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Abstract—In the era of data-driven decision-making, ensuring the security, transparency, and integrity of Extract, 

Transform, and Load (ETL) pipelines has become increasingly critical, especially in regulated industries such as healthcare, 

finance, and telecommunications. Traditional ETL systems often rely on centralized architectures with basic encryption and 

access control mechanisms, which, although essential, fall short of addressing sophisticated cyber threats, data tampering, and 

compliance verification. This research proposes a hybrid framework that integrates Blockchain technology and an MLP-GRU 

(Multi-Layer Perceptron – Gated Recurrent Unit) neural network to enhance the security and intelligence of ETL processes. 

Blockchain is employed to create a decentralized, tamper-proof ledger that logs each ETL operation, providing traceability, 

immutability, and auditability. In parallel, the MLP-GRU model is utilized to detect anomalies in ETL activities by analyzing 

both static and sequential log data. This dual approach ensures not only secure data management but also real-time monitoring 

and predictive threat mitigation. The experimental setup involves blockchain-based logging of ETL operations and AI-based 

anomaly detection, evaluated using metrics such as Accuracy (99%), Precision (98.21%), Recall (98%), and F1-Score 

(98.77%). Results demonstrate that the integrated system outperforms traditional ETL security mechanisms in detecting 

malicious activity while maintaining efficient data throughput and low latency. Furthermore, the study examines blockchain 

transaction performance under varying data volumes to validate the scalability of the proposed solution. The framework's 

ability to automate compliance verification and generate immutable audit trails presents a significant advancement in secure 

data pipeline design. Future work includes enhancing privacy through Zero-Knowledge Proofs, scaling to federated systems, 

and incorporating advanced deep-learning architectures. Overall, this research sets a strong foundation for the development of 

intelligent, secure, and regulation-compliant ETL infrastructures through the convergence of blockchain and AI technologies. 
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I. INTRODUCTION 

Today, in a hyperconnected digital economy, tremendous 

quantities of heterogeneous data are generated, processed, 

and transferred for an organization to operate and compete  

[1]. Enterprises are relying on advanced ETL pipelines to 

combine various data sources into actionable intelligence for 

anything ranging from real-time financial transactions and 

claims from an insurance company to the health records of a 

patient and usage logs of a telecom operator. In other words, 

these pipelines enable processes such as integration, quality 

improvement, semantic transformations, and optimized 

storage for analytics and decision-making. But with data 

growing in volume and complexity and its very nature 

becoming sensitive, their conventional ETL infrastructures' 

vulnerabilities have become glaringly evident. Classic ETL 

systems are typically built on centralized architectures. As 

such, they present highly attractive opportunities for 

cyberattacks and insider threats, raising considerable risks 

concerning unauthorized access, tampering of data, loss of 

lineage, and lack of verifiability. 

Although traditional ETL pipelines have been subject to 

encryption using SSL/TLS, firewalls, role-based access 

controls, and other conventional security measures, they 

could never be truly deemed traceable and hence immutable, 

ensuring data integrity throughout the entire data lifecycle [2]. 

Conventional security measures imply a basic level of 

defense but are mostly reactive and hence insufficient against 

modern cyber threats, from a so-called "advanced" persistent 

attack, all the way to insider threats. The main challenge 

emanates from the centralized architecture that most ETL 

systems subscribe to data is passed through single processing 

nodes and finally stored in central warehouses, something 

highly susceptible to malicious tampering, corruption, and 

sudden catastrophic failure if the system gets compromised. 

These centralized systems do not provide it with verifiable 

audit trails, those trails that can independently verify whether 

data has been altered, copied, or erased illegally, thereby 

putting a heavy blackout on transparency and accountability. 

By offering a decentralized and tamper-proof ledger 

recording transactions and operations in a transparent and 
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verifiable manner, blockchain technology is set to transform 

solutions to the entrenched issues with data security and data 

integrity posed by the traditional ETL pipelines [3]. At the 

core of blockchain are cryptographic algorithms and 

consensus mechanisms working in tandem to time-stamp, 

uniquely hash, and irrevocably bind each data interaction in a 

chain of prior history- everything is there to prevent any 

unauthorized compromise. If appropriately embedded in ETL 

processes, the blockchain backbone can be used to keep an 

auditable record of every significant step in the ETL life 

cycle: extraction, transformation, and loading. This record of 

activities is kept forever, enabling one to guarantee the data's 

authenticity and data traceability; further, this late record 

could give them real-time verification and the possibility for 

useful forensic analysis when any data tampering, 

unauthorized access, manipulation, or data forgery attempts 

are being notified [4]. 

While blockchain technology provides a firm technical 

guarantee of security, immutability, and auditability of data 

workflows, AI stands to greatly augment the functionality and 

flexibility of ETL pipelines by endowing them with cognitive 

abilities, scalability, and real-time decision-making power. 

AI-fed systems continually scrutinize vast volumes of ledger 

entries and metadata generated during ETL operations to 

rapidly detect abnormalities, forecast potential security 

threats, and intelligently assign computational resources to 

ensure optimal performance  [5]. Deploying AI models along 

with machine learning and deep learning algorithms can 

allow independent adaptive behavior toward changing data 

structures, schema variation management, and complex data 

cleaning with maximum accuracy while reducing manual 

interventions and processing delays. Subsequently, an AI 

analytical engine catalogs subtle irregularities or anomalies in 

data pipelines, warranting tamper alerts, data drift, or system 

failure, thus either triggering a remediation or escalation 

protocol [6]. 

The fusion of blockchain and AI into ETL processes 

gives birth to a hybrid framework that augments data security 

while maximizing operational intelligence and flexibility. 

Blockchain technologies, including smart contracts, 

cryptographic hashing, and distributed consensus, find their 

way into every stage of the ETL pipeline in this synergistic 

architecture, thereby ensuring that every data transaction, 

transformation, and access event is recorded permanently, 

with tamper evidence and with cryptographic verification. 

