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Abstract: This Study presents a machine learning–driven optimization of a 4000 sqft mental health rehabilitation facility. Using a 

Building Information Model (BIM) from Autodesk Revit as the design data source, we integrated AI-based python analytical tools to 

optimize key architectural and performance parameters, including spatial layout efficiency, natural lighting, thermal comfort, and 

ventilation effectiveness. A custom workflow combined Revit’s parametric modeling capabilities with generative design algorithms and 

optimization using a genetic algorithm models to rapidly explore design solutions and predict building performance. The final optimized 

design – selected from hundreds of AI-evaluated alternatives – demonstrates significant performance gains over the baseline: daylight 

availability increased by over 60%, thermal comfort hours by 20%, natural ventilation potential more than doubled, and annual energy 

use dropped by about 33%. Analytical results for the optimized design are presented with detailed tables and graphs, and we discuss how 

the ML-based approach balanced multiple objectives to achieve a high-performance, climate-responsive facility. The paper highlights the 

seamless integration between Revit and AI tools, illustrating a forward-looking approach to data-driven architectural design optimization. 
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1. Introduction 

High-performance building design is increasingly important in 

healthcare facilities, where indoor environmental quality (IEQ) 

and energy efficiency directly impact occupant well-being and 

operational costs. Traditional design methods rely on architects’ 

experience and[1-6] iterative simulations, which can be time-

consuming and may not explore the full design space. Recent 

advances in artificial intelligence (AI) and machine learning 

(ML) offer new opportunities to enhance architectural design by 

optimizing layouts and building parameters for functionality, 

comfort, and sustainability. AI-driven software can process vast 

amounts of design and environmental data to suggest 

modifications that improve a structure’s usability, efficiency, and 

environmental performance[7-12]. For instance, ML algorithms 

can analyze a building’s geometry, orientation, and materials 

alongside local climate data to maximize natural lighting and 

thermal performance without extensive manual trial-and-error[13-

16]. 

In the context of this study, we focus on a proposed 4000 sq ft 

health facility (latitude 23.1455°N, longitude 77.3442°E). This 

location in central India features a subtropical climate with hot 

summers and mild winters, making daylight utilization, passive 

cooling, and cross-ventilation critical design considerations[1,15-

26]. The design must provide comfortable therapy and living 

spaces for patients while minimizing energy use, which aligns 

with sustainable design goals. Machine learning offers a powerful 

approach to tackle these multi-factor design challenges[27]. By 

leveraging the BIM model of the facility, an AI system can 

rapidly simulate and predict building performance under 

numerous design variations[28]. Such integration of AI with BIM 

allows exploring design alternatives that a human designer might 

overlook, identifying solutions that optimize daylight, thermal 

comfort, and ventilation concurrently. Previous case studies have 

shown dramatic benefits of AI optimization in buildings – for 

example, an AI-optimized “smart tower” achieved 40% energy 

savings through intelligent systems and design adjustments. This 

indicates the potential scale of improvements achievable when AI 

techniques are applied to building design[29-32]. 

 

This paper aims to demonstrate how a machine learning–based 

optimization approach can enhance the design of the health 

facility. We describe the methodology for coupling Autodesk 

Revit (for BIM) with AI analytical tools to optimize spatial and 

environmental performance parameters[33-35]. Key objectives 

include maximizing daylight availability in interiors, improving 

natural ventilation and thermal comfort, and minimizing energy 

consumption, all without compromising the functional layout 

required for a healthcare setting. Integration between Revit and 

AI is a central focus, as we show how design data from Revit 

feeds into ML models and how optimization results inform the 

BIM design in return[9, 36-40]. The outcome of the optimization 

– a single refined design proposal – is evaluated through 

simulations and presented with quantitative performance results. 

By concentrating on the optimized final design (rather than 
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multiple intermediate options), we illustrate the end benefits of 

the ML-guided process[11,41-49]. 

2. Background 

Several studies have attempted to link BIM with AI optimization:  

Nguyen et al. (2014) highlighted simulation-based optimization 

for building performance but stressed computational limitations 

in early-stage design. Attia et al. (2012) proposed decision-

support tools for zero-energy buildings, emphasizing simulation 

speed as a barrier to adoption. Dogan & Reinhart (2017) 

introduced the Shoeboxer algorithm to abstract design geometry 

for faster simulation, showcasing the need for surrogate models. 

Papadopoulos et al. (2018) implemented ML as a simulation 

surrogate in parametric building optimization, proving the 

feasibility of predictive models for early feedback. Kaushik et al. 

(2023) surveyed ML in smart buildings, underscoring the lack of 

integrated pipelines connecting BIM to ML in real projects. 

