

International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING

ISSN:2147-6799 www.ijisae.org Original Research Paper

Synthesis And Biological Evaluation of Fluoroluminescent Ruthenium Complexes as Potential Cancer Therapeutics

A. Dayanand^{1, a)}, A. Vasantha ², D. Venkateshwar Rao³, Konda Sumana Yadagiri⁴, N. Deepika⁵

Submitted: 27/10/2024 **Revised:** 20/11/2024 **Accepted:** 15/12/2024

Abstract: Ruthenium (II) polypyridyl complexes are one of the most extensively studied and developed systems in the family of luminescent transition-metal complexes. There has been a large amount of interest in the biological applications of these luminescent ruthenium (II) complexes because of their rich photo physical and photochemical properties with a focus on their use as phototherapeutic agents. A new ligand BMPIP (2-(3-methoxy-4 phenoxy phenyl)-1-H-imidazo[4,5-f][1,10]phenantroline) and its four luminescent ruthenium complexes were synthesized and characterized DNA binding studies, photo cleavage studies, anti microbial studies were performed and the cytotoxic activity of the complexes against cancer HeLa cells was evaluated by MTT method. The IC50 values range from 41 ± 0.5 to 62 ± 0.5 μ M. Photodynamic therapy (PDT) has recently emerged as a potential valuable alternative to treat microbial infections. In PDT, singlet oxygen is generated in the presence of photo sensitizers and oxygen under light irradiation of a specific wavelength, causing cytotoxic damage to bacteria. However, both complexes exhibit lower cytotoxicity than cisplatin toward HeLa cell lines under identical conditions.

Key words: pBR322DNA, calf thymus DNA, cytotoxic, BMPIP, polypyridyl complexes, Absorption, emission, viscosity, photocleavage, anciliary, Intercalating.

INTRODUCTION

During the past decade, cancer incidence rates are increasing alarmingly due to many reasons [1-2]. Now designing effective anti-cancer drugs are an active research area in the field of pharmaceutical chemistry. Although cisplatin has been in clinical use for over 30 years, due to its dose-limiting nephrotoxicity and the development of drug resistance prevents its potential efficacy [3-5]. While some second generation platinum complexes are less toxic than cisplatin, and others can partially overcome acquired resistance, there has been little success in developing drugs that are

1Department of Chemistry, GovernmentDegree College, Maheshwaram, Telangana, India
2Department of Chemistry, GovernmentDegree College Women, Nalgonda, Telangana, , India
1Department of Chemistry, GovernmentDegree College, Ibrahimpatnam, Telangana, India
3Department of Biochemistry, Government City College, Ghansi bazaar, Hyderabad, Telangana, India
4Department of Chemistry, TSWRDCW-Mahabubnagar, Doddalonipally, Mahabubnagar, Telangana, India.
a)nandachemjl@gmail.com

active in cancer cell lines resistant to cisplatin. Consequently, there has been considerable interest in the development of "non-classical" platinum complexes that can bind DNA in a different manner than cisplatin and its analogues [6–11]. This provides the impetus to search for alternative metal based drugs..

Ruthenium complexes are considered promising alternatives to platinum complexes. These complexes show promising antiproliferative activity and lower toxicity than platinum-based drugs developed in the last two eras; Clinical studies have been carried out in particular on NAMI-A and KP1019 [12], whose effect is based on activation by reduction of Ru(III) to Ru(II). Furthermore, synthesized ru(II)arene complexes such as RM 175 [13] (or) RAPTA-T [14] have shown antitumor activity both in vitro and in vivo. Research on Ru(II) polypyridyl complexes is particularly extensive due to their ease of synthesis, interesting chemical, physical photophysical properties, and their high affinity for nucleic acids. Previous studies have focused on characterizing the in vitro interactions of these complexes with DNA [15-18] and quantifying the effectiveness of the compound as both traditional cytotoxic agents and light-activated agents, in photodynamic therapy (PDT) or phototherapy and as sensors or biocatalysts. An attractive feature of Ru(II) polypyridyl complexes that makes them particularly useful for applications such as biological probes and effectors is the diversity of chemical structures that are readily accessible via coordinated ligand modifications (28).

In recent years, many authors have published their findings on the DNA binding and anticancer activity of Ru(II) polypyridyl complexes containing various intercalating ligands [29-31]. Some reports suggest that accessory ligands play an important role in biomolecular interactions and recognition processes, so the variability of accessory ligands of Ru(II) complexes may lead to differences in biological activity [32-34]. Our research group has also published several reports on DNA binding studies and anticancer studies on polypyridylruthenium(II) complexes with various intercalating and accessory ligands [35-40]. In this article, we report the synthesis and characterization of the four complexes 1 to 4. DNA binding, photocleavage ability, antimicrobial assays, light on/off properties, and antitumor activity were investigated.

2.1 SYNTHESIS

2.1.1 Synthesis of ligand 2-(3-methoxy-4phenoxyphenyl)-1-H-imidazo[4,5f][1,10] phenanthroline (BMPIP)

A mixture of phendione (1 mmol) and 4(benzyloxy)3-methoxybenzaldehyde (1.5 mmol), ammonium acetate and glacial acetic acid was heated to reflux with stirring for 2 hours. The solution was cooled and diluted with 25 ml of water. It was neutralized by adding concentrated ammonia dropwise. The precipitate was collected and purified by silica gel column chromatography (60–100 mesh) with ethanol as eluent to produce golden yellow BMPIP needles, which were aspirated, filtered, and recrystallized.(Fig. 1)

