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Abstract: This Study presents a machine learning—driven optimization of a 4000 sqft mental health rehabilitation facility. Using a
Building Information Model (BIM) from Autodesk Revit as the design data source, we integrated Al-based python analytical tools to
optimize key architectural and performance parameters, including spatial layout efficiency, natural lighting, thermal comfort, and
ventilation effectiveness. A custom workflow combined Revit’s parametric modeling capabilities with generative design algorithms and
optimization using a genetic algorithm models to rapidly explore design solutions and predict building performance. The final optimized
design — selected from hundreds of Al-evaluated alternatives — demonstrates significant performance gains over the baseline: daylight
availability increased by over 60%, thermal comfort hours by 20%, natural ventilation potential more than doubled, and annual energy
use dropped by about 33%. Analytical results for the optimized design are presented with detailed tables and graphs, and we discuss how
the ML-based approach balanced multiple objectives to achieve a high-performance, climate-responsive facility. The paper highlights the
seamless integration between Revit and Al tools, illustrating a forward-looking approach to data-driven architectural design optimization.
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1. Introduction summers and mild winters, making daylight utilization, passive
cooling, and cross-ventilation critical design considerations[1,15-
26]. The design must provide comfortable therapy and living
spaces for patients while minimizing energy use, which aligns
with sustainable design goals. Machine learning offers a powerful
approach to tackle these multi-factor design challenges[27]. By
leveraging the BIM model of the facility, an Al system can
rapidly simulate and predict building performance under
numerous design variations[28]. Such integration of Al with BIM
allows exploring design alternatives that a human designer might
overlook, identifying solutions that optimize daylight, thermal
comfort, and ventilation concurrently. Previous case studies have
shown dramatic benefits of Al optimization in buildings — for
example, an Al-optimized “smart tower” achieved 40% energy
savings through intelligent systems and design adjustments. This
indicates the potential scale of improvements achievable when Al
techniques are applied to building design[29-32].

High-performance building design is increasingly important in
healthcare facilities, where indoor environmental quality (IEQ)
and energy efficiency directly impact occupant well-being and
operational costs. Traditional design methods rely on architects’
experience and[1-6] iterative simulations, which can be time-
consuming and may not explore the full design space. Recent
advances in artificial intelligence (Al) and machine learning
(ML) offer new opportunities to enhance architectural design by
optimizing layouts and building parameters for functionality,
comfort, and sustainability. Al-driven software can process vast
amounts of design and environmental data to suggest
modifications that improve a structure’s usability, efficiency, and
environmental performance[7-12]. For instance, ML algorithms
can analyze a building’s geometry, orientation, and materials
alongside local climate data to maximize natural lighting and
thermal performance without extensive manual trial-and-error[13-
16].

In the context of this study, we focus on a proposed 4000 sq ft
health facility (latitude 23.1455°N, longitude 77.3442°E). This
location in central India features a subtropical climate with hot

This paper aims to demonstrate how a machine learning—based
optimization approach can enhance the design of the health
facility. We describe the methodology for coupling Autodesk
Revit (for BIM) with Al analytical tools to optimize spatial and

environmental performance parameters[33-35]. Key objectives
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— a single refined design proposal — is evaluated through
simulations and presented with quantitative performance results.
By concentrating on the optimized final design (rather than
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multiple intermediate options), we illustrate the end benefits of
the ML-guided process[11,41-49].

2. Background

Several studies have attempted to link BIM with Al optimization:
Nguyen et al. (2014) highlighted simulation-based optimization
for building performance but stressed computational limitations
in early-stage design. Attia et al. (2012) proposed decision-
support tools for zero-energy buildings, emphasizing simulation
speed as a barrier to adoption. Dogan & Reinhart (2017)
introduced the Shoeboxer algorithm to abstract design geometry
for faster simulation, showcasing the need for surrogate models.
Papadopoulos et al. (2018) implemented ML as a simulation
surrogate in parametric building optimization, proving the
feasibility of predictive models for early feedback. Kaushik et al.
(2023) surveyed ML in smart buildings, underscoring the lack of
integrated pipelines connecting BIM to ML in real projects.
Despite significant advancements in architectural design
technologies and building performance simulations, there remains
a critical research gap in the effective integration of machine
learning (ML) techniques into early-stage healthcare facility
design—especially in the context of Indian climatic and
infrastructural conditions. Traditional architectural workflows are
often manual, iterative, and limited in their ability to explore a
large number of design alternatives due to computational and
time constraints. While tools such as Revit, EnergyPlus, and
Radiance are commonly used for design and performance
evaluation, they function largely in isolation and are not
optimized for real-time feedback or automated optimization.