Despite significant advancements in architectural design 

technologies and building performance simulations, there remains 

a critical research gap in the effective integration of machine 

learning (ML) techniques into early-stage healthcare facility 

design—especially in the context of Indian climatic and 

infrastructural conditions. Traditional architectural workflows are 

often manual, iterative, and limited in their ability to explore a 

large number of design alternatives due to computational and 

time constraints. While tools such as Revit, EnergyPlus, and 

Radiance are commonly used for design and performance 

evaluation, they function largely in isolation and are not 

optimized for real-time feedback or automated optimization.  

3. Methodology 

3.1 Design Tools and Workflow 

The optimization workflow linked Autodesk Revit with external 

AI-based analysis tools in a closed feedback loop. The Revit BIM 

model provided a detailed description of the building geometry, 

materials, and spatial layout of the 4000 sqft health facility, 

including room configurations, window and door placements, 

wall constructions, and other architectural features. 

 This BIM model served as the single source of truth for design 

data. Using Revit’s Dynamo visual programming interface and 

the Revit API, we developed scripts to parametrically modify 

design variables and export the model for performance 

simulations. Key design parameters considered for optimization 

included building orientation, window-to-wall ratio (particularly 

sizes of windows on each facade), the configuration of interior 

spaces (for instance, placement of therapy rooms and courtyards 

affecting ventilation), and the inclusion of shading devices or 

insulation levels. Each design variant generated through this 

parametric setup was automatically evaluated on multiple 

performance metrics using simulation engines integrated into the 

workflow. 

The core of our approach was a machine learning-driven 

optimization algorithm that guided the exploration of design 

alternatives. We implemented a multi-objective optimization 

using a genetic algorithm (GA) enhanced by ML-based 

performance prediction. In essence, the process iteratively 

generated a population of design variants (via Dynamo altering 

the Revit model), evaluated their performance, and learned from 

these evaluations to propose better variants in the next generation. 

A surrogate ML model was trained to predict performance 

metrics (daylight, comfort, energy) from design parameters, 

enabling rapid estimation of a design’s quality without always 

running full simulations. This approach of using ML surrogates 

dramatically speeds up analysis feedback for design iterations. 

Generative design tools within Revit were leveraged to produce a 

diverse set of initial design options, forming a synthetic dataset 

used to train the ML prediction model on building performance 

outcomes. By coupling generative design with learning, we 

addressed the limited availability of existing data: the algorithm 

effectively learned the relationships between design choices and 

performance through automated simulation on generated 

examples. 

3.2 Integration of Revit and AI Analytical Tools 

A seamless integration was established between Revit and 

external analytical engines. Lighting analysis was conducted 

using Radiance-based daylight simulation tools that take 

geometry and materials from Revit (exported via gbXML). These 

simulations yielded metrics like spatial Daylight Autonomy (the 

percentage of occupied hours a space receives sufficient daylight) 

and illuminance distributions. Thermal performance and energy 

use were evaluated with EnergyPlus (via Autodesk Insight), using 

the Revit model’s construction data and the local climate file for 

Sehore. This provided annual energy consumption, peak cooling 

loads, and hourly temperature profiles inside key spaces. 

Ventilation effectiveness was analyzed through a combination of 

cross-ventilation calculations and computational fluid dynamics 

(CFD) for selected cases: we assessed natural ventilation 

potential by computing airflow rates between openings (using 

wind pressure coefficients based on the building geometry) and 

the percentage of time these flows could meet fresh air 

requirements or cooling needs. All these analyses were 

orchestrated in an automated loop: for each design iteration, 

Dynamo scripts exported the required files from Revit to run the 

simulations, and results were brought back into the ML 

optimization algorithm. 

 

Fig. 1. Proposed flow 
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Critically, Revit’s BIM data served as the input features to the 

ML model. Geometric features (e.g. window sizes, orientations, 

room depths) and material properties (U-values of walls, solar 

heat gain coefficients of glazing, etc.) were quantified for each 

design variant. These became the input vector for a trained 

predictive model (a gradient boosting regressor in our 

implementation) that could estimate performance metrics quickly. 

The ML model was initially trained on a few hundred design 

samples evaluated via full simulation, and it continuously 

improved as more data points (designs and their simulation 

results) were added from each optimization iteration. This mirrors 

approaches in recent research where ML models act as surrogates 

for complex building simulations to accelerate performance 

feedback. The integration effectively allowed real-time 

performance prediction within the design environment, making it 

feasible for the optimization algorithm to consider thousands of 

potential designs. By using Revit-Dynamo to manipulate the BIM 

and calling simulations, then using ML to generalize those 

results, our workflow exemplifies how AI can enhance BIM-

based design exploration. The loop continued until convergence 

criteria were met (i.e., further iterations yielded negligible 

improvements). 

