stochastic Gradient 

Descent (SGD) runs a training epoch for each sample in 

the training dataset.It updates the parameters of each 

training sample one by one [52]. They are easy to store in 

memory because only one training sample is kept at a time. 

However, these regular adjustments lead to losses. Thus, 

batch gradient descent is more computationally efficient 

than SGD [53]. It is still regarded to be a superior method 

for avoiding local minima and locating global ones. 

Mini Batch Gradient Descent Mini-batch gradient 

descent combines batch and stochastic gradient descent 

techniques (Hinton, 2012). The training dataset is separated 

into manageable batches. It updates each of the batches. 

Mini batch gradient maintains a balance between 

stochastic gradient descent for speed and batch gradient 

descent for computational efficiency [54][55]. 

10.6 Adam Optimization 

Adam stands for Adaptive Moment Estimation. The Adam 

optimiser, which trains neural networks by changing 

model parameters to minimise loss, is based on gradient 

descent [56]. It evaluates each person’s adaptive learning 

rate based on a variety of parameters. Adam is known as the 

Adaptive Learning Rate Algorithm. Rapid convergence 

accelerates neural network training [57]. Adam can be 

represented mathematically as: 

 

Θ = Θ − α ∗ βt (11) 

WhereΘ = Model parameters α = Learning rate, gt = 

Gradient of the cost function with respect to the parameters. 

To minimise loss, this update adjusts the parameters Θ in 

the negative direction of the gradient. The learning rate, α, 

defines the step size. The traditional gradient descent 

technique begins with a high learning rate, manually adjusts 

the alpha in increments, and maintains a fixed learning rate 

α. A extremely high learning rate at the start may miss the 

minima, as indicated in gradient descent, but a lesser 

learning rate causes very slow convergence. Adam 

addresses this issue by modifying the learning rate α for 

each parameter Θ, resulting in faster convergence compared 

to using a constant global learning rate and standard 

gradient descent. Adam encounters two stages: 

momentum and root mean square propagation. 

 

10.7 Momentum 

Momentum accelerates gradients in the correct direction 

by adding a fraction of the preceding gradient to the 

current gradient, which speeds up training [58]. When the 

momentum term proportional to the prior gradients 

accumulates, the optimisation will move faster in that 

direction [59]. If the previous few steps were all in the 

same direction, momentum encourages the current step to 

follow suit and take fewer steps. The purpose of 

momentum is to accelerate in predictable directions [58]. 

 

Vt = γ ∗ Vt−1 + η ∗ gt (12) 
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θ = θ − Vt (13) 

Since Vt is a function of the prior momentum vector vt−1, it 

is the momentum vector at any given time. The learning 

rate utilised to take the step in the gradient’s negative 

direction is η, while the hyperparameter γ is the 

momentum decay that exponentially decays the previous 

momentum vector. 

Root Mean Square Propagation (RMSPROP) To 

adaptively update the learning rate, RMSProp examines the 

steepness of the error surface for each parameter. Smaller 

steps are utilised to update parameters with steep 

gradients. Larger steps are utilised to update low gradients 

(kurbiel2017training). Adam employs the hyperparam- 

eters β1 and β2 to combine momentum and RMSPROP. 

Adam begins when mt−1 and vt−1 reach zero in the final 

version. The t value varies depending on the number of 

steps taken. Adam outperformed other adaptive learning 

rate algorithms due to its stability over difficulties and faster 

convergence [60]. α -Step size for optimization β1-Decay 

rate for momentum. (Typical value is 0.9) β2-Decay rate for 

squared gradients.(Typical value is 0.999) ϵ -Small value to 

prevent division by 0.(Typically around 8) 

 

  

Figure 14: Categorical Cross Entropy 

10.8 Computing Categorical Cross Entropy Loss 

Categorical cross entropy loss refers to the usage of the 

Softmax activation function with cross entropy loss. To 

generate a probability over the C classes for each image, it 

will train proposed pre-trained models [61]. Figure 14 

shows the categorical cross entropy function for multiclass 

categorisation. 