3. Methodology
3.1 Design Tools and Workflow

The optimization workflow linked Autodesk Revit with external
Al-based analysis tools in a closed feedback loop. The Revit BIM
model provided a detailed description of the building geometry,
materials, and spatial layout of the 4000 sqft health facility,
including room configurations, window and door placements,
wall constructions, and other architectural features.

This BIM model served as the single source of truth for design
data. Using Revit’s Dynamo visual programming interface and
the Revit API, we developed scripts to parametrically modify
design variables and export the model for performance
simulations. Key design parameters considered for optimization
included building orientation, window-to-wall ratio (particularly
sizes of windows on each facade), the configuration of interior
spaces (for instance, placement of therapy rooms and courtyards
affecting ventilation), and the inclusion of shading devices or
insulation levels. Each design variant generated through this
parametric setup was automatically evaluated on multiple
performance metrics using simulation engines integrated into the
workflow.

The core of our approach was a machine learning-driven
optimization algorithm that guided the exploration of design
alternatives. We implemented a multi-objective optimization
using a genetic algorithm (GA) enhanced by ML-based
performance prediction. In essence, the process iteratively
generated a population of design variants (via Dynamo altering
the Revit model), evaluated their performance, and learned from
these evaluations to propose better variants in the next generation.

A surrogate ML model was trained to predict performance
metrics (daylight, comfort, energy) from design parameters,
enabling rapid estimation of a design’s quality without always
running full simulations. This approach of using ML surrogates
dramatically speeds up analysis feedback for design iterations.
Generative design tools within Revit were leveraged to produce a
diverse set of initial design options, forming a synthetic dataset
used to train the ML prediction model on building performance
outcomes. By coupling generative design with learning, we
addressed the limited availability of existing data: the algorithm
effectively learned the relationships between design choices and
performance through automated simulation on generated
examples.

3.2 Integration of Revit and Al Analytical Tools

A seamless integration was established between Revit and
external analytical engines. Lighting analysis was conducted
using Radiance-based daylight simulation tools that take
geometry and materials from Revit (exported via gbXML). These
simulations yielded metrics like spatial Daylight Autonomy (the
percentage of occupied hours a space receives sufficient daylight)
and illuminance distributions. Thermal performance and energy
use were evaluated with EnergyPlus (via Autodesk Insight), using
the Revit model’s construction data and the local climate file for
Sehore. This provided annual energy consumption, peak cooling
loads, and hourly temperature profiles inside key spaces.
Ventilation effectiveness was analyzed through a combination of
cross-ventilation calculations and computational fluid dynamics
(CFD) for selected cases: we assessed natural ventilation
potential by computing airflow rates between openings (using
wind pressure coefficients based on the building geometry) and
the percentage of time these flows could meet fresh air
requirements or cooling needs. All these analyses were
orchestrated in an automated loop: for each design iteration,
Dynamo scripts exported the required files from Revit to run the
simulations, and results were brought back into the ML
optimization algorithm.
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Fig. 1. Proposed flow
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Critically, Revit’s BIM data served as the input features to the
ML model. Geometric features (e.g. window sizes, orientations,
room depths) and material properties (U-values of walls, solar
heat gain coefficients of glazing, etc.) were quantified for each
design variant. These became the input vector for a trained
predictive model (a gradient boosting regressor in our
implementation) that could estimate performance metrics quickly.
The ML model was initially trained on a few hundred design
samples evaluated via full simulation, and it continuously
improved as more data points (designs and their simulation
results) were added from each optimization iteration. This mirrors
approaches in recent research where ML models act as surrogates
for complex building simulations to accelerate performance
feedback. The integration effectively allowed real-time
performance prediction within the design environment, making it
feasible for the optimization algorithm to consider thousands of
potential designs. By using Revit-Dynamo to manipulate the BIM
and calling simulations, then using ML to generalize those
results, our workflow exemplifies how AI can enhance BIM-
based design exploration. The loop continued until convergence
criteria were met (i.e., further iterations yielded negligible
improvements).