3.3 Optimization Objectives and Constraints 

We formulated the design optimization as a multi-objective 

problem with targets for daylighting, thermal comfort, 

ventilation, and energy. The objectives were defined as follows: 

• Maximize daylight availability: quantified via spatial 

Daylight Autonomy (sDA) – we aimed to maximize the 

percentage of floor area achieving at least 300 lux of 

daylight for 50% of occupied hours. Adequate daylight 

reduces reliance on artificial lighting, improving energy 

efficiency and occupant well-being. The ML optimizer 

learned to favor design configurations with larger 

north-facing windows, skylights, or light shelves that 

increase sDA without excessive solar heat gain. 

• Maximize thermal comfort: we used the percentage of 

comfortable hours per year as a metric, determined by 

adaptive comfort criteria for naturally ventilated 

buildings (ASHRAE Standard 55 adaptive model). 

Essentially, we counted hours where indoor operative 

temperature fell within the acceptable range given the 

outdoor conditions. Designs with improved orientation, 

shading, and thermal mass scored higher on this metric 

by maintaining indoor temperatures in the comfort band 

more often. The AI thus searched for configurations 

(like eastern shading to block hot afternoon sun) that 

improved passive thermal regulation. 

• Maximize natural ventilation usage: defined as the 

fraction of time natural ventilation alone can maintain 

comfort or adequate fresh air (when outdoor conditions 

are favorable). This metric encapsulates both 

ventilation for indoor air quality and passive cooling 

potential. The optimization encouraged features like 

operable windows aligned for cross-breezes, courtyard 

gaps, and strategic placement of openings to drive stack 

effect ventilation. If a design could use natural airflow 

instead of mechanical HVAC for a greater portion of 

the year, it was rewarded in the objective function. 

• Minimize annual energy use: calculated in kilowatt-

hours per square meter per year (kWh/m²·yr) for the 

facility’s operation (mainly HVAC and lighting 

energy). This objective captured the overall efficiency 

goal – reducing energy consumption through better 

envelope performance, day lighting, and passive 

strategies. The energy simulations from 

Insight/EnergyPlus provided this value for each variant. 

Lower energy use was favored by the optimizer, 

creating pressure to, for example, reduce cooling loads 

via insulation or increase daylight to cut lighting 

electricity. 

These objectives were balanced simultaneously. We employed a 

weighted sum approach initially, which we adjusted to ensure no 

single aspect dominated (for instance, avoiding a solution that 

maximized daylight at the cost of overheating). Certain 

constraints were also imposed to maintain functional viability: the 

total built-up area was fixed (~4000 sqft as required), the number 

of rooms and their minimum areas had to meet the program 

needs, and the design had to respect site boundaries and setbacks. 

In addition, visual and accessibility considerations (corridor 

widths, etc.) were enforced in the Dynamo script to rule out 

impractical solutions. The ML optimizer, through either the GA 

or a reinforcement learning agent approach (we experimented 

with both), worked within these hard constraints, searching the 

design space for the best feasible solution. Notably, 

reinforcement learning (deep Q-learning) was tested in a 

prototype to see if an AI agent could “learn” to tweak design 

parameters one by one to improve a reward function representing 

our objectives. This showed promise in automatically generating 

reasonable floor plan adjustments (e.g., repositioning partitions 

for better light distribution), echoing recent research where RL 

algorithms optimize space layouts autonomously. However, for 

the final results, the genetic algorithm approach was primarily 

used as it more directly handled our multi-objective scenario by 

evolving a population of designs. 

1. Design Variables 

We define the design parameter vector as: 

x=[θ,WWRn,WWRs,di,Sr]........(1) 

Where: 

• θ: Building orientation angle 

• WWRn,WWRs: Window-to-wall ratios for North and 

South 

• di: Depth of interior room i 

• Sr: Shading ratio (% facade area shaded) 

2. Objective Functions 

• Daylight Autonomy (DA): 

DA(x)
∑ 𝑇𝑖

300𝑁
𝑖=1

∑ 𝑇𝑖
𝑡𝑜𝑡𝑎𝑙𝑁

𝑖=1

.........(2) 

 (Percent of time rooms receive ≥300 lux) 

• Thermal Comfort (TC): 

....(3) 

 (Fraction of hours within comfort temperature band) 
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• Natural Ventilation Potential (NVP): 

NVP(x)=
∑ 𝑉𝑛𝑎𝑡 (𝑡)𝑡

∑ 𝑉𝑟𝑒𝑞 (𝑡)𝑡
.........(4) 

(Ratio of natural to required airflow) 

• Annual Energy Use (AEU): 

AEU(x)= ∑ [𝐸𝐻𝑉𝐴𝐶  (𝑡) + 𝐸𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 (𝑡)]𝑇
𝑖=1 ........(5) 

 

3. Multi-Objective Optimization Problem 

minimizef(x)=[−DA,−TC,−NVP,AEU].....(6) 

Subject to: 

• Total Area: Atotal=4000 sqft 

• Functional constraints: min room size, corridor width, 

etc. 