The associated labels in multiclass categorisation are 

extremely popular. Loss is just the responsibility of the 

positive class Cp. As with ti = tp, there is only one non-

zero target vector (t). Equation (2) can be changed as 

follows by removing the summing elements that are 0 due 

to their target labels: 

 

 Where Sp is the CNN score for the positive 

classification. After defining the loss, the next step is to 

compute the gradient of CE loss with respect to CNN 

output neurones, which translates to computing loss with 

respect to each CNN class score in S. CNN optimises the 

loss function by tuning net parameters [62]. 

For classes that are negative, the loss is 0. However, 

because the Softmax of the positive class is equally 

determined by the scores of the negative classes, the 

negative classes’ loss gradient is not removed. With the 

exception of the ground truth class Cp, where the score of 

CP (SP ) appears in the nominator, all classes C will have 

the identical gradient expression. In terms of positive 

classes, the derivative is: 
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The first equation represents gradient variance, often 

known as the weighted moving average of squared gradients. 

In the θ update, the learning rate divides the square root of 

the moving average of squared gradients. This means that 

when the gradient variance is large, we reduce the learning 

rate to get smaller updates. To come closer to the optima, 

increase the learning rate while keeping the gradient 

variance to a minimum. Adam is presented as follows: 

 

  

Figure 15: Caption 

 

10.9 Learning Rate or Step Size 

The learning rate refers to the number of steps taken to 

reach the minimum. The cost function analyses and updates 

the extremely low value [63]. Higher alpha or learning 

rate values result in larger steps, but it is possible that the 

minimum will be exceeded. Smaller steps correspond to 

lower levels of α or learning rate. It has high precision but 

requires longer calculation time to produce minima [64]. 

The suggested method sets the learning rate at 0.1. The 

learning rate determines how often the neural network 

changes the weights it has learnt. The complex data patterns 

can be learnt by increasing the training epochs [65]. 

10.10 Early Stopping 

At the epoch when model training loses improvement score, 

training is ended if the validation loss does not improve 

further with increasing epochs [66]. We call this an early 

stop. The ratios of photos in the train, validation, and test 

datasets are randomised to prevent the model from 

encountering the same collection of images repeatedly 

across batches[67].The term "patience" refers to how many 

epochs should elapse before an early stop is made in the 

case that the validation set does not improve. 

10.11 Slow Learning 

Deep learning model training can take a significant amount 

of time. Training the massive ImageNet dataset requires a 

significant amount of time. Mini-batch gradient descent is 

used to train models on smaller datasets [68]. This 

expedites the training process. GPUs are utilised to 

parallelise the training process. 

10.12 Softmax output Activation Function 

Prior to calculating loss, activation functions are employed 

to transform the output vectors (S) produced by neurones. 

During the training phase, activation functions are used to 

adjust vectors before calculating the loss [69]. The output 

vector S is activated using the Softmax function. The class 

probabilities are displayed in the output. It calculates the 

likelihood of each possible outcome [70]. The 

probabilities in output vector S add up to 1 for each 

possible class outcome (Sharma, 2017). Because Si 

corresponds to each element of S, the softmax function can 

be applied separately to each Si. Figure 14 shows the 

mathematical representation of the Softmax function for 

each Si class. 

11 Conclusion 

This paper’s main objective is to make clear the crucial 

elements to take into account when training pre-trained 

models and how to steer clear of research issues in order to 

optimise validation accuracy and reduce validation loss by 

adjusting the parameters influencing model training during 

transfer learning. Batch normalisation, gradient descent, the 

Adam optimiser, estimating categorical cross entropy loss, 

and the softmax activation function have all been examined 

in this study. Taking these training elements into account 

would undoubtedly improve the pre-trained models’ training 

process in an efficient manner, resulting in increased 

testing accuracy and reduced testing loss. 
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