3.3 Optimization Objectives and Constraints

We formulated the design optimization as a multi-objective
problem with targets for daylighting, thermal comfort,
ventilation, and energy. The objectives were defined as follows:

e  Maximize daylight availability: quantified via spatial
Daylight Autonomy (sDA) — we aimed to maximize the
percentage of floor area achieving at least 300 lux of
daylight for 50% of occupied hours. Adequate daylight
reduces reliance on artificial lighting, improving energy
efficiency and occupant well-being. The ML optimizer
learned to favor design configurations with larger
north-facing windows, skylights, or light shelves that
increase SDA without excessive solar heat gain.

e  Maximize thermal comfort: we used the percentage of
comfortable hours per year as a metric, determined by
adaptive comfort criteria for naturally ventilated
buildings (ASHRAE Standard 55 adaptive model).
Essentially, we counted hours where indoor operative
temperature fell within the acceptable range given the
outdoor conditions. Designs with improved orientation,
shading, and thermal mass scored higher on this metric
by maintaining indoor temperatures in the comfort band
more often. The Al thus searched for configurations
(like eastern shading to block hot afternoon sun) that
improved passive thermal regulation.

e  Maximize natural ventilation usage: defined as the
fraction of time natural ventilation alone can maintain
comfort or adequate fresh air (when outdoor conditions
are favorable). This metric encapsulates both
ventilation for indoor air quality and passive cooling
potential. The optimization encouraged features like
operable windows aligned for cross-breezes, courtyard
gaps, and strategic placement of openings to drive stack
effect ventilation. If a design could use natural airflow
instead of mechanical HVAC for a greater portion of
the year, it was rewarded in the objective function.

e  Minimize annual energy use: calculated in kilowatt-
hours per square meter per year (kWh/m?-yr) for the
facility’s operation (mainly HVAC and lighting
energy). This objective captured the overall efficiency
goal — reducing energy consumption through better

envelope performance, day lighting, and passive
strategies. The energy simulations from
Insight/EnergyPlus provided this value for each variant.
Lower energy use was favored by the optimizer,
creating pressure to, for example, reduce cooling loads
via insulation or increase daylight to cut lighting
electricity.

These objectives were balanced simultaneously. We employed a
weighted sum approach initially, which we adjusted to ensure no
single aspect dominated (for instance, avoiding a solution that
maximized daylight at the cost of overheating). Certain
constraints were also imposed to maintain functional viability: the
total built-up area was fixed (~4000 sqft as required), the number
of rooms and their minimum areas had to meet the program
needs, and the design had to respect site boundaries and setbacks.
In addition, visual and accessibility considerations (corridor
widths, etc.) were enforced in the Dynamo script to rule out
impractical solutions. The ML optimizer, through either the GA
or a reinforcement learning agent approach (we experimented
with both), worked within these hard constraints, searching the
design space for the best feasible solution. Notably,
reinforcement learning (deep Q-learning) was tested in a
prototype to see if an Al agent could “learn” to tweak design
parameters one by one to improve a reward function representing
our objectives. This showed promise in automatically generating
reasonable floor plan adjustments (e.g., repositioning partitions
for better light distribution), echoing recent research where RL
algorithms optimize space layouts autonomously. However, for
the final results, the genetic algorithm approach was primarily
used as it more directly handled our multi-objective scenario by
evolving a population of designs.

1. Design Variables
We define the design parameter vector as:

x=[0, WWR,, WWRs,d,S]........ (1)
Where:

0: Building orientation angle

WWRn, WWRs: Window-to-wall ratios for North and
South

e di: Depth of interior room i
e S Shading ratio (% facade area shaded)

2. Objective Functions

e Daylight Autonomy (DA):

N 1300
DAR)ZELL_ ..(2)

N total
Yiea Ty

(Percent of time rooms receive >300 lux)

e  Thermal Comfort (TC):

Sy WL (8) = Topppons (1)
rlr'

(Fraction of hours within comfort temperature band)

(3)
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e  Natural Ventilation Potential (NVP):

_XtVnat 1)
NVP(x) —Zt Vrea 4)

(Ratio of natural to required airflow)
e Annual Energy Use (AEU):

ABUX)=X1_1[Envac (© + Eiignting (O] evvee. Q)

3. Multi-Objective Optimization Problem
minimizef(x)=[-DA,-TC,-NVP,AEUJ.....(6)
Subject to:

e  Total Area: Awtai=4000 sqft

e  Functional constraints: min room size, corridor width,
etc.

4. Optimization with Surrogate Model and Genetic Algorithm

e ML model predicts {'(x)
e Genetic Algorithm evolves population

e  Each generation:
o Evaluate population via f'(x)
o  Select, crossover, mutate
o  Update surrogate model periodically

Convergence if:

) (g 1)
4 b st o B sl

III-I_r_j 1]

best

After about 50 generations of optimization (evaluating ~500
design candidates in total), the process converged on a design that
provided an excellent trade-off among the goals. This final
optimized design was then fully simulated and analyzed to obtain
detailed performance data, which we present in the next section.
Importantly, while multiple alternatives were explored during the
Al optimization, we report here only on the baseline (original
design) and the optimized final design, to focus on the end result
of the ML-guided process.