Analytical Data: C₂₆H₁₈N₄O₂Calcd.(%): C:74.63; H: 4.34; N: 13.39; Found(%): C: 73.98; H: 4.28; N: 12.99; ESI-MS(m/z): 418. ¹H NMR (DMSO-d₆, 400M Hz; TMS, δ-ppm): 8.92681(d, 2H), 7.85505 (d, 2H), 7.49900 (d, 1H), 7.43150 (t, 2H), 7.39470 (t, 2H), 7.34893 (d,1H), 7.21134 (d, 2H), 7.19002 (d, 1H), 5.59111(s,1H).

$$\begin{array}{c} \text{OHC} \\ \text{OCH}_3 \end{array} \begin{array}{c} \text{1.NH}_4\text{OAc} \\ \text{2.AcOH} \\ \text{N} \\ \text{N} \end{array} \begin{array}{c} \text{H} \\ \text{N} \\ \text{OCH}_3 \end{array}$$

FIGURE. 1. Synthesis of BMPIP

2.1.2 Synthesis of [Ru(phen)₂ BMPIP] (ClO₄)₂ 2H₂O(1)

A mixture of phendione (1 mmol) and 4(benzyloxy)3-methoxybenzaldehyde (1.5 mmol), ammonium acetate and glacial acetic acid was heated to reflux with stirring for 2 hours. The solution was cooled and diluted with 25 ml of water. It was neutralized by adding concentrated ammonia dropwise. The precipitate was collected and purified by silica gel column chromatography (60–100 mesh) with ethanol as eluent to produce golden yellow BMPIP needles, which were aspirated, filtered, and recrystallized.(Fig. 2.1.)

This complex [Ru(phen)₂ BMPIP] (ClO₄)₂ 2H₂O is prepared by the similar procedure described for the above complex with a mixture of cis-[Ru(phen)₂Cl₂].2H₂O (0.5mmol) and BMPIP (0.5mmol).

Analytical Data: RuC₅₀H₃₈Cl₂N₈O₁₂Calcd.(%) C: 53.87; H: 3.44; Cl, 6.36; N: 10.05; Found(%):C: 53.87; H: 3.44; N: 10.05; ESI-MS(m/z): 1114.9. ¹H NMR (DMSO-d₆, 400MHz; TMS, δ-ppm): 9.01327, 8.69094, 8.03417, 7.87807, 7.64645, 7.4075, 7.15914, 5.16826, 3.8678, 3.50643, 2.49590. ¹³C-NMR (DMSO-d₆, 400MHz;δ-ppm): 125, 40.489, 40.279, 40.072, 39.864, 39.655, 39.448, 39.240, 21.174, 20.

2.1.3 Synthesis of [Ru(bpy)₂BMPIP] (ClO₄)₂ 2H₂O (2)

This complex [Ru(bpy)₂BMPIP] (ClO₄)₂ 2H₂O is prepared by the similar procedure described for the above complex with a mixture of cis-[Ru(bpy)₂Cl₂].2H₂O (0.5m mol) and BMPIP (0.5m mol).

Analytical Data: RuC₄₆H₃₈Cl₂N₈O₁₂ Calcd.(%) C, 51.79; H, 3.59; N, 10.50;. Found(%):C, 50.63;

H, 2.83; N, 9.68;. ESI-MS(m/z): 1066. ¹H NMR (DMSO-d₆, 400MHz; TMS, δ-ppm): 8.886(d,2H), 8.8508(d,4H), 8.5306(d,4H), 8.0521(d,2H), 7.8840(t,4H),), 7.6157(t,4H), 7.593(t,2H), 7.4241(d,2H), 7.4053(t,1H), 7.3725(d,1H), 7.3576(d,1H), 7.3406(d,1H). ¹³C-NMR (DMSO-d₆, 400MHz;δ-ppm): 157, 152, 150, 139, 138, 129, 71, 70.424, 56.336, 40.568, 40.360, 40.151, 39.943, 39.734, 39.526, 39.315.

2.1.4 Synthesis of [Ru(dmb)₂BMPIP] (ClO₄)₂ 2H₂O (3)

This complex $[Ru(dmb)_2BMPIP]$ (ClO₄)₂ 2H₂O is prepared by the similar procedure described for the above complex with a mixture of cis- $[Ru(dmb)_2Cl_2].2H_2O$ (0.5mmol) and BMPIP (0.5mmol).

Analytical Data: $RuC_{50}H_{46}Cl_2N_8O_{12}Calcd.(%)$ C, 53.48; H, 4.13; N, 9.98; Found(%):C, 52.63; H, 3.78; N, 8.54; ESI-MS(m/z): 1122.8. ¹H NMR (DMSO-d₆, 400MHz; TMS, δ-ppm): 9.04058, 8.71482, 8.4, 8.04936, 7.89818, 7.4136, 7.16193. ¹³C-NMR (DMSO-d₆, 400MHz;δ-ppm): 9.04058, 8.71482, 8.4, 8.04936, 7.89818, 7.4136, 7.16193.

2.1.5 Synthesis of [Ru(Hdpa)₂BMPIP] (ClO₄)₂ 2H₂O (4)

A mixture of cis- [Ru(Hdpa)₂Cl₂]Cl (0.26 mmol) and BMPIP (0.26 mmol) was heated to reflux in water (30 mL) for 15 min under N₂ atmosphere, after which the solution was cooled then the reducing agent 30% H₃PO₃ neutralized with NaOH was added to the reaction mixture and the reflux were continued to 3 h and treated with an excess of NaClO₄. The precipitated complex cis-[Ru(Hdpa)₂BMPIP] (ClO₄)₂ 2H₂O (Fig. 2.5.3.) was dried, dissolved in a small amount of acetonitrile, and purified by chromatography over alumina using acetonitrile – methanol (3:1, v/v) as an eluent. The red coloured compound was obtained after drying in vaccum.