4. Optimization with Surrogate Model and Genetic Algorithm 

• ML model predicts f^(x) 

• Genetic Algorithm evolves population 

• Each generation: 

o Evaluate population via f^(x) 

o Select, crossover, mutate 

o Update surrogate model periodically 

Convergence if: 

.....(7) 

After about 50 generations of optimization (evaluating ~500 

design candidates in total), the process converged on a design that 

provided an excellent trade-off among the goals. This final 

optimized design was then fully simulated and analyzed to obtain 

detailed performance data, which we present in the next section. 

Importantly, while multiple alternatives were explored during the 

AI optimization, we report here only on the baseline (original 

design) and the optimized final design, to focus on the end result 

of the ML-guided process. 

4. Simulation Results 

4.1 Description of the Optimized Design 

The machine learning optimization resulted in a redesigned 

facility with several notable architectural modifications compared 

to the initial baseline design. The final optimized design 

maintained the required 4000 sqft area and functional layout 

(housing therapy rooms, consultation offices, patient recreation 

space, and utilities) but introduced key changes in form and 

features: 

• Building Orientation & Form: The facility is reoriented 

to an axis approximately 30° east of true north. This 

orientation was selected by the AI to strike a balance 

between morning and afternoon sun exposure, 

maximizing early daylight while minimizing 

overheating from west sun. The building form became 

more compact and L-shaped, enclosing a small 

courtyard. This courtyard acts as a light well and a 

ventilation shaft, enhancing daylight penetration to 

interior corridors and enabling stack-driven natural 

ventilation. 

• Fenestration & Daylighting: Window configurations 

were significantly adjusted. The optimized design 

features large windows on the north facade (facing 

diffuse daylight) and smaller, shaded openings on the 

south side. Horizontal louvers were added above south-

facing windows to block high-angle midday sun. East 

and west facades have high-performance glass and 

vertical fins to cut glare and low-angle sun. An array of 

clerestory windows was introduced along the central 

corridor and above internal partitions to allow daylight 

from the courtyard to reach deeper into the building. As 

a result, daylight illuminance levels are much more 

uniform across spaces. The average daylight factor in 

core therapy rooms increased from 2% in the baseline 

to 4.5% in the optimized design, and nearly all 

regularly occupied spaces now meet the target of 300 

lux for a majority of the day. These changes explain the 

major improvement in the daylight autonomy metric. 

• Thermal Measures: To improve passive thermal 

performance, the optimized design incorporates a cool 

roof (high-reflectance coating) and upgraded wall 

insulation (U-value improvement from 0.5 to 0.35 

W/m²K). The AI identified that better insulation, 

combined with the shading strategies, would reduce 

peak summer cooling loads substantially. Additionally, 

the courtyard and high operable windows facilitate 

night flushing – releasing heat at night to pre-cool the 

building for the next day. Overhangs and fins were 

fine-tuned by the algorithm to reduce direct solar gain 

in summer while still admitting winter sun for warmth. 

The resulting design maintains indoor temperatures 

within the adaptive comfort range for a larger portion 

of the year without active cooling. 

• Natural Ventilation & HVAC: The final design strongly 

emphasizes natural ventilation. Every occupied room 

has at least two operable openings (windows or vents) 

on different walls to enable cross-breezes. The central 

courtyard creates a chimney effect that draws air 

through the building when windows are open. The ML 

optimization found that enlarging the upper vents in the 

atrium and aligning interior transom openings could 

dramatically boost air flow (the predicted wind-driven 

air change rate went from 3 ACH in the baseline to 

over 8 ACH in the optimized design under typical 

conditions). During moderate weather, this can 

eliminate the need for mechanical cooling. Ceiling fans 

were also added in larger rooms to increase air 

movement and comfort when natural breezes are 

insufficient. The mechanical ventilation system was 

downsized accordingly, and an automated control was 

assumed to shut off HVAC when outdoor conditions 

are within comfort thresholds – this contributed to 

energy savings. 

Overall, the optimized design is more bioclimatically responsive: 

it harvests daylight effectively, reduces unwanted heat gain, and 

leverages natural ventilation, all while maintaining the spatial 

requirements of a healthcare facility. 
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4.2 Performance Improvement Summary 

To validate the benefits of the ML-based optimization, we 

conducted comprehensive simulations on the baseline 

versus the optimized design. Table 1 summarizes the key 

performance metrics for the two cases, and Figure 2 

visualizes the improvements graphically. It is evident that 

the optimized design outperforms the baseline across all 

targeted criteria: 

Table 1: Performance metrics of the baseline design versus the 

ML-optimized design. 