Such blockchain-based technologies thereby provide an 

incorruptible, decentralized, transparent audit trail to ensure 

data integrity, uptime for compliance, and removal of silent 

data distortion at will [7]. Concomitantly, AI engines survey 

the ETL stand, analyze patterns, recognize anomalies, and 

intervene in system threats or performance degradation in real 

time, utilizing advanced techniques like machine learning, 

natural language processing, and neural networks. These 

intelligent agents adapt themselves dynamically to changes in 

data sources, optimize transformation rules, and raise alarms 

against dubious activities or attempts of unauthorized access 

[8]. 

The generation of a hybrid structure by fusion makes it 

relevant for domains that are dealing with data sensitive to the 

highest degree, critical to life momentarily, or data 

intensively regulated. In the healthcare sector, since patient 

records are extremely private and must be accurate, the 

blockchain can timestamp and trace all interactions with the 

data from diagnosis through treatment updates to insurance 

claims to ensure complete data lineage and non-repudiation, 

while the AI systems examine the access logs and movement 

of patient data to spot anomalies, unauthorized access, or 

compliance breaches in real-time [9]. In the financial 

industry, AI can detect fraud or suspicious behavior in high-

frequency market transaction streams faster and more 

accurately than has ever been possible before, while 

blockchain immutably records every single transaction and 

audit event that takes place, thus ensuring compliance with 

regulations like AML and KYC [10].  

Another big advantage of blockchain integration with AI 

is that the process has become smoother to facilitate 

regulatory compliance. With global attention growing on data 

privacy, protection, and governance, legislation such as 

GDPR, HIPAA, and PCI DSS, among others, applies 

rigorous criteria to data collection, processing, storing, and 

sharing. Organizations must keep verifiable and real-time 

audit trails to show compliance proactively. The power of 

blockchain is that every data transaction, transformation, and 

access event within an ETL process gets recorded on a 

decentralized and immutable ledger that is public and tamper-

proof [4]. Such traceability assures that every interaction with 

sensitive data is recorded chronologically, cryptographically 

secured, and verifiable to an independent party crucial 

element while proving compliance in audits or legal scenarios 

[11]. AI, on the other hand, infuses an element of automation 

and smartness in managing compliance by monitoring ETL 

processes consistently, alerting on any breaches of policy, 

verifying data access controls, and comparing real-world 

practices to regulatory standards. 

With the above-explained advantages, the research study 

focuses on conceptualizing, designing, and implementing the 

next-generation ETL frameworks with blockchain and AI 

synergistically to create a secure, intelligent, and resilient data 

processing environment [12]. At its heart, the design of the 

pipeline must ensure full-stage encryption and security at 

extraction, transformation, and load while having the 

cognitive capability to learn from historical data behavior, 

identify anomalies, and preemptively address any potential 

risks and vulnerabilities [13] [14]. This approach secures the 

data using blockchain with decentralized and immutable 

records that provide tamper-proof logging and data lineage 

verifiability and leverages AI models for situational 

awareness and complexity in decision-making, including 

deep learning, anomaly detection algorithms, and predictive 

analytics. The research evaluates various blockchain 

platforms for their suitability in secure ETL integration (e.g., 

Hyperledger Fabric, Ethereum, and Corda) while 

simultaneously researching AI-based techniques suitable for 
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embedding into systems for real-time monitoring and fraud 

detection. 

The Key contributions of the article are given below, 

• A novel integration of blockchain technology into the ETL 

pipeline ensures data immutability, tamper-proof logging, 

and traceability across extract, transform, and load 

operations, enhancing transparency and regulatory 

compliance. 

• The proposed model intelligently detects anomalies in ETL 

operations by combining an MLP for feature abstraction and 

a GRU for temporal behavior learning, enabling real-time 

detection of irregular patterns or security threats. 

• Smart contracts are deployed to enforce access control, 

workflow validation, and automated responses to anomalies, 

providing decentralized self-governance and improving the 

reliability of data operations. 

• Instead of storing raw data, the system logs cryptographic 

hashes, timestamps, and anomaly flags on the blockchain, 

ensuring lightweight, cost-effective, and audit-friendly 

metadata storage while preserving confidentiality. 

This document is organized as follows for the remaining 

portion: Section II discusses the related work. The problem 

statement is discussed in Section III. The recommended 

method is described in Part IV. In Section V, the experiment's 

results are presented and contrasted. Section VI discusses the 

paper's conclusion and suggestions for further study. 

II. RELATED WORKS  

A. ETL Systems 

To handle data heterogeneity and event interpretation in 

intricate systems like computer networks and telephones, 

Cichonski et al. [15] outline an end-to-end data processing 

architecture that blends Semantic Web technologies with 

traditional NMSs and SIEMs.  Semantic Web tools for 

knowledge representation, including provenance tracking, 

declarative data mapping using RML, batch and stream 

processing, data patching, and reconciliation based on 

SPARQL and SKOS, and semantic data transfer based on 

Kafka, are integrated into the suggested architecture, setting 

it apart from traditional systems.  The offered architecture 

demonstrates its remarkable ability to combine disparate 

data sets for monitoring and security analytics by producing 

an RDF knowledge graph that can detect cross-domain 

irregularities in industrial environments. 

The need for strong ETL processes in scenarios where 

digital data is becoming increasingly varied in terms of both 

structured and unstructured data is covered in length by 

Kumaran [16].  These, along with big data frameworks like 

Hadoop and Spark, will be increasingly useful since 

managing unstructured data—such as text, photos, and video 

content—requires more flexible AI-driven ways.  Relational 

databases with preset schemas are usually used to process 

structured data using SQL-based tools.  Additionally, it 

offers comprehensive coverage of hybrid ETL pipelines, 

which complement one another to deliver optimal 

performance and scalability analytics.  It discusses several 

strategies to improve efficiency and integration across 

diverse data sources and provides best practices for resolving 

mixed-data ETL process problems. 

B. ETL Use Cases 

The typical ETL processes are about to be modified by 

Seenivasan [17]  for usage with cloud data engineering.  It 

fixes several problems, including resource waste, excessive 

latency, and mismatched data transformation.  AI-driven 

features like intelligent workload management, automatic 

schema generation, and real-time anomaly detection make 

ETL pipelines more scalable, flexible, and efficient.  It also 

describes how to use these advantages of AI in real-world 

applications that demonstrate notable improvements in data 

processing accuracy, speed, and overall operational 

efficiency.  Finally, it points out that AI ETL systems are 

already playing a significant part in modern, high-

performance data-engineering solutions in more complex 

and dynamic cloud infrastructures. 