Analytical Data: $RuC_{46}H_{36}Cl_2N_{10}O_{12}$ Calcd.(%) C, 50.56; H, 3.32; N, 12.8; Found (%):C: 49.68; H: 2.89; N, 11.6;. ESI-MS (m/z): 1092.8. 1 H NMR (DMSO-d₆, 400MHz; TMS, δ-ppm): 9.0094 (d, 2H), 8.59 (d, 4H) 8.0 (d, 2H), 7.7612 (d, 4H) 7.3842 (t, 4H), 7.33 (d, 1H), 7.3 (t, 2H), 7.22 (d, 2H),6.98 (t, 1H), 6.8456 (d, 1H), 6.54 (d, 1H), 5.1654 (d, 1H). 13 C-NMR (DMSO-d₆, 400MHz;δ-ppm):158,157,154,152.9,152, 149.8, 137,131.1,127, 123.6, 122, 121.5, 116, 110.3, 104.1.

2.2 Physical Measurements

All synthesized compounds were characterized by elemental analysis, mass analysis, infrared, electron absorption and nuclear magnetic resonance spectroscopy. Electron absorption spectroscopy in the visible and visible range recorded with an Elico BL 198 spectrophotometer. Fluorescence emission spectroscopy was performed with an Elico SL 174 spectrofluorometer, FTIR spectra were recorded on KBr disks with a Perkin Elmer FT-IR-1605 spectrometer. Microanalyses (C, H, and N) were performed using a Perkin Elmer 240elemental analyzer. ESI-MS in DMSO was recorded in the LQC system (Finnigan MAT, USA) using CH3CN as mobile phase. Nuclear magnetic resonance spectra (1HNMR and 13C[1H]NMR) recorded on a 400 MHz Bruker spectrometer with DMSO-d6 as a solvent at room temperature and tetramethylsilane (TMS) as an internal standard. Viscosity experiments were carried out using an Ostwald viscometer. Gel electrophoresis was imaged on a Gel Doc system (Alpha InfoTech Corporation). The Thermo Scientific Multi Skan EX Elisareader was used for the MTT test.

2.3 DNA Binding Experiments

Electronic Absorption AndFluorescence Titrations

electronic absorption titrations The emission titrations of the four complexes were monitored in both the absence and presence of DNA-CT. Uptake titrations of the complex in Tris buffer were performed by titrating a fixed concentration of the complex to which successive portions of the DNA stock solution were added. The assembled DNA solutions were incubated for 5 min before recording absorption or emission spectra. To evaluate the binding strength of the complex, the intrinsic binding constant Kb to CT-DNA was determined by monitoring absorbance change in the metal-ligand charge transfer (MLCT) band with increasing DNA concentration. The internal binding constant Kb of DNA-bound Ru(II) complexes was calculated according to equation [41].

[DNA]/(ε_a – ε_f) = [DNA]/(ε_b – ε_f) + 1/Kb (ε_b – ε_f)

where [DNA] is the concentration of DNA. The apparent extinction coefficient (ϵ_a) was obtained by calculating A_{obs} / [Ru]. The terms ϵ_f and ϵ_b correspond to the extinction coefficients of free (unbound) and the fully bound complex

respectively. From plot of [DNA]/ $(\epsilon_a - \epsilon_f)$ against [DNA] will give a slope 1/ $(\epsilon_a - \epsilon_f)$ and an intercept 1/ $K_b(\epsilon_b - \epsilon_f)$. K_b is the ratio of the slope to the intercept.

In fluoroscence titrations the fraction of the ligand bound was calculated from the relation [42]

$$C_b = C_t [(F-F_0)/(F_{max}-F_0)],$$

where C_t is the total complex concentration, F is the observed fluorescence emission intensity at a given DNA concentration, F_0 is the intensity in the absence of DNA, and F_{max} is when complex is fully bound to DNA. Binding constant (K_b) was obtained from a Scatchard plot of r/C_f against r, where r is the $C_b/[DNA]$ and C_f is the concentration of free complex.

2.4. Light Switch On-Off Effect

Molecular studies of light switching in the DNA of Ru(II) complexes were carried out in Tris buffer solution at room temperature. A constant complex excitation wavelength was assumed and the emission range was adjusted before measurements. These titrations were performed by sequential addition of Co2+ and EDTA to the DNA-bound complex.

2.5. Viscometric Titrations

Viscosity experiments were performed using an Ostwald viscometer placed in a thermostatic water bath to maintain a constant temperature of 30.0 \pm °C. Calf thymus DNA samples approximately 200 base pairs were prepared by sonication to minimize complexity due to DNA flexibility. The flow time was measured with a digital stopwatch, each sample was measured three times and the average flow time was calculated. The data are presented as $(\eta/\eta 0)1/3$ versus[complex]/[DNA], where η is the viscosity of the DNA in the presence of the complex and $\eta 0$ is the viscosity of the DNA alone. Viscosity values were calculated from the observed flow time of DNA-containing solutions (t>100 s), corrected for the flow time of the buffer itself (t0) [43, 44].