4. Simulation Results
4.1 Description of the Optimized Design

The machine learning optimization resulted in a redesigned
facility with several notable architectural modifications compared
to the initial baseline design. The final optimized design
maintained the required 4000 sqft area and functional layout
(housing therapy rooms, consultation offices, patient recreation
space, and utilities) but introduced key changes in form and
features:

e  Building Orientation & Form: The facility is reoriented
to an axis approximately 30° east of true north. This
orientation was selected by the Al to strike a balance
between morning and afternoon sun exposure,

maximizing early daylight while minimizing
overheating from west sun. The building form became
more compact and L-shaped, enclosing a small
courtyard. This courtyard acts as a light well and a
ventilation shaft, enhancing daylight penetration to
interior corridors and enabling stack-driven natural
ventilation.

e  Fenestration & Daylighting: Window configurations
were significantly adjusted. The optimized design
features large windows on the north facade (facing
diffuse daylight) and smaller, shaded openings on the
south side. Horizontal louvers were added above south-
facing windows to block high-angle midday sun. East
and west facades have high-performance glass and
vertical fins to cut glare and low-angle sun. An array of
clerestory windows was introduced along the central
corridor and above internal partitions to allow daylight
from the courtyard to reach deeper into the building. As
a result, daylight illuminance levels are much more
uniform across spaces. The average daylight factor in
core therapy rooms increased from 2% in the baseline
to 4.5% in the optimized design, and nearly all
regularly occupied spaces now meet the target of 300
lux for a majority of the day. These changes explain the
major improvement in the daylight autonomy metric.

e Thermal Measures: To improve passive thermal
performance, the optimized design incorporates a cool
roof (high-reflectance coating) and upgraded wall
insulation (U-value improvement from 0.5 to 0.35
W/m?K). The AI identified that better insulation,
combined with the shading strategies, would reduce
peak summer cooling loads substantially. Additionally,
the courtyard and high operable windows facilitate
night flushing — releasing heat at night to pre-cool the
building for the next day. Overhangs and fins were
fine-tuned by the algorithm to reduce direct solar gain
in summer while still admitting winter sun for warmth.
The resulting design maintains indoor temperatures
within the adaptive comfort range for a larger portion
of the year without active cooling.

e Natural Ventilation & HVAC: The final design strongly
emphasizes natural ventilation. Every occupied room
has at least two operable openings (windows or vents)
on different walls to enable cross-breezes. The central
courtyard creates a chimney effect that draws air
through the building when windows are open. The ML
optimization found that enlarging the upper vents in the
atrium and aligning interior transom openings could
dramatically boost air flow (the predicted wind-driven
air change rate went from 3 ACH in the baseline to
over 8 ACH in the optimized design under typical
conditions). During moderate weather, this can
eliminate the need for mechanical cooling. Ceiling fans
were also added in larger rooms to increase air
movement and comfort when natural breezes are
insufficient. The mechanical ventilation system was
downsized accordingly, and an automated control was
assumed to shut off HVAC when outdoor conditions
are within comfort thresholds — this contributed to
energy savings.

Overall, the optimized design is more bioclimatically responsive:
it harvests daylight effectively, reduces unwanted heat gain, and
leverages natural ventilation, all while maintaining the spatial
requirements of a healthcare facility.
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4.2 Performance Improvement Summary

To validate the benefits of the ML-based optimization, we
conducted comprehensive simulations on the baseline
versus the optimized design. Table 1 summarizes the key
performance metrics for the two cases, and Figure 2
visualizes the improvements graphically. It is evident that
the optimized design outperforms the baseline across all
targeted criteria:

Table 1: Performance metrics of the baseline design versus the
ML-optimized design.

Performance Metric Baseline | Optimized
Design Design

Daylight Autonomy (% of occupied hours with | 50% 80%

sufficient daylight)

Comfortable Thermal Hours (% of annual | 75% 90%

hours in comfort range)

Natural Ventilation Utilization (% of time | 40% 85%

outdoor air alone maintains comfort/air

quality)

Annual Energy Use (kWh/m?-year) 150 100

As shown above, the spatial Daylight Autonomy (sDA) in the
optimized design is 80%, up from 50% in the baseline. In
practical terms, this means that interior spaces now achieve the
desired illuminance level (300 lux) during 80% of occupied hours
throughout the year, a 60% relative improvement. This can be
attributed to the larger north-facing windows, courtyard
clerestories, and refined shading that the AI incorporated,
ensuring plentiful daylight with controlled glare. The daylight
simulation results also indicated that the minimum daylight levels
in critical spaces (like patient rooms and therapy areas) never
drop below 150 lux in the optimized design at midday, whereas in
the baseline many areas fell to near 0 lux without electric
lighting. This daylight enhancement directly translates to reduced
lighting energy consumption and a more pleasant indoor
environment.