The Enhanced Temporal-BiLSTM Network, or ETLNet, 

is a model proposed by Ansari et al. [18] to detect road 

anomalies such as potholes and speed bumps.  Instead of 

using visual input, which has been demonstrated to be 

unsuccessful in low light or unmarked regions, this model 

makes use of data from smartphone inertial sensors.  ETLNet 

claims that a BiLSTM layer is combined with two TCN 

layers.  These layers are designed to evaluate gyroscope and 

accelerometer data separately to identify irregularities on 

various road surfaces.  This is a great study for creating 

advanced automated traffic monitoring systems that can be 

used in autonomous vehicles and public transportation. 

C. Security Using ML 

Joshi [19] examines the drawbacks of traditional batch-

oriented ETL processes for managing fast, real-time data and 

proposes state-of-the-art machine-learning techniques to 

build ETL pipelines that are flexible and self-improving.  

Real-time ETL is enhanced by the use of predictive 

modeling, anomaly detection, reinforcement learning-based 

resource allocation, and schema drift management.  Such 

intelligent pipelines would be able to take proactive steps to 

manage workloads, preserve data quality, and even adjust to 

changes in data architecture on their own by utilizing time 

series prediction and learning-based insights.  Experimental 

validations on systems like Databricks and AWS Glue 

demonstrate significant benefits, including a 40% reduction 

in latency and a 25% reduction in resource expenditures.  

This study illustrates the potential for ML-enhanced ETL 

systems to become effective and independent. 

The major security concerns that emerge in cloud and 

distributed systems—which can be large, flexible, and cost-

effective—are the focus of Saswata Dey, Writuraj Sarma, 

and Sundar Tiwari [20]. These systems are also susceptible 

to a variety of advanced threats, including DDoS attacks, 

insider threats, and zero-day attacks.  This elucidates how 

DL models, including CNNs, RNNs, and transformers, 
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enhanced the ability to define patterns and were able to 

recognize these threats instantly.  Scalable cloud deployment 

is another consideration when handling unbalanced data and 

combining DL with edge computing performance 

improvements.  The findings of the experiment show that DL 

models perform better than traditional methods in terms of 

anomaly detection and virus prevention. 

D. Secure Data Transfer 

Concerns have been expressed over the rising 

cybersecurity vulnerabilities as a result of organizations' 

increasing reliance on internet services, digital storage, and 

software-oriented processes.  Proactive vulnerability 

assessments must be carried out since digital transformation 

leaves IT infrastructures vulnerable to potential threats.  

Thus, the objective of Hiremath et al. [21]is to identify 

system vulnerabilities and collect relevant information for 

developing effective solutions using data analytics tools like 

Power BI.  Helping clients create a safe online environment 

that protects their private information from hackers is the 

aim. 

For effective data transfer from Oracle BI into Salesforce, 

minimizing system interruptions, and ensuring data integrity 

during the transition from conventional to cloud-based 

systems, Hamza et al. [22] recommend an ETL-based 

strategy.  It explains how the Extract, Transform, and Load 

processes may enhance operational performance and 

promote data mobility, especially when taking finance and 

ERP into account.  The research presents data virtualization 

as a method that may be a very flexible and scalable 

alternative for accessing data in real-time without significant 

duplication to support Agile processes and expedite 

decision-making.  The same is applied to enhance business 

intelligence skills and predictive analytics. 

III. RESEARCH METHODOLOGY 

A. Research Gap 

With the rising concern about the architecture of secure 

data pipelines, ETL systems have been focused mainly on 

traditional security considerations such as encryption, access 

control, and rudimentary audit logging. These techniques, 

although useful up to a point, fail to offer a concrete set of 

solutions against advanced cybersecurity efforts, insider 

threats, and data lineage tampering [23]. Most ETL 

frameworks are therefore designed around a centralized 

architecture, inherently prone to single points of failure and 

limited traceability, and vulnerable to illicit changes, among 

others. While some attempts were made to secure the data 

flowing inside them, the little literature available has hardly 

explored the entire range of end-to-end security for ETL. 

There is an obvious absence of frameworks that provide 

decentralization along with real-time monitoring and 

immutable audibility, all integrated coherent and scalable 

manner. 

The application of advanced technologies such as 

blockchain and AI toward ETL security remains 

underexplored and fragmented in the literature. Blockchain 

is typically discussed in the context of financial transactions 

or supply chain management, with the question of how the 

same technology should be applied to ETL pipeline integrity 

and audit seldom explored [24]. Likewise, AI has found 

varied applications in anomaly detection and optimization 

methods, yet rarely is its capability to improve ETL 

pipelines, especially when paired with blockchain, studied. 

Experimental evaluation of performance trade-offs and 

interoperability challenges while merging these two 

technologies within real-world, data-heavy scenarios is also 

missing. Hence, this research aims to fill this gap by 

proposing a unified intelligent and secure ETL framework 

that harnesses blockchain and AI toward strengthening 

robust data processing, end-to-end visibility, and predictive 

threat mitigation. 

B. Proposed Framework 

The layered diagram in Fig. 1 offers a representation of 

a blockchain and AI-empowered secure and intelligent ETL 

framework for anomaly detection. At the highest point in the 

stack lies Raw Data, which acts as the primary input and 

consists of unstructured or structured dataset types from 

different sources, including databases, IoT devices, 

enterprise applications, etc. The raw data then proceeds to 

Data Collection, during which appropriate fields are 

extracted and structured for processing. Data Preprocessing 

transforms the input, cleaning and normalizing it (Min-Max 

scaling, for instance) and selecting the salient features 

needed for the analysis to ensure consistency and readiness 

for modeling. Blockchain Integration subsequently records 

every step of the transformation, metadata information, and 

corresponding hashes into an immutable secure ledger, 

providing traceability, lineage, and tamper-proof audit trails. 

Anomaly detection comes next, whereby the system uses 

sophisticated AI models based on the MLP-GRU 

architecture to track temporal patterns and detect abnormal 

behaviors that provide indications of system faults, security 

intrusion, or data inconsistencies. 