2.6. DNA Photocleavage And Agarose Gel Electrophoresis

For the gel electrophoresis experiments pH 8.0 buffer of 40 mM Tris base, 20 mM acetic acid, and 1 mM EDTA were used. A buffer of 10 mM Tris–HCland 1 mM Na₂EDTA was used for dilution of pBR322 DNA. Supercoiled pBR322 DNA (0.1 g/ μ L) was treated with ruthenium (II) complexes with concentrations of 20–60 μ M, and the mixtures were irradiated at room temperature with a UV

lamp (365 nm, 10 W) for 60 min. A loading buffer containing 25 % bromophenol blue, 0.25 % xylene cyanol, and 30 % glycerol (2 μ L) was added. The samples were then analyzed by 0.8 % agarose gel electrophoresis at 50 V for 2 h. The gel was stained with 2 μ L (from 1 mg/100 μ L) ethidium bromide [45] and photographed under UV light. The gels were viewed with a gel documentation system and photographed using a CCD

2.7 Biological Activity

The in vitro antifungal and antibacterial activities of the four complexes were tested using the agar well diffusion method. Agar bioassay was used to test antifungal activity. The prepared potato dextrose agar (PDA) medium (Hi medium, 39 g) was suspended in distilled water (1000 ml) and heated to boiling until completely dissolved. The medium and Petri dishes were autoclaved for 20 minutes at 15 lbs/boost. Once the plating medium had solidified, 0.5 ml (1 week) of theculture of the test organism was inoculated and spread evenly on the agar surface using a sterile L-shaped swab. The solutions were prepared by dissolving compound in DMSO at different concentrations. were received. After inoculation, wells were removed with a sterile 6 mm corkscrew and lids were placed on the plates. Different concentrations of the test solutions were added to each well. The controls were maintained. Processed samples and controls were stored at 27 °C for 48 h.inhibition zones were measured and the diameter was calculated in millimeters. Three to four replicates were performed for each treatment.

2.8. Cytotoxicity Assay

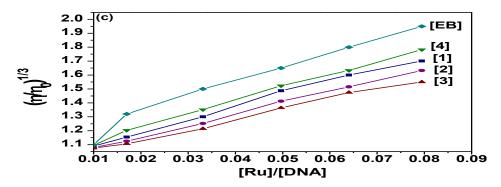
Standard MTT testing procedures were used [46]. Cells were added to 96-well microassay culture plates (8 × 103 per well) in 200 µL and cultured overnight at 37 °C in a 5% CO2 incubator. Complexes in the concentration range 1–100 µM, dissolved in DMSO, were added to the wells. Control wells were prepared by adding culture medium (200 µl). The plates were incubated for 48 hours at 37 °C in a 5% CO2 incubator. After 48 hours of incubation, approximately 20 µL of MTT dye stock solution was added to eachwell, the plates were wrapped in aluminum foil and incubated at 37 °C for 4 hours. The purple formazan product was dissolved by adding 100 μL of 100% DMSO to each well. Absorbance was monitored at 620 nm using a 96-well plate reader. Wells with cell-free culture medium were used as a negative control and cisplatin was used as a

positive control. DMSO was used as a vehicle control. A cisplatin stock solution (10 mM in DMSO) was prepared for each experiments. Stock solutions of metal complexes were prepared in DMSO and the DMSO percentage was kept between 0.1 and 2% in all experiments. DMSO itself was found to be non-toxic to cells up to a concentration of 2%. The data were collected in triplicate to obtain average values. IC50 values were determined by plotting percent viability versus concentration on a logarithmic graph and reading the concentration at which 50% of cells remained viable compared to the control. This study used HeLa (a human cervical cancer cell line).

2.9. Molecular Docking:

The DNA crystal structure downloaded from the protein database (PDB ID: 5J3G) into the Molecular Operating Environment (MOE) software (47). All water molecules were removed and all polar hydrogen atoms were added to the DNA structure, preserving its standard geometry. Energy minimization was then applied. The 3D structure of the Ru(II) complexes was drawn using Chemsketch software and saved in Mol2 file format, and the energy was minimized in Discovery Studio. All complexes were docked to DNAusing MOE. It contains a list of conformations and the best fit to the active site was found based on the interaction energy between the DNA and the complex. The MOE-S score is used to estimate the binding energy of the highest conformations.

3. CHARECTERIZATION


3.1 Elemental Analysis

The percentage of elements such as carbon, nitrogen and hydrogen (C, N and H analysis) in the complexes is determined by elemental analysis. As a result of this analysis, the empirical formulas of transition metal complexes are determined. As expected, this elemental analysis agrees well with the calculated values except for experimental errors.

3.2. Viscosity Measurement

Viscosity measurements explain the interactions of Ru(II) complexes with DNA. How the complexes bind can be determined by viscosity measurements. Photophysical and optical probes provide essential assistance in changing DNA length after binding. In the absence of crystallographic studies, viscosity is considered the least ambiguous and most critical test of the binding pattern in solution (48, 49). In classical intercalation, the DNA helix elongates as the base pairs moveapart to accommodate the bound ligand, resulting in an increase in the viscosity of the DNA solution (42). In Fig. 2, the relative viscosities of complexes 1 to 4 are compared with the relative viscosity of the known intercalator ethidium bromide. For all four complexes, the relative viscosity increased steadily with the intercalation binding mode, as expected [50]. The order of relative viscosity of the 1-4 complexes are as follows

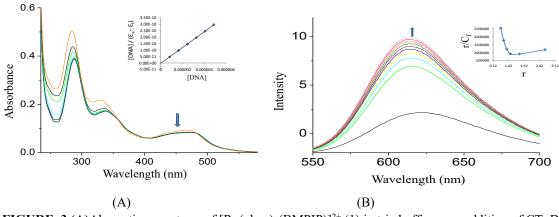
 $EtBr > [Ru(phen)_2BMPIP]^{2+} > [Ru(Hdpa)_2BMPIP]^{2+} > [Ru(bpa)_2BMPIP]^{2+} > [Ru(dmb)_2BMPIP]^{2+}$

FIGURE2. shows effect of increasing amount of ethidium bromide and complexes 1-4 on relative viscosity of CT-DNA at 30 ± 0.1 °C.