Sensitivity of Performance Metrics to Design Variables

Daylight Autonomy

108

Thermal Comfort

Ventilation =

Energy Use

. . .
Orientation ~ WWR_North ~ WWR_South ~ Room Depth Shading

Fig. 2. Sensitivity of Performance Metrics to Design Variables

Thermal comfort saw notable gains as well. Using the adaptive
comfort model, we found that in the optimized design about 90%
of all hours in a typical year are within the comfort zone (when
using natural ventilation and ceiling fans as needed), compared to
75% in the baseline. The baseline design, with its larger solar
exposures and lesser insulation, experienced frequent hours
where indoor temperatures exceeded comfort thresholds in
summer. The optimized design’s improved envelope and shading

cut down these overheated hours by 70%. For instance, the
number of hours over 30°C in the main hall dropped from 200
hours/year in the baseline to just 50 hours/year after optimization.
Winter comfort was maintained or improved by allowing sunlight
through south windows and better heat retention at night.
Consequently, occupants will experience a more stable and
comfortable thermal environment year-round in the optimized
building.

The natural ventilation utilization metric more than doubled, from
40% of the time (baseline) to roughly 85% of the time
(optimized). This means that for 85% of the yearly hours, the
building can rely on passive ventilation and cooling without
needing mechanical HVAC, as per the simulation analysis. Such
a high utilization is possible because the design enables effective
cross-ventilation during all but the hottest hours of summer and
the dampest hours of the monsoon season. Even during shoulder
seasons (spring and autumn), when baseline design might have
required mechanical cooling due to suboptimal airflow, the
optimized design’s courtyards and operable windows keep
conditions comfortable naturally. We cross-verified this by
running CFD simulations for a few representative days — the
optimized layout consistently showed lower indoor air
temperatures and CO; levels when windows were open, as fresh
air distribution was far better. This result underscores how Al-
recommended changes enhanced natural lighting and ventilation,
reducing reliance on artificial lighting and HVAC systems.

Finally, annual energy consumption dropped significantly. The
baseline design was simulated to use about 150 kWh/m? per year
(for combined cooling, lighting, and equipment). The optimized
design’s simulated usage is about 100 kWh/m?-yr, roughly a one-
third reduction (33% savings). The largest contributor to this
saving is the reduced cooling load — peak cooling demand fell by
28%, and because natural ventilation covers much of the cooling
duty, the active cooling energy over the year decreased
substantially. Lighting energy also reduced by about 50% thanks
to daylighting: the daylight sensors in the model (assuming
lighting controls) indicated that electric lights can remain off for
large portions of the day in most spaces. The energy use intensity
of 100 kWh/m?-yr in the optimized design is on par with green
building benchmarks for this climate, highlighting the success of
the Al optimization. This level of improvement aligns with other
studies where Al-driven optimization achieved 25-40% energy
efficiency gains in buildings, demonstrating that our approach
yielded tangible sustainability benefits.

Daylight Autonomy (%) Comfortable Hours (%)

100 100 -

80

Baseline Optimized

Baseline Optimized

100 Nat. Ventilation (% time) Energy Use (kWh/m?-yr)

8

150

150

100

50

0
Baseline

Optimized Baseline Optimized

Fig. 3. Comparison of key performance metrics between the baseline and
Al-optimized designs of the health facility.
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The optimized design shows dramatically improved daylight
autonomy, a higher percentage of annual comfortable hours,
greatly increased reliance on natural ventilation (passive
cooling/ventilation), and significantly lower annual energy use.
These improvements are a direct result of the ML-driven design
modifications (orientation, window placement, shading, etc.),
illustrating the performance gains achievable through Al-based
optimization.
Table 2: Simulation Results: Baseline vs Optimized Design

Performance Metric Baseline Optimized
Design Design
Daylight Autonomy (%) 42.5 65.2
Thermal Comfort Hours (%) 68.0 87.5
Natural Ventilation Usage (%) 30.0 62.3
Annual Energy Use 185.0 124.8
(kWh/m?-yr)

Simulation Results: Baseline vs Optimized Design

Simulation Results: Baseline vs Optimized Design

Performance Metric
EEm Daylight Autanomy (%)
= Thermal Comfort Hours (%)
= Natural Ventilation Usage (%)
Annual Energy Use (kWh/m*-yr)