 

Fig. 1. Proposed Framework 

C. Extract – Data Collection 

Having to evaluate the proposed blockchain-integrated 

ETL pipeline with MLP-GRU-based anomaly detection, a 
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comprehensive and diversified dataset was needed; one that 

truly represents ETL operations in a real-world environment. 

Both synthetic and publicly available operational log 

datasets were employed for this purpose. Synthetic data 

configurations emulated different ETL activities regarding 

data extraction, transformation, and loading, both under 

normal and abnormal scenarios. Anomalous events were 

described as abrupt surges in data volume, unauthorized 

access attempts, transformation failures, irregular job 

durations, and changes in access roles. The parameters 

included in this dataset ranged from job ID, timestamp, user 

role, type of task (extract, transform, load), processing time, 

and data size, to system response codes. This dataset's 

diversity ensured the training and testing of the model with 

an enormous variety of patterns, which will sharpen its 

generalization and subtle deviation-detecting capability. 

The model was also evaluated in real settings and further 

validated with real-world datasets generated from platforms 

such as Kaggle and open-source ETL tools. Logs extracted 

from these systems contained records arranged in a 

structured manner to give complete accounts of data flow 

activities and system behaviors. They were then 

preprocessed to discard irrelevant features, impute missing 

values, normalize numerical fields, and encode categorical 

variables. For the temporal modeling aspect adopted by the 

MLP-GRU, sliding windows were set up within time series 

to sufficiently represent the sequential nature of ETL 

operations. Labeled sequences encompassed both normal 

and anomalous instances so that the model could learn the 

patterns displaying safe versus attacked states. This mixture 

of synthetic data plus real data has made the training dataset 

balanced and contextually rich enough to fairly evaluate 

performance and assist in building a strong, secure ETL 

framework. 

D. Transform - Data Preprocessing Using Min-Max 

Normalization 

During the ETL pipeline transformation process, data 

preprocessing plays a great role in preparing the raw data for 

efficient and accurate anomaly detection. One of the 

important preprocessing techniques applied in the present 

study is Min-Max normalization, which scales all numerical 

features into a uniform range, typically between 0 and 1. This 

prevents features with larger magnitudes from dominating 

the learning process, thereby giving a chance to the MLP-

GRU model to learn from each given input variable 

meaningfully. If the dataset contains measurements from 

heterogeneous variables such as job execution time, data 

size, block commit duration, and throughput values that 

differ enormously in scale, normalization becomes even 

more critical. Min-max normalization ensures consistency 

within the data so that all features become comparable, 

which in turn helps the model learn faster and converge 

better. It is given in Eq. (1). 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
    (1) 

Where: 

• X = Original value 

• 𝑋𝑚𝑖𝑛 = Minimum value in the feature column 

• 𝑋𝑚𝑎𝑥 = Maximum value in the feature column 

This normalization of data preserves the integrity of 

patterns within temporal sequences, something critical for 

the GRU component to comprehend trends as they evolve. It 

is also advantageous for the MLP to receive inputs on a 

uniform range so that the training is faster and mitigation 

measures against computational catastrophes, such as 

exploding gradients, are in place. Before normalization, the 

dataset went through the removal of missing values and one-

hot encoding of categorical variables to ensure that the entire 

dataset was numerical and machine-readable. Finally, the 

normalized data was divided into training, validation, and 

testing sets, with the normalization set applied to each of the 

three. This transformational step makes sure to standardize 

the dataset while making sure that the AI model can work 

with inputs optimized for anomaly detection, resulting in 

higher model performance and more reliable deviation 

detection in the ETL workflow. 

E. Blockchain Integration for logging 

Within the blockchain integration stage, all critical 

happenings within the ETL pipeline, from data extraction, 

transformation, and loading, are hashed and stored as log 

entries on the blockchain ledger, The metadata involved 

includes job start and end times, job IDs, cryptographic 

hashes of processed data, transformation types, and 

anomalies detected during processing. To conserve storage 

and protect privacy, the raw data itself never resides on the 

blockchain--only pertinent, non-sensitive details are logged. 

Smart contracts will regulate access to the environment 

based on agreed-upon rules while concurrently ensuring that 

ETL tasks occur in the correct order and report real-time 

inconsistencies. In this manner, the entire ETL life cycle 

becomes open, transparent, and tamper-proof, thereby 

considerably increasing information integrity, data security, 

and regulatory compliance. 

Blockchain Platform Selection 

Choosing the right blockchain platform is fundamental 

to developing a decentralized and secure ETL pipeline. 

Ethereum (via Ganache), Hyperledger Fabric, and 

Multichain are some hot choices, each presenting specific 

peculiarities that could serve particular organizational needs. 

Ethereum works well with Ganache in a stage-like 

environment for testing and development. It also supports 

smart contracts where the validation of ETL stages can be 

done automatically, and certain rules may be enforced from 

within the ETL process. The decentralized ledger of 

Ethereum makes sure that each transaction goes immortal, 

and in this way, it offers one layer of transparency and 

auditability. From this perspective, one can begin to consider 

Ethereum for any scenario that calls for public verifiability, 

a level of trustlessness, and an immutable log. Ganache 

especially allows developers to run a blockchain locally to 
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give quick feedback on iterations on the ETL logic and 

security model being developed. 

On the other hand, Hyperledger Fabric and Multichain 

are better suited for private, enterprise-centric applications. 

Hyperledger Fabric is a permissioned blockchain framework 

offering modular components, such as pluggable consensus 

mechanisms and private data channels, making it highly 

configurable in the business environment. It is best suited for 

cases in which data privacy and access control take 

precedence, for example, while implementing sensitive 

applications in banking institutions or healthcare providers. 

Multichain is another private chain focused on ease of 

deployment, scalability, and management of access 

permissions. It allows users to handle large volumes of 

metadata securely without compromising on performance. 

Hyperledger Fabric and Multichain give much more control 

over the participant nodes and the visibility of transactions; 

this is fundamental to industries that are heavily regulated 

and governance-driven. In general, among these platforms, 

the choice should be driven by the specific needs of the ETL 

system, whether it calls for public transparency, private 

control, or fast prototyping. 