3.3. Absorption spectral studies (UV-Vis spectra):

The absorption spectrum of the BMPIP ligand shows a peak at 330 nm, which corresponds to the

transition of the ligands. The absorption spectrum of complexes 1 to 4 showed a peak at 360 nm, corresponding to the transition of the ligands, and another peak at around 460 nm due to the


absorption peak for charge transfer from the MLCT metal to the ligand, indicating the formation of complexes. It was also observed that in the complexes the peak shifted from 330 nm to 360 nm, which corresponds to a longer wavelength. In the visible region, the lowest energy bands at 438 nm, for complex 1, 460 nm for complex 2, 472 nm for complex 3 and 460 nm for complex 4, are attributed to the metal-ligand charge transfer (MLCT) Ru $(d\pi) \rightarrow Attributed to ligand <math>(\pi^*)$ transitions. In the case of metal intercalators, DNA binding is associated with hypochromism and red shift in the MLCT band. These complexes showed hypochromia of 28.2%, 25.6%, and 23.7% and 21.1% in the MLCT band, respectively. To further elucidate the binding strength of the complexes, internal binding constants of Kb were determined by monitoring the absorbance changes in the MLCT band. These spectral features obviously suggest that complexes 1, 2, 3, and 4 interact strongly with DNA in a manner that involves a interaction between the chromophore and the DNA base pairs. electronic absorption spectrum the [Ru(phen)2BMPIP] ²⁺ complex is shown in Fig 3(A). The values of the binding constants are listed in Table 1.

3. 4. Fluorescence spectroscopic studies:

Fluorescence titrations were performed to explore drug-DNA interaction, because it is one of the most common and sensitive methods in DNAbinding studies. The emission titration of complexes 1-4 were carried out in tris buffer at room temperature. the fluorescence spectra were recorded in the presence of varying concentrations of the complexes[51, 52]. The complex emits prominent luminescence in Tris-buffer with a maximum emission wavelength of about 650 nm. The well-behaved titration of the complex with CT-DNA is displayed in Fig 3.(B) shows fluorescence spectrum of complexes 1 with addition of CT-DNA, in Tris buffer with increasing concentration of CT-DNA. The arrow shows the fluorescence change upon increase intensity of DNA concentration. Inset: Scatchard plot of r/C_f vs r.

On addition of CT-DNA to the complex, enhancement in fluorescence without wavelength shift was observed in the region of 340-360 nm

The complexes $[Ru(phen)_2BMPIP]^{2+}$ (1), $[Ru(bpy)_2BMPIP]^{2+}$ (2) $[Ru(dmb)_2BMPIP]^{2+}$ (3) and $[Ru(Hdpa)_2BMPIP]^{2+}$ (4) exhibits fluorescence in the absence and presence of CT–DNA, in tris buffer at ambient temperature with λ_{max} at 616, 612, 608 and 605 nm, respectively. The ratio of [DNA]/[Ru] for complexes 1,2,3 and 4 increased to about 1.72 times (1), 1.65 times (2), 1.59 times (3) and 1.53 times (4) more than their respective complex alone 3.3.(c).

FIGURE. 3.(A)Absorption spectrum of [Ru(phen)₂(BMPIP)]²⁺ (1) in tris-buffer upon addition of CT–DNA in absence and presence of CT–DNA, the [complex] = 10–15 μ M; [DNA] = 0–126 μ M. Insert plots of [DNA]/(ϵ_a – ϵ_f) vs [DNA] for the titration of DNA with complex. Arrow shows change in absorption with increasing DNA concentration.

FIGURE. 3.(B)The fluorescence spectrum of [Ru(phen)₂BMPIP]²⁺(9) with addition of CT–DNA, in Tris buffer with increasing concentration of CT-DNA. The arrow shows the fluorescence intensity change upon increase of DNA concentration. Inset: Scatchard plot of r/C_f vs r.

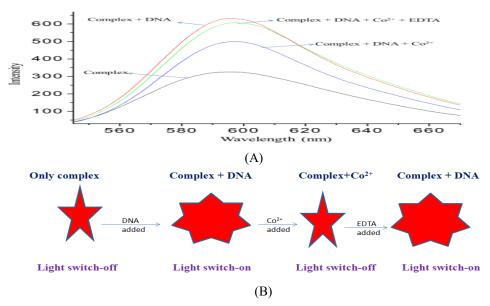
Table 1: K_b values of complexes 1-4

Complex	UV/Vis K _b	Fluorescence K _b
1	6.38x10 ⁵	8.50x10 ⁵
2	$3.17x10^5$	3.88x10 ⁵
3	$3.00 \mathrm{x} 10^5$	3.63x10 ⁵
4	4.79x10 ⁵	8.01x10 ⁵

3.5 Light Switch On-Off Effect

Cyclic switching on and off of Ru(II) complexes studied in the presence of CT-DNA. Transition metals are generally believed to quench light to confirm DNA intercalation. Molecular "light switch" research has primarily consisted of the search for a new "light switch" complex and DNA. When the complex binds to DNA, the emission intensity is maximum (turn on), when Co2+ solution is added to the DNA-bound complex, the emission intensity is, which is due to the formation of a low emission species, more likely. the formation of Co2+-

[Ru(phen)2BMPIP]2+, resulting in electron transfer or change in electronic structure. After further addition of EDTA to the Co2+-[Ru(phen)2BMPIP]2+ system, the emission intensity of the complex is restored (light on), as shown in Fig 4.(A) and Fig 4 (B). This means that the heterometallic complex is released after the formation of a strong Co2+-EDTA complex. A similar observation was made for other complexes. The change in luminescence of the DNA-bound complex indicates its use in modulating drug therapy.



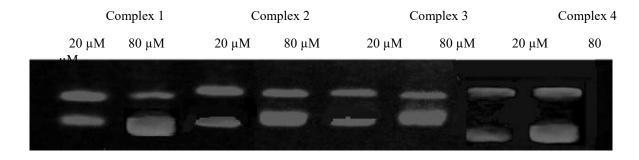

FIGURE4(A)DNA light switch on and off experiments showing the luminescence changes upon addition of Co²⁺,EDTA to [Ru(phen)₂BMPIP]²⁺ + DNA.