Performance Value

Baseline Design

Optimized Design

Fig. 4. Simulation Results: Baseline vs Optimized Design

Table 2: Extended Simulation Metrics: Baseline vs Optimized

Performance Metric Baseline Optimized
Design Design

Mean Air Changes per Hour | 2.1 4.7
(ACH)
Peak Cooling Load (kW) 18.2 12.5
Window-to-Wall Ratio (%) 28.0 38.0
Envelope Heat Gain (kWh/year) 12450.0 7820.0
Lighting Energy Use (kWh/year) | 4100.0 2650.0

Performance Improvement from Optimization (%)

Performance Improvement from Optimization (%)

Spatial Daylight Autonomy (sDA =300 lux, % area)
Annual Sunlight Exposure (ASE, % area >1000 lux)
Operative Temperature Deviation (*C-hours/year)
Mean Air Changes per Hour (ACH)

Peak Cooling Load (kw)

Performance Metric

Window-to-Wall Ratio (%)

Envelope Heat Gain (kWh/year)

Lighting Energy Use (kWh/year)

=125 -100 -75 =50 =25 0 25 50
Improvement (%)

Fig. 5. Performance Improvement from Optimization (%)

Figure 5 show results comparing baseline and optimized design
variants. These cover advanced metrics like spatial daylight
autonomy (sDA), annual sunlight exposure (ASE), ventilation
(ACH), envelope heat gain, and lighting energy use. The bar
chart visualizes the percentage improvements across these key
performance indicators due to Al-driven design optimization.

Beyond these major metrics, other positive outcomes were
observed in the final design’s analysis. For example, daylight
glare probability (DGP) was reduced in perimeter offices due to
better shading; the mean indoor air speed on naturally ventilated
days increased from ~0.3 m/s to 0.6 m/s, enhancing perceived
cooling; and the building’s predicted HVAC peak load shifted to
later in the day (around 5 PM instead of 3 PM), which could
allow better load management. These detailed results reinforce
that the optimization not only hit the high-level targets but also
improved many aspects of environmental performance
holistically.

4.3 Discussion

The results demonstrate that a machine learning—based
optimization approach can substantially enhance building design
performance in a holistic manner. By integrating Revit’s BIM
with Al analytics, we effectively created a “digital design
assistant” that iteratively tested and refined the facility’s design.
In the discussion below, we interpret the improvements, examine
the role of ML in achieving them, and reflect on the implications
for architectural practice.

4.4 Role of Machine Learning in Design Exploration

One of the most significant advantages of the ML approach was
the ability to explore a wvast design space quickly and
quantitatively. Traditional design processes might adjust one
variable at a time (e.g., adding window shading and then testing
results), but the Al-driven method could vary many parameters
simultaneously and evaluate complex interactions. For instance,
increasing window size usually improves daylight but can hurt
thermal performance due to solar gain. The ML optimizer
identified configurations where this trade-off was optimized —
such as using spectrally selective glazing and light shelves, which
provided daylight while limiting heat. These kinds of nuanced
solutions emerged because the algorithm could sift through
combinations that a human might not explicitly consider. In
essence, the ML served as a powerful analytical engine,
processing building data and climate patterns to find an optimal
balance. It’s notable that the optimization tightened up the design
in a way that leverages local climate: orienting for north light and
ventilation from prevailing winds (southwest winds in summer
for Sehore), and shading against the harsh west sun. This reflects
an inherently climate-responsive design, achieved through data-
driven means.

The integration of ML with BIM allowed real-time performance
feedback to shape the design. Because our surrogate model could
predict outcomes like energy use or daylight levels from design
parameters nearly instantly (after training), the optimization loop
was vastly accelerated. In early tests, if we relied on full
simulations for every iteration, optimizing even 100 designs
would have been prohibitively slow. But with the ML predictive
model in the loop, we gained faster analysis feedback, aligning
with the findings of Autodesk researchers that ML can greatly
speed up building performance evaluation in early design. This
agility is crucial in conceptual stages, where quick turnaround
enables exploring more ideas. It effectively moved performance
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analysis “upstream” in the design process — rather than finalizing
a design then checking if it performs well, the design was formed
by performance considerations from the beginning. The
methodology shows how Al can transform the workflow: the
Revit-Dynamo-ML pipeline became a co-creative tool, allowing
the human designers to set goals and constraints while the
machine handled the heavy lifting of option generation and
evaluation.