ETL Pipeline Integration 

The integration of blockchain technology into an ETL 

pipeline fundamentally alters the manner of recording, 

verifying, and securing data at every step of the operation: 

extraction, transformation, and loading. In the Extraction 

phase, data is pulled out from one or more sources such as 

transactional databases, sensors, APIs, or data lakes. The 

instant the extraction process starts, an integration with the 

blockchain-based system kicks off by logging important 

metadata: the identifier of the data source, the exact time of 

extraction, data type, and data volume. Every one of these 

details is cryptographically hashed using hashing algorithms 

such as SHA-256, giving rise to a unique name coined as the 

digital fingerprint of that extraction event. This hash is then 

written to the blockchain as an immutable transaction. As 

such, the system guarantees that the data's provenance and 

contextual clues are recorded in perpetuity, thereby 

eliminating any future disputes or unauthorized tampering. It 

also provides full traceability, which is important for audit 

purposes, compliance, and forensic investigations, setting a 

secure basis for later ETL operations. 

During the Transform and Load phases, blockchain 

technology assures operational transparency and maintains a 

tamper-proof layer of security. Data undergoes some form of 

preprocessing, such as cleaning, filtering, normalization, 

encoding, or feature extraction, with each transformation 

step then recorded on the blockchain alongside certain 

metadata. Examples of such metadata include the 

transformation type, version of the algorithm, timestamp, 

and a hash of the transformed data. Should an inconsistency 

or anomaly arise in the dataset, the blockchain log could be 

used to correlate and trace the exact step and the responsible 

agent. Loaded into the destination, a Data Warehouse, an 

Analytics Engine, or Cloud-based Storage—the last 

operation is immutably recorded. The metadata could 

include a storage location identifier, load timestamp, status 

of the load job, and the hash of the final dataset. Continuous 

logging in all ETL phases builds an unbreakable, verifiable 

audit trail for operational diagnostics and regulatory UX 

compliance. Along the ETL fabric, by implementing 

blockchain, the system shifts pages from being traditionally 

dull to extremely transparent, secure, and accountable. 

Smart Contract Enforcement 

The most important aspect of smart contracts is the 

trust, security, and automation implemented into the 

blockchain-embedded ETL pipeline. Smart contracts, acting 

as programmable agents deployed over the blockchain, 

execute certain pre-defined rules autonomously and need no 

outside intervention. An important function of the contracts 

is access control, whereby they verify and authorize a user 

or system before an ETL job can commence. Therefore, only 

an approved role, such as a data engineer, system 

administrator, or certified automated script, can initiate or 

change processes listed under extraction, transformation, or 

loading. System-level permissions are embedded inside the 

contract; hence, access is forcibly enforced by every actor, 

ruling out the hazard of manual intervention. Other 

capabilities of these smart contracts are vested in ensuring 

compliance with the workflow logic of ETL operations. 

Thus, it confirms that each process is carried out in the pre-

determined order-meaning, for example, that data cannot be 

loaded before transformation. Any violation of the defined 

workflow will result in either rejection or alert, thus 

preempting malicious, unauthorized operations or accidental 

missteps. 

Besides, smart contracts provide for data integrity 

validation by cross-verifying cryptographic hashes 

generated at every stage of ETL. Should there be any 

mismatch or irregularity between the expected hash value 

and the actual hash value, it means a potential case of data 

tampering or corruption, which the contract instantly logs 

onto the blockchain immutably. When synergized with the 

MLP-GRU-based AI engine, an even more potent feature 

arises: in case the AI detects aberrant patterns such as 

irregular timing of execution or unexpected behaviour on the 

data, the smart contract can suspend operations 

autonomously, notify concerned parties, or reroute the job 

for further examination. Hence, this on-the-fly ETL 

interaction forms a self-regulating ETL system ensuring 

transparent and accountable data processing and intelligent 

reaction toward security threats. Embedding such 

governance directly in the pipeline fabric enables smart 

contracts to remove manual intervention, reduce latency in 

addressing threats, and increase compliance in sensitive, 

regulated environments. 

Data Stored on the Blockchain 

In the blockchain-embedded ETL framework, the data 

that is on the blockchain is carefully decided so that it 

adheres to transparency, security, and performance. Instead 

of raw data being stored on the chain, which would have 
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been expensive and computationally heavy, the blockchain 

hosts crucial metadata that provides traceability and 

accountability while keeping the systems efficient. The ETL 

job hash is one of the fundamental building blocks for the 

solution and serves as a cryptographic fingerprint (like SHA-

256) that uniquely identifies the input, processing logic, and 

output of every single job. This makes it almost impossible 

to meddle with the system because any attempt to manipulate 

either the input, output, or process would result in a 

completely different hash. The system also logs timestamps 

of all ETL jobs, representing the moments when the jobs start 

and finish. They serve as a method for measuring pipeline 

latency and outage time and can therefore be correlated with 

security incidents or anomalous behavior. 

The blockchain also saves job IDs, status flags (OK, 

error), summarization of execution, operational hashes, and 

timing data. These are all combined to give a complete 

picture of pipeline health and performance. Importantly, 

whenever the MLP-GRU-AI engine detects abnormalities 

from usual processing behavior, access from unauthorized 

users, or irregular throughput, anomaly flags are 

immediately raised and logged. The flags serve to enforce 

real-time monitoring and are finally stored in the audit trail 

used for forensic analysis and regulated reviews. Lastly, log 

hashes are recorded to maintain the integrity of detailed off-

chain execution logs. Hence, auditors can validate the logs 

without touching sensitive internal information. By adopting 

a metadata-centric storage model, the blockchain 

implementation achieves availability for audits while 

maintaining inherent confidentiality and security, and 

verifiability of operations without compromising on 

efficiency or data privacy. 

System Benefits and Reliability 

In terms of ETL processes, the fused combination of 

blockchain and AI promises more transformative reliability, 

security, and transparency to systems. Fundamentally, 

blockchain imparts immutability to blockchain network 

records and stores every action taken on the ETL pipeline, 

whether it is data extraction, transformation, or loading, and 

these records cannot be forged or retroactively altered. It 

essentially confers an immutable audit trail for all involved 

parties to refer to for the accurate history of all operations 

recorded. Transparency within the network is maintained as 

job metadata, including timestamps, hashes, and status 

indicators, is publicly verifiable (for permissioned 

blockchain). This openness builds trust among various 

departments, external auditors, and regulatory bodies, which 

are empowered to trace the complete lineage of any data 

record without fear of manipulation or loss of integrity. 