FIGURE 4(B) Pictorial representation: Luminescence modulation routes of complexes

3.6 Photoactivated Cleavage Studies

When circular plasmid DNA is subjected to electrophoresis, relatively rapid migration to the intact supercoiled form (Form I) is observed; When a cleavage (cut) occurs on a filament, the supercoil relaxes and forms a slower moving open circular shape (Form II) [53]. Figure.5 shows the separation of pBR322 DNA by gel electrophoresis after incubation with four complexes 1 to 4 at different concentrations and irradiation at 365 nm for 60 minutes. No obvious DNA cleavage was observed in the control containing no complex. As the concentration of the four complexes increased, the amount of Form I gradually decreased while the amount of Form II increased. Furthermore, the cleavage effect was found to be concentration dependent. Under comparable experimental conditions, all complexes 1-4 exhibit efficient

DNA photocleavage activity, confirming their DNA binding affinity.

FIGURE 5 shows the separation of pBR322 DNA by gel electrophoresis after incubation with four complexes 1 to 4 at different concentrations and irradiation at 365 nm for 60 minutes

3.7 In Vitro Cytotoxicity Assay

The cytotoxicity of all complexes against HeLa cell lines was evaluated by MTT assay. Cisplatin and DMSO used as positive and negative controls, respectively. After treatment of HeLa cell line for $48\,h$ with complexes 1-4 in the range of concentrations (4-100 μ M). The inhibitory

percentage against growth of cancer cells was determined. The cytotoxicity of complexes was found to be concentration-dependent. Cell viability decreased with increasing concentration of complexes 1 to 4 (Fig. 6). The IC₅₀ values for complexes 1 to 4 and cisplatin are shown in Table 2

Table 2. IC₅₀ values of complexes 1-4

COMPLEX	IC ₅₀ μM		
1	41.34±0.5		
2	48.32±0.5		
3	62.53±0.5		
4	57.99±0.5		
CISPLATIN	4.8±0.5		

FIGURE 6. HeLa cells were treated with Cisplatin and complexes 1-4 for 48 hrs incubation.

3.9. Biological Activity OfComplexes

The experimental results of antimicrobial activity indicated a variable degree of efficacy of the compounds against different strains of bacteria.

The in vitro antifungal activity of four complexes against fungal strains such as Candida albicans (MTCC 227), Saccharomyces cerevisiae (MTCC 36), Rhizopus oryzae (MTCC 262), and Aspergillus niger (MTCC 282) was tested using the well diffusion method of agar. Amphotericin was used as a standard. The antibacterial activity of complexes 1 to 4 was tested against three representative gram-positive

organisms, namely, Bacillus subtilis (MTCC 441), Staphylococcus aureus (MTCC 96), Staphylococcus epidermidis andgram-negative

organisms, viz. Escherichia coli (MTCC 443), Pseudomonaseruginosa (MTCC 741), Klebsiella pneumoniae (MTCC 618) using the broth dilution method recommended by the National Committee for Clinical Laboratory (NCCL). Penicillin and streptomycin will be used as standards under conditions identical to the purpose of comparison. . The minimum inhibitory concentrations (MIC) of complexes 1 to 4 are listed Experimental Table 3.3.3. results antimicrobial activity showed different levels of effectiveness ofcompounds against different bacterial strains. The compounds did not show significant antifungal activity, but did show antibacterial activity.

Table 3The MIC values of the complexes 1-4.

MIC (μg/ml)							
Complex	B.Subtilis	S.aureus	S.epidermidis	E.coli	P.aeroginosa	K.pneumoniae	
9	25	31	35.7	34.2	42	61.5	
10	75	>150	75	>150	150	150	
11	58	35	27	51	39	81	
12	41	46	40	79	52	64	
Penicillin	1.562	1.562	3.125	12.5	12.5	6.25	
Streptomycin	6.25	6.25	3.125	6.25	1.562	3.125	

3.10 Docking Studies

Molecular docking [54] was performed to further investigate the theoretical binding affinity of the complex to DNA. The best pose was selected and used for further study. The docking results showed that Ru(II) complexes bind to the DNA molecule via hydrogen bonds and vander Waals interactions, which can be evaluated very quickly

during the docking process. Hydrogen bonds play an important role in the interaction of the complex with DNA. It is evident that all complexes bound to theDNA binding cavity and formed base pair interactions. Receptor interacting residues, S-score and hydrogen bond distance for all complexes are listed in Table 4. The interactions between the complex and the DNA are shown in the fig. 7

Table.4. Interacting residues, S-Score and H- bond distance (Å) of complexes 1-4

Com	S-	Receptor	Hydrogen Bond	Hydrogen
plex	Score	Interacting residues	residues	Bond
				distance
1	-	DG4, DC5	Compound N1 – DG4;	2.91
	9.6887		Compound N4 – DC5	2.65
2	-	DG6, DG3	Compound N2 – DG6;	2.78
	9.7852		Compound N3 – DG3	2.53
3	-	DG6, DG4	Compound N2 – DG6;	2.16
	8.8743		Compound N2 – DG4	4.02
4	-	DG4	Compound N2 – DG4;	2.64
	9.9048		Compound N1 – DG4	2.94

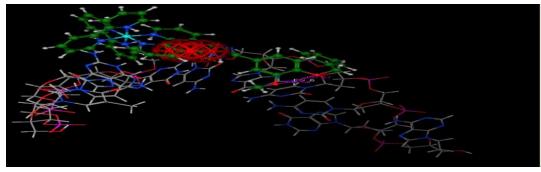


FIGURE7 Binding interactions between complex 1 DNA (PDB ID: 5J3G)