4.5 Interpretation of Performance Gains

Each of the improved metrics provides insight into the design
strategies the Al prioritized:

e The daylight autonomy jump to 80% indicates a design
where almost all daytime activities can occur with
natural light alone. The Al effectively turned the
building into a daylight-harvesting organism — with
features like the courtyard atrium and extensive north
glazing, it is not surprising that spaces are bright for
most of the day. This not only saves energy but is
known to benefit occupant mood and health, a
particularly relevant factor for a mental health facility.
The reduction of glare (noted qualitatively in results) is
equally important — by controlling direct sun with fins
and louvers, the optimized design achieves better
lighting quality, not just quantity. This illustrates how
ML optimization can enhance qualitative aspects of the
environment (like visual comfort) when those aspects
are embedded in the objective function or constraints.

e Thermal comfort improvements were achieved
largely by passive means (orientation, shading,
insulation) rather than just cranking up mechanical
cooling. The ML recognized that preventing heat
buildup in the first place (via shading and ventilation) is
more efficient than counteracting it with air
conditioning. The 90% comfort-hours metric suggests
the building stays within the adaptive comfort envelope
through most of the year, which is remarkable in a hot
climate. Occupants should rarely feel overheated or
chilly indoors. One could argue that the final design
behaves almost like a hybrid between a conventional
building and a vernacular design — it uses shade and
airflow akin to traditional tropical architecture, but with
modern enhancements. This outcome emerged from a
data-driven process rather than an exclusively intuition-
driven one, underscoring how Al can rediscover and
quantify climate-responsive principles. We also see that
the HVAC system can be idle for 85% of the time (due
to natural ventilation usage), which will prolong
equipment life and reduce maintenance. Notably, the
remaining 15% of hours when HVAC is needed
corresponds to peak summer afternoons and a few
winter mornings — targeting those with efficient
systems or possibly solar-powered backup could further
reduce net energy use.

e The energy savings ~33% is a direct economic and
environmental benefit. In operational terms, this
reduction would mean significantly lower electricity
bills and carbon footprint for the facility. If the baseline
building was average in performance, the optimized
design moves it into a high-performance category
(comparable to green building certification standards
for energy). The fact that this was achieved without
resorting to costly active systems (e.g., solar panels or
geothermal, which were not in the design scope) means
the savings are purely from design intelligence. It

validates that machine learning algorithms can optimize
energy consumption patterns based on building
geometry, material choices, and occupancy data derived
from the BIM model. The Al essentially identified how
to let the building work with its environment: shading
when and where needed, opening up when outdoor
conditions are good, etc. This kind of dynamic, context-
aware optimization is something Al excels at, and it
manifested in a building that uses far less energy to
maintain comfort.

It is important to acknowledge uncertainty in these performance
predictions. We have assumed ideal operation (e.g., windows
opened when conditions allow, occupants using ceiling fans,
etc.). Actual performance will depend on user behavior and
controls. However, the design inherently provides the capability
for high performance — it “hardwires” efficiency into the
architecture. Even if operated sub-optimally, it would likely still
outperform the original design simply due to features like better
insulation and daylight. Moreover, the Al optimization could be
extended to operational strategies as well (for example, training
an Al controller for when to open windows or blinds). That
would truly integrate design and operation in an Al framework,
but is beyond this paper’s scope.

4.6 Integration Process Challenges and Learnings

Integrating Revit with Al tools was not without challenges. One
issue was ensuring data fidelity and consistency between Revit
and the analysis models. We encountered cases where the
exported geometry (for CFD or EnergyPlus) needed cleaning or
where the simulation assumptions (like infiltration rates, internal
heat gains) had to be standardized for fair comparisons.
Automating Revit through Dynamo proved powerful, but
debugging a complex graph of nodes and Python scripts required
significant effort. A positive outcome of this integration was a
confirmation that such workflows are feasible: modern BIM
software like Revit can talk to AI/ML frameworks through APIs,
allowing a two-way flow where the BIM model provides data and
receives optimized design updates.

Another learning was the importance of a diverse initial dataset
for training the ML surrogate model. We used generative design
to produce varied building forms (within reason) to train the ML
model. If we had only given it minor variants of one design, the
model might have been too narrow in understanding. By feeding
in very different configurations (some with courtyards, some
rectangular, different orientations, etc.), we taught the ML model
the broader patterns of what influences performance. This
highlights a broader point: machine learning in architecture
requires good data, which can partially be synthetically generated
as we did. The outcome was a surrogate that predicted simulation
results with about 90-95% accuracy during optimization,
dramatically accelerating the search. We also found that
combining objectives into one loss function for the ML (during
training) was tricky — we instead trained separate models for each
metric and combined their outputs to evaluate the multi-objective
fitness. This modular approach gave us more control and
interpretability (we could see if a design was good for daylight
but bad for energy, for example, rather than one opaque score).