In effect, with an AI engine such as MLP-GRU, 

intelligent anomaly detections and response automation are 

derived. Any attempt at unauthorized access, process 

behaviors, or unauthorized job activity that causes anomalies 

in the system is immediately flagged, and the jobs may be 

suspended or escalated without manual intervention. Hence, 

opportunities for data breaches via malicious persons, insider 

threats, or accidental errors are reduced. Through 

blockchain-based logging, auditability becomes 

straightforward to comply with various stringent laws such 

as GDPR, HIPAA, and PCI-DSS. The auditors may retain 

immutable records for reviewing without requiring 

exhaustive manual tracking or documentation. This 

combination and this framework offer operational resilience, 

increased fault tolerance, and additional features demanded 

by the industries for a modern, secure, accountable, and 

automated data infrastructure in sensitive fields such as 

healthcare, finance, and telecommunication. This brings 

forth ETL systems of the future, which depart from just being 

technically sound and embrace the moral and legal 

responsibility of society. 

The diagram for ETL on blockchain depicts a secure and 

intelligent data-processing pipeline, harnessing the power of 

blockchain technology and AI for ensuring data integrity, 

transparency, and timely threat mitigation, as depicted in 

Fig. 2. The steps begin with data extraction from any source 

such as a database, IoT device, or cloud repository, 

immediately followed by hashing of extracted metadata and 

logging it onto a blockchain. This ensures an immutable 

record of the origin and time of extraction of the data. During 

the transformation step, operations such as normalization or 

encoding occur, and all changes are recorded as hashed 

entries. Embedded smart contracts in the blockchain check 

every step of the ETL process, processing based on rules and 

verifying the sequence in which ETL steps are performed. If 

an anomaly or irregularity is found either in the job sequence 

or in the job itself, the AI modules powered by MLP-GRU 

raise an alert that is recorded immutably. In the loading step, 

the cleansed data is loaded into the destination warehouse or 

data lake, with additional metadata about job completion 

time, data volume, and transformation checksum being 

recorded. 

 

Fig. 2. Blockchain Framework 

F. MLP-GRU for Anomaly Detection 

Preprocessed ETL pipeline data are fed into a hybrid deep-

learning model composed of an MLP and GRU for the 

detection of anomalies. It handles both anomaly detection 

and pattern characterization, learning static patterns with the 
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MLP architecture, while handling temporal dependencies 

with the GRU. Features like job duration, fluctuations in data 

volume, access frequency, hash mismatch indicators, and 

timestamp series are normalized and fed into the model. The 

GRU gains knowledge of both time-series trends and 

behavioral deviations after successive ETL executions, 

whereas the MLP compresses the dimensionality and 

classifies the feature-rich data. Hence, this setup helps spot 

any abnormally suspicious job executions, unusual delays, or 

security breach attempts. Anomalies detected are logged and 

flagged so that reactive measures and further analyses can be 

conducted. Thus, the step is vital in the proactive assessment 

and mitigation of risk in secure ETL systems. 

Input Layer 

The ETL system takes inputs in the form of features that 

are preprocessed in a particular manner, thereby ensuring 

that these features, spanning different operational metrics 

that vary temporally and structurally to detect anomalies, are 

well considered. Job duration measures how long an ETL 

task takes, where extraordinary values, either too high or too 

low, become suspicious for performance issues or for 

tampering or interference in the process. Hash mismatch 

indicators put forth the inconsistencies that come up between 

what is supposed to be the cryptographic hash and what 

comes about at a given stage of ETL-as-they-may-indicate a 

probable data manipulation or downright corruption. 

Another important feature is data volume changes, which 

could help detect abnormal rises or drops in the amount of 

data being processed, and such occurrences could be caused 

by intrusion, data loss, or even a system misconfiguration. 

By measuring these variations against historical baselines, 

the model will immediately flag a sudden change in behavior 

that is not in line with expected behavior. 

Added to these are timestamp sequences that keep track 

of the temporal order and spacing of operations to catch 

timing anomalies such as unauthorized access during off-

hours. Frequency of access denotes the number of times 

certain data sources or transformation scripts are activated, 

usually to recognize irregular returns or possible insider 

abuses. Transformation types are encoded to express the 

essence of operations (like normalization, aggregation, 

encoding) brought to the data, for different combinations of 

transformations may mark different sensitivity or risk. All 

these are normalized through Min-Max normalization, 

scaling all the features into a uniform range (say, 0 to 1), so 

that no feature potentially dominates any other and thus 

interferes with the whole learning process. This step is 

necessary for the stability and accuracy of the model, 

particularly when it faces static features such as job metadata 

in conjunction with dynamic features of time-series 

behaviors. This comprehensive, normalized set of features 

forms the input vector to the MLP-GRU model, thus 

permitting it to learn, detect, and respond to anomalies in real 

time. 

 

 

MLP Component: Feature Abstraction 

The MLP module has a crucial responsibility in 

abstracting and refining features coming from the ETL 

pipeline. As a feed-forward type of neural network, it takes 

normalized input features such as job duration, hash 

mismatches, transformation types, access frequencies, etc., 

passing these through one or two fully connected hidden 

layers equipped with activation functions like ReLU or 

Leaky ReLU. This ensures that the model is capable of 

learning nonlinear feature interactions. This stage acts 

primarily as the dimensionality reduction of inputs and 

brings into focus the most important aspects of data while 

eliminating irrelevant information that will act as noise. This 

process simplifies the feature space so that the next GRU 

layers would have a more relevant and distilled form of data 

representation. 