4. CONCLUSION

together, these results provide new insights into understanding the fundamental biological interactions and molecular mechanisms of Ru(II) polypyridyl complexes as well as the development of Ru(II)-specific neutral anticancer drugs. The four Ru(II) complexes [Ru(phen)₂(BMPIP)]²⁺(1), $[Ru(bpy)_2(BMPIP)]^{2+(2)}, [Ru(dmb)_2(BMPIP)]^{2+(2)}$ [Ru(hdpa)₂(BMPIP)]²⁺(4) weresynthesized and characterized. In vitro cytotoxicity tests showed that four complexes have antitumor activity, but it is weaker than cisplatin. Complex (1) exhibits stronger antitumor activity than the other three complexes. The antiproliferative effect of 1-4 on tumor cells is consistent with their binding strength, which is significantly improved by increased lipophilicity. Using fluorescence studies, light on/off studies, andphotodivision studies, we can confirm that these complexes can serve as PDT probes. The results of binding and anticancer studies of all of these complexes are comparable to those of their parent intercalating ligands pip, ppip, with minor differences in results. The information in the article is useful for the design and synthesis of Ru(II) complexes with potent cytotoxic activity with various intercalated ligands and auxiliary ligands.

The focus of this work is to investigate DNA

binding and cleavage studies of metallopolypyridyl

complexes that have photoactive intercalating

ligands and various accessory ligands. Taken

5. REFERENCES

- [1] I. Ali, W.A.Wani, K.Saleem, Cancer scenario in India with future perspectives, Cancer Ther. 8 (2011) 56-70
- [2] I. Ali, Rahis-Uddin, K. Saleem, H.Y. Aboul-Enein, A. Rather, Cancer Ther. 8 (2011) 6-14.
- [3] B. Rosenberg, L. Van Camp, J. E. Trosko, V. H. Mansour, Nature. 222 (1969) 385.
- [4] E. R. Jamieson, S. J. Lippard, Chem. Rev. 99 (1999) 2467-.
- [5] (a) L. Xu, Y. Y. Liu, L. M. Chen, Y.Y. Xie, J. X. Liang, H. Chao, J. Inorg. Biochem. 2016, 159, 82.
 (b) T. S. Kamatchi, P. Kalaivani, F. R. Fronczek, K. Natarajan, R. Prabhakaran, RSC Adv. 2016, 6, 46531.
- [6] (a) Y. Zhang, P. C. Hu, P. Cai, F. Yang, G. Z. Cheng, RSC Adv. 5 2015, 11591. (b) M. M. Milutinovic, A. Rilak, I. Bratsos, O. Klisuric, M. Vranes, N. Gligorijevic, S. Radulovic, Z. D.

- Bugarcic, J. Inorg. Biochem. **2017**, 169, 1. N. J. Wheate, J. G. Collins, Coord. Chem. Rev. 241 (2003) 133.
- [7] C. X. Zhang , S. J. Lippard, Curr. Opin. Chem. Biol. 7 (2003) 481.
- [8] L. R. Kelland, S. Y. Sharp, Curr. Opin. Oncol. Endocr. Metab. Invest. Drugs. 1 (1999) 380.
- [9] V. Ravi Kumar, D. Kamakshi, Y. Praveen Kumar, M. Vinoda Rani, M. Rajender Reddy, Ch. Nagamani, Ch. Ravi, S. Suman Thakur, Ch. Mohan Rao, S.Satyanarayana, New. J. Chem. 2018, 42, 846
- [10] B. Tang, D. Wan, S. H. Lai, H. H. Yang, C. Zhang, X. Z. Wang, C. C. Zeng, Y. J. Liua, J. of Inorg. Biochem. 2017, 173, 93.
- [11] A. Bergamo, G. Sava, Dalton Trans. (2007)1267–1272.
- [12] A.Bergamo, A.Masi, A.F.A. Peacock, A.Habtemariam, P.J. Sadler, G.Sava, J. Inorg. Biochem. 104 (2010) 79–86.
- [13] W.H. Ang, A. Casini, G. Sava, P.J. Dyson, J.Organomet. Chem. 696 (2011) 989–998
- [14] V. Ravi Kumar, D. Kamakshi, Y. Praveen Kumar, M. Vinoda Rani, M. Rajender Reddy, Ch. Nagamani, Ch. Ravi, S. Suman Thakur, Ch. Mohan Rao, S. Satyanarayana, New J. Chem. 2018, 42, 846.
- [15] (a) J. Chen, Y. Zhang, G. Li, F. Peng, X. Jie, J. She, G. Dongye, Z. Zou, S. Rong, L. Chen, J. Bioinorg. Chem. 2017, 1528. (b) B. Tang, D. Wan, S-H. Lai, H-H. Yang, C.Zhang, X-Z. Wang, C-C. Zeng, Y-Y. Liu, J. Inorg. Biochem. 2017, 173, 93.
- [16] (a) C. Mari, R. Rubbani, G. Gasser, Inorg. Chimi.
 Acta, 2017, 454, 21. (b) F. Heinemann, J. Karges,
 G. Gasser, Acc. Chem. Res. 2017, 50, 2727
- [17] M. Gill, H. Derrat, C.G. Smythe, G. Battaglia, J.A.Thomas, ChemBioChem 12 (6) (2011) 877–880.
- [18] M. R. Gill, J.A.Thomas, Chem. Soc. Rev. 41 (8) (2012) 3179–3192.
- [19] F. R. Svensson, J. Andersson, H.L. Amand, P.J. Lincoln, Biol. Inorg. Chem. 17 (4) (2012) 565–571.
- [20] O.Zava, S. M. Zakeeruddin, C. Danelon, H. Vogel, M. Gratzel, P. J. Dyson, ChemBioChem. 10 (11) (2009) 1796–1800.
- [21] C.A.Puckett, J. K. Barton, J. Am. Chem. Soc. 129 (1) (2007) 46–47.
- [22] C.A.Puckett, J. K. Barton, Biochemistry, 47 (45) (2008) 11711–11716.
- [23] C.A.Puckett, J. K. Barton, J. Am. Chem. Soc. 131 (25) (2009) 8738–8739.