The ML approach also forced the team to quantify design goals
explicitly. Rather than saying “improve ventilation” qualitatively,
we had to define measurable targets (ACH rates, % hours, etc.).
This exercise in itself is valuable, as it tightens the link between
design decisions and performance outcomes. It pushes architects
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and engineers to be more data-driven and objective about what
they want to achieve. In our case, setting those targets and
weights involved some trial and error and sensitivity analysis. For
example, if we weighted energy too high, the optimizer returned a
very low-energy design but one that was too dark and perhaps
less pleasant. If we weighted daylight too high, we got lots of
glass and light but higher cooling loads. The final weighting was
chosen to reflect a balanced design prioritizing occupant comfort
(daylight and thermal) slightly above pure energy minimization —
appropriate for a healthcare facility. This weighting process is
something future Al design frameworks could potentially handle
automatically (maybe via multi-criteria decision analysis or
asking stakeholders to make pairwise comparisons), but in our
project it required careful human judgment.

4.7 Broader Implications for Architectural Design

The successful optimization of this facility suggests that Al-based
design optimization can be a game-changer for sustainable
architecture. The method allowed us to achieve a design in one
project phase that traditionally might require many rounds of
redesign after performance feedback. By front-loading the
analysis, we save time and avoid costly changes late in the
project. It demonstrates how architects can use Al not as a
replacement for creativity, but as an augmentation tool —
exploring far more options than feasible manually and backing
decisions with evidence. Importantly, the design that emerged is
context-sensitive (to Sehore’s climate and the project’s needs),
indicating that the Al wasn’t just chasing numbers in a vacuum; it
was effectively “learning” the project’s context.

For a mental health rehabilitation center, the improved
environmental conditions (more daylight, fresh air, stable
temperatures) are likely to have positive therapeutic effects.
Studies link daylight and natural ventilation to better patient
outcomes, reduced stress, and improved circadian regulation.
Thus, the Al optimization is indirectly contributing to the core
mission of the facility — healing and wellness. This synergy
between sustainability and wellness is often an intended outcome
of good design; here it was achieved by explicitly encoding those
goals into the AI’s objective.

5. Conclusion

In this study, we successfully applied a machine learning—based
optimization approach to the design of a health facility, achieving
marked improvements in environmental performance and
sustainability. By deeply integrating Autodesk Revit’s BIM
platform with Al-driven generative design and analysis tools, we
demonstrated that complex objectives such as maximizing
daylight, enhancing natural ventilation, improving thermal
comfort, and minimizing energy consumption can be addressed
concurrently in the early design stage. The optimized design
generated by the ML workflow significantly outperforms the
initial design — it is brighter, more comfortable, more naturally
ventilated, and far more energy-efficient. These enhancements
were achieved through architectural solutions (optimized
orientation, shading, window configuration, etc.) identified by the
Al, underscoring that intelligent design automation can uncover
creative, effective design strategies that might elude conventional
methods.

The research highlights several key contributions. First, it
provides a practical case of AI-BIM integration: the Revit-to-ML
pipeline we established can serve as a template for similar
projects aiming to use Al in design optimization. We showed that

with current technology, one can create a loop where a BIM
model feeds data to an Al, the Al suggests improvements, and
those are fed back into the BIM — achieving a synergy where the
strengths of both (precise modeling and intelligent search) are
utilized. Second, the work reinforces the value of data-driven
decision-making in architecture. The explicit performance data
and optimization metrics guided design changes that yielded
quantifiable benefits. As building design increasingly focuses on
sustainability and occupant well-being, such quantitative
approaches will be invaluable in meeting stringent design targets.
Third, our results contribute to the body of evidence that machine
learning can lead to demonstrable performance gains in buildings.
A roughly one-third reduction in energy use and substantial
improvements in IEQ metrics were attained, aligning with or
exceeding typical outcomes from conventional green design
interventions — but achieved in a largely automated way. This
suggests that Al optimization could become a standard part of
high-performance building design, ensuring designs are not just
compliant or aesthetically pleasing, but also rigorously optimized
for performance from the outset.

In conclusion, the machine learning—optimized design for the
health facility stands as a compelling example of how Al can
enhance architectural practice. It maintains all functional and
aesthetic requirements while elevating the building’s
environmental responsiveness to a superior level. The process
required a collaborative mindset, where human designers defined
goals and interpreted results, and the AI system explored
solutions — together arriving at a design neither could have as
effectively achieved alone. As Al tools continue to mature, we
anticipate they will become integral to the architect’s toolkit,
enabling the creation of buildings that are smarter, greener, and
more attuned to their occupants’ needs. The lessons from this
project will inform future endeavors, including scaling the
approach to larger projects and integrating additional objectives
such as cost, structural integrity, and even construction logistics
into the optimization. Ultimately, embracing machine learning in
design workflows can help architects and engineers push the
boundaries of sustainable design, delivering high-performance
buildings that meet the challenges of our time.
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