In addition, dropout layers were embedded into the MLP 

architecture to alleviate overfitting and to increase the 

robustness of the model. During training, the model 

randomly disables a subset of units so that not too much 

importance can be assigned to any one feature, thereby 

providing a regularization mechanism to the network. MLP 

learning provides an additional layer of regularization to 

allow the model to generalize better on the unseen data, 

which is quite important in a setup where the ground truth is 

gathered for a relatively small set of anomalies that are either 

quite specialized or very subtle to ETL operations. Overall, 

the MLP segment acts as a pre-processing neural stage that 

transforms the raw feature vectors into an abstract low-

dimensional embedding to be temporally considered by the 

GRU layers, enabling it to be an important module in the 

hybrid architecture for intelligent anomaly detection. 

GRU Component: Temporal Pattern Learning 

The GRU component models the temporal patterns and 

interdependencies existing in ETL pipeline installations. 

ETL operations tend to be time-based sequences, which 

include, for example, the sequence of operations, job run 

intervals, and access schedules. Using the GRU, these 

relations can be satisfactorily modeled. GRU has a gating 

mechanism standing in contrast to a classical RNN: it 

consists of an update and reset gate, which make decisions 

on how much of the past information should be kept or 

forgotten at a given time. This, in essence, holds more 

prolonged dependencies with no risk of gradient vanishing, 

allowing the model to notice subtle drifts in operational 

behavior over time. Additionally, the bidirectional GRU 

layers enable the model to factor in time in two directions, 

from both past and future time steps, to construct a more 

holistic timeline out of the ETL processes. 

In practical terms, it signifies that the GRU can find 

slow-changing or context-dependent anomalies; for 

example, when a job becomes abnormal under certain 

conditions, following a series of prior events. This could 

mean the gradual increase in data volume and recurring hash 

mismatch patterns in consecutive ETL runs, which the GRU 

can almost perfectly learn and flag. Such time-sensitive 
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insight is needed to catch complex security threats or 

operational failures that cannot be spotted when they occur 

in isolated events, but through changes in behavior over time. 

The output of this GRU module, a sequence of hidden states 

that encode the temporal behavior learned by the GRU about 

the data pipeline, is then fed to the final anomaly scoring or 

classification layers. This makes the GRU an effective 

counterpart to the MLP layer while building a deep, 

intelligent system for secure real-time anomaly detection in 

ETL environments. 

Output Layer 

The output layer of this MLP-GRU architecture acts as a 

great final decision-making stage in the anomaly detection 

framework. Once the temporal sequence data has been 

processed and contextualized by the GRU part, the output is 

fed to a binary classification layer that uses either the 

sigmoid activation function to map the input to a probability 

value in the range [0, 1]. The value corresponds to the 

likelihood of the presence of an anomaly. Using some 

threshold (0.5 is common), the data are labeled normal (0) or 

anomalous (1). The softmax could instead be used wherever 

the output needs to be multi-class or have more detailed 

intermediate levels of certainty. This step transforms learned 

temporal and abstract patterns into a straightforward, 

interpretable label for immediate decision-making. 

The output layer can also be defined to return confidence 

scores or severity scores for anomalies besides merely 

performing binary classification. These core values will 

allow us to assess how certain the model is about a particular 

prediction and how severe the anomaly may be. To illustrate, 

a high confidence score would imply that the system is quite 

certain about the occurrence of a real threat. In contrast, a 

low confidence score may indicate that it is merely 

suspicious or potentially risky behavior. These extra outputs 

are great for feeding into alerting systems or prioritizing 

responses in automated security workflows. Finally, the 

output layer takes all the complexity of multi-dimensional 

ETL activity patterns and converts them into actionable 

insights, thus enabling intervention well before any failure or 

breach. 

Figure 3 exhibits the architecture of the proposed MLP-

GRU model used for anomaly detection in blockchain-

integrated secure ETL pipelines. The model can learn both 

spatial and temporal features of the data by combining the 

power of MLP and GRU. The leftmost side represents the 

input layer, which takes several features from the ETL 

process, such as data flow features, transformation logs, and 

access metadata. Such inputs are first fed into the MLP, 

where the hidden layer learns an abstract representation of 

the features for better classification. The MLP output is then 

fed into stacked GRU layers designed to capture temporal 

dependencies and sequential anomalies over ETL stages. 

With a gating mechanism, the GRU allows the model to keep 

or discard information selectively, hence improving the 

detection of subtle or evolving threats. Finally, the processed 

sequence is sent to an output layer for producing the 

prediction; the output is typically a classification of normal 

or anomalous behavior. 

 

Fig 3.       Architecture of MLP-GRU 

IV. RESULTS & DISCUSSION 

The results section provides a thorough evaluation of the 

proposed Blockchain-augmented ETL pipeline, techno-

integrated with MLP-GRU anomaly detection. The 

experiments focused on addressing the system's performance 

on multiple fronts. Different visualizations in the form of bar 

charts and line graphs help prove the model's efficacy in 

anomaly identification and preservation of data integrity 

while processing data with the increasing volume of events 

at no compromise to performance. These findings have 

further demonstrated the hybrid framework's practicability 

and strength in bringing about secure, scalable, and 

intelligent ETL operations, particularly in data-sensitive and 

regulation-heavy fields. 

A. Experimental Outcome 

The latency-differentiating view of the three ETL pipeline 

architectures- Traditional ETL, Blockchain-Enhanced ETL, 

and Blockchain Integrated with AI ETL- from 100 to 10,000 

record data volumes. As shown in Fig. 4, the Traditional ETL 

pipeline incurred the least latency in smaller data sizes, but 

its response time behaves very poorly when large numbers 

of data records are involved, indicating poor efficiency and 

limited scalability under heavy load situations. On the other 

hand, the Blockchain ETL pipeline shows ever so slightly 

higher latency at low volumes because of the cryptographic 

overhead associated with block creation, transaction 

validation, and ledger maintenance. However, its growth of 

latency remains rather controlled, presenting acceptable 

trade-offs in exchange for enhanced data integrity. The 

Blockchain + AI ETL framework achieves compromises and 

remains consistently lower concerning latency for 

Blockchain at higher volumes. The possibility is meant for 

AI to help with the intelligent scheduling of tasks, prediction 

of bottlenecks in processing, and intelligent routing of data 

within the pipeline. 
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Fig 4.        Latency 