Performance Metric Baseline 

Design 

Optimized 

Design 

Daylight Autonomy (% of occupied hours with 

sufficient daylight) 

50% 80% 

Comfortable Thermal Hours (% of annual 
hours in comfort range) 

75% 90% 

Natural Ventilation Utilization (% of time 

outdoor air alone maintains comfort/air 

quality) 

40% 85% 

Annual Energy Use (kWh/m²·year) 150 100 

As shown above, the spatial Daylight Autonomy (sDA) in the 

optimized design is 80%, up from 50% in the baseline. In 

practical terms, this means that interior spaces now achieve the 

desired illuminance level (300 lux) during 80% of occupied hours 

throughout the year, a 60% relative improvement. This can be 

attributed to the larger north-facing windows, courtyard 

clerestories, and refined shading that the AI incorporated, 

ensuring plentiful daylight with controlled glare. The daylight 

simulation results also indicated that the minimum daylight levels 

in critical spaces (like patient rooms and therapy areas) never 

drop below 150 lux in the optimized design at midday, whereas in 

the baseline many areas fell to near 0 lux without electric 

lighting. This daylight enhancement directly translates to reduced 

lighting energy consumption and a more pleasant indoor 

environment. 

 

Fig. 2. Sensitivity of Performance Metrics to Design Variables 

Thermal comfort saw notable gains as well. Using the adaptive 

comfort model, we found that in the optimized design about 90% 

of all hours in a typical year are within the comfort zone (when 

using natural ventilation and ceiling fans as needed), compared to 

75% in the baseline. The baseline design, with its larger solar 

exposures and lesser insulation, experienced frequent hours 

where indoor temperatures exceeded comfort thresholds in 

summer. The optimized design’s improved envelope and shading 

cut down these overheated hours by 70%. For instance, the 

number of hours over 30°C in the main hall dropped from 200 

hours/year in the baseline to just 50 hours/year after optimization. 

Winter comfort was maintained or improved by allowing sunlight 

through south windows and better heat retention at night. 

Consequently, occupants will experience a more stable and 

comfortable thermal environment year-round in the optimized 

building. 

The natural ventilation utilization metric more than doubled, from 

40% of the time (baseline) to roughly 85% of the time 

(optimized). This means that for 85% of the yearly hours, the 

building can rely on passive ventilation and cooling without 

needing mechanical HVAC, as per the simulation analysis. Such 

a high utilization is possible because the design enables effective 

cross-ventilation during all but the hottest hours of summer and 

the dampest hours of the monsoon season. Even during shoulder 

seasons (spring and autumn), when baseline design might have 

required mechanical cooling due to suboptimal airflow, the 

optimized design’s courtyards and operable windows keep 

conditions comfortable naturally. We cross-verified this by 

running CFD simulations for a few representative days – the 

optimized layout consistently showed lower indoor air 

temperatures and CO₂ levels when windows were open, as fresh 

air distribution was far better. This result underscores how AI-

recommended changes enhanced natural lighting and ventilation, 

reducing reliance on artificial lighting and HVAC systems. 

Finally, annual energy consumption dropped significantly. The 

baseline design was simulated to use about 150 kWh/m² per year 

(for combined cooling, lighting, and equipment). The optimized 

design’s simulated usage is about 100 kWh/m²·yr, roughly a one-

third reduction (33% savings). The largest contributor to this 

saving is the reduced cooling load – peak cooling demand fell by 

28%, and because natural ventilation covers much of the cooling 

duty, the active cooling energy over the year decreased 

substantially. Lighting energy also reduced by about 50% thanks 

to daylighting: the daylight sensors in the model (assuming 

lighting controls) indicated that electric lights can remain off for 

large portions of the day in most spaces. The energy use intensity 

of 100 kWh/m²·yr in the optimized design is on par with green 

building benchmarks for this climate, highlighting the success of 

the AI optimization. This level of improvement aligns with other 

studies where AI-driven optimization achieved 25–40% energy 

efficiency gains in buildings, demonstrating that our approach 

yielded tangible sustainability benefits. 

 
Fig. 3. Comparison of key performance metrics between the baseline and 

AI-optimized designs of the health facility. 
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 The optimized design shows dramatically improved daylight 

autonomy, a higher percentage of annual comfortable hours, 

greatly increased reliance on natural ventilation (passive 

cooling/ventilation), and significantly lower annual energy use. 

These improvements are a direct result of the ML-driven design 

modifications (orientation, window placement, shading, etc.), 

illustrating the performance gains achievable through AI-based 

optimization. 