- [24] C.A. Puckett, J. K. Barton, Puckett, Bioorg. Med. Chem. 18 (10) (2010) 3564–3569.
- [25] C.A. Puckett, . R. J. Emst, J. K. Barton, Dalton Trans. 39 (5) (2010) 1159-1170.
- [26] A. Juris, V. Balzani, F.Barigelletti, S.Campagna, P. Belser, A. Vonzelewsky, Coord. Chem. Rev. 84 (1988) 85–277.
- [27] C. Tan, S. Lai, S. Wu, S. Hu, L. Zhou, Y. Chen, M. Wang, Y. Zhu, W. Lian, W. Peng, L. Ji, A. Xu, J. Med. Chem. 53 (2010) 7613-7624.
- [28] H.L. Huang, Z.Z. Li, Z.H. Liang, Y.J. Liu, Eur. J. Inorg. Chem. 36 (2011) 5538-5547.
- [29] H.J. Yu, Y. Chn, L. Yu, Zhi-fenghao, L.H. Zhou, Eur. J. Med. Chem. 55 (2012) 146-154
- [30] C.P Tan, S.H. Wu, S.S. Lai, M.X. Wang, Y. Chen, L.J. Zhou, Y.P. Zhu. W.L. Peng, L.N. Ji, A.L. Xu, Dalton Trans. 40 (2011) 8611-8621
- [31] X-W. Liu, Y. Xiao, W-G. Peng, L-J. Zhao, Y-M. Shen, S-B. Zhang, J. L. Lu, Applied Organo Metal Chemistry, 2018, 4231.
- [32] W. X. Hong, F. Huang, T. Huan, Xu Xu, Q. Han, G. Wang, H. Xua, S. Duan, Y. Duan, X. Long, Y. Liu, Z. Hu, J. of Inorg. Biochem. 2018, 180, 54.
- [33] C. Shobha Devi, D. Anil Kumar, Surya S Singh, NazarGabra, N. Deepika, Y. Praveen Kumar, S. Satyanarayana, Eur. J. Med. Chem. 64 (2013) 410-421
- [34] N. Deepika, Y. Praveen Kumar, C. Shobha, P. Venkat Reddy, A. Srishailam, S. Satyanarayana, J. Biol. Inorg. Chem. 18 (2013) 751-766.
- [35] A. Srishailam, Y. Praveen Kumar, P. Venkat Reddy, G. Md. Nazar, N.Navaneetha, V.Uma, Surya S Singh, S. Satyanarayana, J. Photochem. Photobiol. B; Biol. 132, (2014) 111-123.
- [36] C. Shobha Devi, P. Nagababu, N.Sumathi, N. Deepika, P. Venkat Reddy, N. Veerababu, Surya S Singh, S. Satyanarayana, Eur. J. Med. Chem. 72 (2014) 160-169.
- [37] A. Srishailam, G. Md. Nazar, Y. Praveen Kumar, K.Laxma Reddy, C. Shobha Devi, D.Anil Kumar,

- Surya S Singh, S. Satyanarayana, J. Photochem. Photobiol. B.;.Biol. 141 (2014) 47-58.
- [38] P. Venkat Reddy, M. Rajender Reddy, A. Srishailam, Y. Praveen Kumar, Ch. Nagamani, N. Deepika, K. Nagasuryaprasad, Surya S Sing, S. Analytical Biochemistry, 485 Satyanarayana, (2015) 49-58
- [39] M. Yamada, Y. Tanaka, Y. Yoshimoto, S. Kuroda, I. Shimao, Bull Chem. Soc. Jpn. 65 (1992) 2007-
- [40] B.P.Sullivan, D.J. Sullivan, B.P. Salmon, T.J. Mayer, Inorg. Chem. 17(1978) 3334-3341
- [41] A. Wolfe, G. H. Shimer Jr, T. Meehan Biochemistry, 26 (1987) 6392.
- [42] J.D.Mc Ghee and P.H. Hippel J. Mol.Bol.,86 (1974) 469.
- [43] G.Cohen, H. Eisenberg, Biopolymers, 8 (1969) 45.
- [44] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry 32 (1993) 2573-2584
- [45] Z. Darzynkiewicz, Methods Cell Biol. 33 (1990) 285 - 298
- [46] W. Gorczyca, M.A. Hotz, P. Lassota, F. Traganos, Cytometry, 13 (1992) 795–808
- [47] S.N. Farrow, R. Brown, Curr. Opin. Genet. Dev., 6
- [48] T.J. Mosmann, J. Immunol Methods, 65 (1983) 45.
- [49] Vilar, S.; Cozza, G.; Moro, S. Curr. Top. Med. Chem., 8 (2008) 1555.
- [50] C.Zhao, H.Lin, S.Zhu, H.Sun, Y.Chen, J Inorg. Biochem. 70(1998)219-226.
- [51] M.Howe-Grant, K.C. Wu, W.R.Bauer, S.J.Lippart, Biochemistry, 15 (1976)4339-4346.
- [52] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires. Biochemistry., 32 (1993) 2573.
- [53] S. Satyanarayana, J.C. Dabrrowiak, J.B. Chaires, Biochemistry, , 31 (1992) 9319.
- [54] Vilar, S.; Cozza, G.; Moro, S. Curr. Top. Med. Chem. 8 (2008) 1555.