Throughput performance in Fig. 5, measured in records 

processed per second, has been illustrated for Traditional 

ETL, Blockchain-Enhanced ETL, and Blockchain + AI-

based ETL systems against increasing data volumes. As the 

figure indicates, the Traditional ETL pipeline achieves the 

highest throughput at lesser data volumes, with minimal 

processing overhead on direct data handling; however, as the 

data volume increases, its throughput decreases drastically, 

making it an inefficient and unsuitable kind for heavy data 

analysis. The Blockchain ETL pipeline offers smaller 

throughput at the start, owing to the additional costs of 

cryptographic processing and consensus, with the 

performance cost accentuating as the data volume rises, 

further decreasing speed. Oddly enough, the Blockchain + 

AI ETL framework maintains a stable throughput curve 

through volumes of data. Even with a low-throughput 

solution when compared with Traditional ETL, the 

Blockchain + AI ETL framework can enforce intelligent task 

allocation, predictive optimization, and real-time anomaly 

detection, enabled by AI, to maintain high service efficiency 

adaptively. 

 

Fig 5.        Throughput 

Fig 6 presents the analytics of accuracy levels for 

anomaly detection embedded within three different types of 

ETL frameworks: Traditional ETL, Blockchain-Enhanced 

ETL, and Blockchain + AI, across the five test scenarios. 

Looking at the results, they serve to illustrate the highest 

levels of detection accuracy, forged by the Blockchain + AI 

ETL pipeline, which in all tests had an accuracy level of 

detection greater than 90%, setting the highest one at 95 

percent in the last test. The reason for this high degree of 

accuracy is mostly due to the AI's side of learning from past 

experiences and patterns, from ever-flexible data behavior to 

raising alarms with fewer false positives. In comparison, the 

Blockchain-only ETL, with its feature of secure and 

immutable logging coupled with transparency in transactions 

to detect suspicious activities, had moderately higher 

accuracy than the traditional system. In real-time, however, 

it can not adapt intelligently to tweak detection. The 

Traditional ETL system, on the other hand, has the lowest 

and least stable accuracy, which keeps decreasing as test 

complexity rises-which is indicative of it being prone to 

undetected anomalies and being unable to automate threat 

responses. 

 

Fig. 6.        Detection Accuracy 

Figure 7 depicts the average block commit time concerning 

data volume for the two ETL system configurations, i.e., 

Blockchain ETL and Blockchain integrated with AI. As 

more data is processed, from 10 MB onwards to 1000 MB, 

in both systems, the commit time rises. Indeed, increasing 

the chunk of data processed entails higher computational 

efforts to marshal the data into blocks and to validate 

transactions in a blockchain network. Nonetheless, the 

Blockchain + AI method records lower commit times for all 

cases of data volume, indicating an efficient approach. 

Superiority in efficiency comes with AI choosing block sizes 

dynamically, limiting consensus contention, and anticipating 

peak loads to shorten transaction queue delays. Whereas the 

block commit time for Blockchain ETL quickly peaks at well 

beyond 25 seconds at the volume of about 1000 MB, the AI-

based system arrests this upsurge to less than 20 seconds, 

thereby establishing higher scalability and responsiveness 

when high volume matters. In worth noting that Fig 7 thus 

very much emphasizes the practical value that the integration 

of AI might infuse into blockchain systems for scaling up the 

challenges of secure and large-scale ETL operations. 
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Fig 7.        Transaction Time 

Figure 8 illustrates a bar chart comprising key 

performance indicators for the proposed Blockchain + AI-

based ETL-security method, presenting extremely high 

values for all evaluation measures. The model achieves an 

accuracy of 99%, which indicates the overall effectiveness 

in correctly identifying normal and anomalous ETL 

operations. The precision of 98.21% shows a strong ability 

to minimize false positives; the flagged anomalies are 

suspicious activities from a forensic perspective. A Recall 

rate of 98% makes this method stronger to ensure almost all 

relevant threats or anomalous events are considered without 

missing any critical ones. The F-1 score of 98.77%, a 

balanced value between precision and recall, proves the 

model's consistency and reliability in variable underpinning 

situations. That way, the results corroborate the usefulness 

of using integrated blockchain and AI for ETL-pipeline 

security, with threats being either detected with high 

accuracy or at least getting less attention from undetected 

ones or falsely flagged ones. 

 

Fig 8.        Performance Metrics 

V. CONCLUSION AND FUTURE WORK 

This paper first advances the development of a secure 

ETL pipeline framework by interweaving Blockchain 

technology with an AI anomaly detection system that is 

based on MLP-GRU networks. A traditional ETL pipeline, 

even when standard encryption and firewall-based protection 

mechanisms are employed, remains subject to insider 

threats, tampering, and breaches of compliance owing to its 

centralized and opaque architecture. The hybrid model 

proposed in this paper aims to solve these issues by ensuring 

data immutability, traceability, and intelligent threat 

detection. In contrast, blockchain technology decentralizes 

the ledger, providing an auditable trail for every ETL 

operation, whereas the AI model based on MLP-GRU 

networks is capable of analyzing both static and sequential 

features of ETL logs to differentiate suspicious from 

legitimate operations in real-time. Experiments evaluate the 

performance of the model, effectively showing that it can 

detect threats while minimizing false alarms. Conversely, 

metrics such as block commit time and anomaly detection 

latency suggest that the hybrid architecture will continue to 

be scalable and responsive in the face of high data 

throughput, validating its suitability. 

Several research paths lie ahead. Firstly, we could extend 

the system to support federated or edge ETL architectures 

where the AI models run locally near the data source and 

synchronize with the blockchain network. A second way to 

augment data privacy (while still maintaining verifiability) 

would be the integration of Zero-Knowledge Proofs (ZKPs) 

or Homomorphic Encryption with the blockchain. An 

additional research direction, of course, would be attempting 

to use more advanced AI models like Transformers or Graph 

Neural Networks (GNNs) for anomaly detection in relational 

or more complicated ETL settings. Last but not least, real-

time dashboard integrations and automated regulatory audit 

generation using smart contracts could work toward better 

usability for an enterprise-level implementation. This 

research lays the foundation for a futuristic data engineering 

setting, secured, intelligent, and compliant by merging 

blockchain and AI along ETL pipelines. 
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