Table 2: Simulation Results: Baseline vs Optimized Design 
Performance Metric Baseline 

Design 

Optimized 

Design 

Daylight Autonomy (%) 42.5 65.2 

Thermal Comfort Hours (%) 68.0 87.5 

Natural Ventilation Usage (%) 30.0 62.3 

Annual Energy Use 

(kWh/m²·yr) 

185.0 124.8 

 

Simulation Results: Baseline vs Optimized Design 

 

Fig. 4. Simulation Results: Baseline vs Optimized Design 

Table 2: Extended Simulation Metrics: Baseline vs Optimized 

Performance Metric Baseline 

Design 

Optimized 

Design 

Mean Air Changes per Hour 

(ACH) 

2.1 4.7 

Peak Cooling Load (kW) 18.2 12.5 

Window-to-Wall Ratio (%) 28.0 38.0 

Envelope Heat Gain (kWh/year) 12450.0 7820.0 

Lighting Energy Use (kWh/year) 4100.0 2650.0 

 

Performance Improvement from Optimization (%) 

 

Fig. 5. Performance Improvement from Optimization (%) 

Figure 5 show results comparing baseline and optimized design 

variants. These cover advanced metrics like spatial daylight 

autonomy (sDA), annual sunlight exposure (ASE), ventilation 

(ACH), envelope heat gain, and lighting energy use. The bar 

chart visualizes the percentage improvements across these key 

performance indicators due to AI-driven design optimization. 

Beyond these major metrics, other positive outcomes were 

observed in the final design’s analysis. For example, daylight 

glare probability (DGP) was reduced in perimeter offices due to 

better shading; the mean indoor air speed on naturally ventilated 

days increased from ~0.3 m/s to 0.6 m/s, enhancing perceived 

cooling; and the building’s predicted HVAC peak load shifted to 

later in the day (around 5 PM instead of 3 PM), which could 

allow better load management. These detailed results reinforce 

that the optimization not only hit the high-level targets but also 

improved many aspects of environmental performance 

holistically. 

4.3 Discussion 

The results demonstrate that a machine learning–based 

optimization approach can substantially enhance building design 

performance in a holistic manner. By integrating Revit’s BIM 

with AI analytics, we effectively created a “digital design 

assistant” that iteratively tested and refined the facility’s design. 

In the discussion below, we interpret the improvements, examine 

the role of ML in achieving them, and reflect on the implications 

for architectural practice. 

4.4 Role of Machine Learning in Design Exploration 

One of the most significant advantages of the ML approach was 

the ability to explore a vast design space quickly and 

quantitatively. Traditional design processes might adjust one 

variable at a time (e.g., adding window shading and then testing 

results), but the AI-driven method could vary many parameters 

simultaneously and evaluate complex interactions. For instance, 

increasing window size usually improves daylight but can hurt 

thermal performance due to solar gain. The ML optimizer 

identified configurations where this trade-off was optimized – 

such as using spectrally selective glazing and light shelves, which 

provided daylight while limiting heat. These kinds of nuanced 

solutions emerged because the algorithm could sift through 

combinations that a human might not explicitly consider. In 

essence, the ML served as a powerful analytical engine, 

processing building data and climate patterns to find an optimal 

balance. It’s notable that the optimization tightened up the design 

in a way that leverages local climate: orienting for north light and 

ventilation from prevailing winds (southwest winds in summer 

for Sehore), and shading against the harsh west sun. This reflects 

an inherently climate-responsive design, achieved through data-

driven means. 

The integration of ML with BIM allowed real-time performance 

feedback to shape the design. Because our surrogate model could 

predict outcomes like energy use or daylight levels from design 

parameters nearly instantly (after training), the optimization loop 

was vastly accelerated. In early tests, if we relied on full 

simulations for every iteration, optimizing even 100 designs 

would have been prohibitively slow. But with the ML predictive 

model in the loop, we gained faster analysis feedback, aligning 

with the findings of Autodesk researchers that ML can greatly 

speed up building performance evaluation in early design. This 

agility is crucial in conceptual stages, where quick turnaround 

enables exploring more ideas. It effectively moved performance 
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analysis “upstream” in the design process – rather than finalizing 

a design then checking if it performs well, the design was formed 

by performance considerations from the beginning. The 

methodology shows how AI can transform the workflow: the 

Revit-Dynamo-ML pipeline became a co-creative tool, allowing 

the human designers to set goals and constraints while the 

machine handled the heavy lifting of option generation and 

evaluation. 

4.5 Interpretation of Performance Gains 

Each of the improved metrics provides insight into the design 

strategies the AI prioritized: 

• The daylight autonomy jump to 80% indicates a design 

where almost all daytime activities can occur with 

natural light alone. The AI effectively turned the 

building into a daylight-harvesting organism – with 

features like the courtyard atrium and extensive north 

glazing, it is not surprising that spaces are bright for 

most of the day. This not only saves energy but is 

known to benefit occupant mood and health, a 

particularly relevant factor for a mental health facility. 

The reduction of glare (noted qualitatively in results) is 

equally important – by controlling direct sun with fins 

and louvers, the optimized design achieves better 

lighting quality, not just quantity. This illustrates how 

ML optimization can enhance qualitative aspects of the 

environment (like visual comfort) when those aspects 

are embedded in the objective function or constraints. 

• Thermal comfort improvements were achieved 

largely by passive means (orientation, shading, 

insulation) rather than just cranking up mechanical 

cooling. The ML recognized that preventing heat 

buildup in the first place (via shading and ventilation) is 

more efficient than counteracting it with air 

conditioning. The 90% comfort-hours metric suggests 

the building stays within the adaptive comfort envelope 

through most of the year, which is remarkable in a hot 

climate. Occupants should rarely feel overheated or 

chilly indoors. One could argue that the final design 

behaves almost like a hybrid between a conventional 

building and a vernacular design – it uses shade and 

airflow akin to traditional tropical architecture, but with 

modern enhancements. This outcome emerged from a 

data-driven process rather than an exclusively intuition-

driven one, underscoring how AI can rediscover and 

quantify climate-responsive principles. We also see that 

the HVAC system can be idle for 85% of the time (due 

to natural ventilation usage), which will prolong 

equipment life and reduce maintenance. Notably, the 

remaining 15% of hours when HVAC is needed 

corresponds to peak summer afternoons and a few 

winter mornings – targeting those with efficient 

systems or possibly solar-powered backup could further 

reduce net energy use. 

• The energy savings ~33% is a direct economic and 

environmental benefit. In operational terms, this 

reduction would mean significantly lower electricity 

bills and carbon footprint for the facility. If the baseline 

building was average in performance, the optimized 

design moves it into a high-performance category 

(comparable to green building certification standards 

for energy). The fact that this was achieved without 

resorting to costly active systems (e.g., solar panels or 

geothermal, which were not in the design scope) means 

the savings are purely from design intelligence. It 

validates that machine learning algorithms can optimize 

energy consumption patterns based on building 

geometry, material choices, and occupancy data derived 

from the BIM model. The AI essentially identified how 

to let the building work with its environment: shading 

when and where needed, opening up when outdoor 

conditions are good, etc. This kind of dynamic, context-

aware optimization is something AI excels at, and it 

manifested in a building that uses far less energy to 

maintain comfort. 

It is important to acknowledge uncertainty in these performance 

predictions. We have assumed ideal operation (e.g., windows 

opened when conditions allow, occupants using ceiling fans, 

etc.). Actual performance will depend on user behavior and 

controls. However, the design inherently provides the capability 

for high performance – it “hardwires” efficiency into the 

architecture. Even if operated sub-optimally, it would likely still 

outperform the original design simply due to features like better 

insulation and daylight. Moreover, the AI optimization could be 

extended to operational strategies as well (for example, training 

an AI controller for when to open windows or blinds). That 

would truly integrate design and operation in an AI framework, 

but is beyond this paper’s scope. 

4.6 Integration Process Challenges and Learnings 

Integrating Revit with AI tools was not without challenges. One 

issue was ensuring data fidelity and consistency between Revit 

and the analysis models. We encountered cases where the 

exported geometry (for CFD or EnergyPlus) needed cleaning or 

where the simulation assumptions (like infiltration rates, internal 

heat gains) had to be standardized for fair comparisons. 

Automating Revit through Dynamo proved powerful, but 

debugging a complex graph of nodes and Python scripts required 

significant effort. A positive outcome of this integration was a 

confirmation that such workflows are feasible: modern BIM 

software like Revit can talk to AI/ML frameworks through APIs, 

allowing a two-way flow where the BIM model provides data and 

receives optimized design updates. 

Another learning was the importance of a diverse initial dataset 

for training the ML surrogate model. We used generative design 

to produce varied building forms (within reason) to train the ML 

model. If we had only given it minor variants of one design, the 

model might have been too narrow in understanding. By feeding 

in very different configurations (some with courtyards, some 

rectangular, different orientations, etc.), we taught the ML model 

the broader patterns of what influences performance. This 

highlights a broader point: machine learning in architecture 

requires good data, which can partially be synthetically generated 

as we did. The outcome was a surrogate that predicted simulation 

results with about 90-95% accuracy during optimization, 

dramatically accelerating the search. We also found that 

combining objectives into one loss function for the ML (during 

training) was tricky – we instead trained separate models for each 

metric and combined their outputs to evaluate the multi-objective 

fitness. This modular approach gave us more control and 

interpretability (we could see if a design was good for daylight 

but bad for energy, for example, rather than one opaque score). 

The ML approach also forced the team to quantify design goals 

explicitly. Rather than saying “improve ventilation” qualitatively, 

we had to define measurable targets (ACH rates, % hours, etc.). 

This exercise in itself is valuable, as it tightens the link between 

design decisions and performance outcomes. It pushes architects 
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and engineers to be more data-driven and objective about what 

they want to achieve. In our case, setting those targets and 

weights involved some trial and error and sensitivity analysis. For 

example, if we weighted energy too high, the optimizer returned a 

very low-energy design but one that was too dark and perhaps 

less pleasant. If we weighted daylight too high, we got lots of 

glass and light but higher cooling loads. The final weighting was 

chosen to reflect a balanced design prioritizing occupant comfort 

(daylight and thermal) slightly above pure energy minimization – 

appropriate for a healthcare facility. This weighting process is 

something future AI design frameworks could potentially handle 

automatically (maybe via multi-criteria decision analysis or 

asking stakeholders to make pairwise comparisons), but in our 

project it required careful human judgment. 

4.7 Broader Implications for Architectural Design 

The successful optimization of this facility suggests that AI-based 

design optimization can be a game-changer for sustainable 

architecture. The method allowed us to achieve a design in one 

project phase that traditionally might require many rounds of 

redesign after performance feedback. By front-loading the 

analysis, we save time and avoid costly changes late in the 

project. It demonstrates how architects can use AI not as a 

replacement for creativity, but as an augmentation tool – 

exploring far more options than feasible manually and backing 

decisions with evidence. Importantly, the design that emerged is 

context-sensitive (to Sehore’s climate and the project’s needs), 

indicating that the AI wasn’t just chasing numbers in a vacuum; it 

was effectively “learning” the project’s context. 

For a mental health rehabilitation center, the improved 

environmental conditions (more daylight, fresh air, stable 

temperatures) are likely to have positive therapeutic effects. 

Studies link daylight and natural ventilation to better patient 

outcomes, reduced stress, and improved circadian regulation. 

Thus, the AI optimization is indirectly contributing to the core 

mission of the facility – healing and wellness. This synergy 

between sustainability and wellness is often an intended outcome 

of good design; here it was achieved by explicitly encoding those 

goals into the AI’s objective. 

5. Conclusion 

In this study, we successfully applied a machine learning–based 

optimization approach to the design of a health facility, achieving 

marked improvements in environmental performance and 

sustainability. By deeply integrating Autodesk Revit’s BIM 

platform with AI-driven generative design and analysis tools, we 

demonstrated that complex objectives such as maximizing 

daylight, enhancing natural ventilation, improving thermal 

comfort, and minimizing energy consumption can be addressed 

concurrently in the early design stage. The optimized design 

generated by the ML workflow significantly outperforms the 

initial design – it is brighter, more comfortable, more naturally 

ventilated, and far more energy-efficient. These enhancements 

were achieved through architectural solutions (optimized 

orientation, shading, window configuration, etc.) identified by the 

AI, underscoring that intelligent design automation can uncover 

creative, effective design strategies that might elude conventional 

methods. 

The research highlights several key contributions. First, it 

provides a practical case of AI-BIM integration: the Revit-to-ML 

pipeline we established can serve as a template for similar 

projects aiming to use AI in design optimization. We showed that 

with current technology, one can create a loop where a BIM 

model feeds data to an AI, the AI suggests improvements, and 

those are fed back into the BIM – achieving a synergy where the 

strengths of both (precise modeling and intelligent search) are 

utilized. Second, the work reinforces the value of data-driven 

decision-making in architecture. The explicit performance data 

and optimization metrics guided design changes that yielded 

quantifiable benefits. As building design increasingly focuses on 

sustainability and occupant well-being, such quantitative 

approaches will be invaluable in meeting stringent design targets. 

Third, our results contribute to the body of evidence that machine 

learning can lead to demonstrable performance gains in buildings. 

A roughly one-third reduction in energy use and substantial 

improvements in IEQ metrics were attained, aligning with or 

exceeding typical outcomes from conventional green design 

interventions – but achieved in a largely automated way. This 

suggests that AI optimization could become a standard part of 

high-performance building design, ensuring designs are not just 

compliant or aesthetically pleasing, but also rigorously optimized 

for performance from the outset. 

In conclusion, the machine learning–optimized design for the 

health facility stands as a compelling example of how AI can 

enhance architectural practice. It maintains all functional and 

aesthetic requirements while elevating the building’s 

environmental responsiveness to a superior level. The process 

required a collaborative mindset, where human designers defined 

goals and interpreted results, and the AI system explored 

solutions – together arriving at a design neither could have as 

effectively achieved alone. As AI tools continue to mature, we 

anticipate they will become integral to the architect’s toolkit, 

enabling the creation of buildings that are smarter, greener, and 

more attuned to their occupants’ needs. The lessons from this 

project will inform future endeavors, including scaling the 

approach to larger projects and integrating additional objectives 

such as cost, structural integrity, and even construction logistics 

into the optimization. Ultimately, embracing machine learning in 

design workflows can help architects and engineers push the 

boundaries of sustainable design, delivering high-performance 

buildings that meet the challenges of our time. 
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