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Abstract—In the era of data-driven decision-making, ensuring the security, transparency, and integrity of Extract,
Transform, and Load (ETL) pipelines has become increasingly critical, especially in regulated industries such as healthcare,
finance, and telecommunications. Traditional ETL systems often rely on centralized architectures with basic encryption and
access control mechanisms, which, although essential, fall short of addressing sophisticated cyber threats, data tampering, and
compliance verification. This research proposes a hybrid framework that integrates Blockchain technology and an MLP-GRU
(Multi-Layer Perceptron — Gated Recurrent Unit) neural network to enhance the security and intelligence of ETL processes.
Blockchain is employed to create a decentralized, tamper-proof ledger that logs each ETL operation, providing traceability,
immutability, and auditability. In parallel, the MLP-GRU model is utilized to detect anomalies in ETL activities by analyzing
both static and sequential log data. This dual approach ensures not only secure data management but also real-time monitoring
and predictive threat mitigation. The experimental setup involves blockchain-based logging of ETL operations and Al-based
anomaly detection, evaluated using metrics such as Accuracy (99%), Precision (98.21%), Recall (98%), and F1-Score
(98.77%). Results demonstrate that the integrated system outperforms traditional ETL security mechanisms in detecting
malicious activity while maintaining efficient data throughput and low latency. Furthermore, the study examines blockchain
transaction performance under varying data volumes to validate the scalability of the proposed solution. The framework's
ability to automate compliance verification and generate immutable audit trails presents a significant advancement in secure
data pipeline design. Future work includes enhancing privacy through Zero-Knowledge Proofs, scaling to federated systems,
and incorporating advanced deep-learning architectures. Overall, this research sets a strong foundation for the development of
intelligent, secure, and regulation-compliant ETL infrastructures through the convergence of blockchain and Al technologies.
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1. INTRODUCTION concerning unauthorized access, tampering of data, loss of

) o lineage, and lack of verifiability.
Today, in a hyperconnected digital economy, tremendous

quantities of heterogeneous data are generated, processed,
and transferred for an organization to operate and compete
[1]. Enterprises are relying on advanced ETL pipelines to
combine various data sources into actionable intelligence for
anything ranging from real-time financial transactions and
claims from an insurance company to the health records of a
patient and usage logs of a telecom operator. In other words,
these pipelines enable processes such as integration, quality
improvement, semantic transformations, and optimized
storage for analytics and decision-making. But with data
growing in volume and complexity and its very nature
becoming sensitive, their conventional ETL infrastructures'
vulnerabilities have become glaringly evident. Classic ETL
systems are typically built on centralized architectures. As
such, they present highly attractive opportunities for
cyberattacks and insider threats, raising considerable risks

Sr. Solutions Architect, Corpay

Although traditional ETL pipelines have been subject to
encryption using SSL/TLS, firewalls, role-based access
controls, and other conventional security measures, they
could never be truly deemed traceable and hence immutable,
ensuring data integrity throughout the entire data lifecycle [2].
Conventional security measures imply a basic level of
defense but are mostly reactive and hence insufficient against
modern cyber threats, from a so-called "advanced" persistent
attack, all the way to insider threats. The main challenge
emanates from the centralized architecture that most ETL
systems subscribe to data is passed through single processing
nodes and finally stored in central warehouses, something
highly susceptible to malicious tampering, corruption, and
sudden catastrophic failure if the system gets compromised.
These centralized systems do not provide it with verifiable
audit trails, those trails that can independently verify whether
data has been altered, copied, or erased illegally, thereby
putting a heavy blackout on transparency and accountability.

By offering a decentralized and tamper-proof ledger
recording transactions and operations in a transparent and
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verifiable manner, blockchain technology is set to transform
solutions to the entrenched issues with data security and data
integrity posed by the traditional ETL pipelines [3]. At the
core of blockchain are cryptographic algorithms and
consensus mechanisms working in tandem to time-stamp,
uniquely hash, and irrevocably bind each data interaction in a
chain of prior history- everything is there to prevent any
unauthorized compromise. If appropriately embedded in ETL
processes, the blockchain backbone can be used to keep an
auditable record of every significant step in the ETL life
cycle: extraction, transformation, and loading. This record of
activities is kept forever, enabling one to guarantee the data's
authenticity and data traceability; further, this late record
could give them real-time verification and the possibility for
useful forensic analysis when any data tampering,
unauthorized access, manipulation, or data forgery attempts
are being notified [4].

While blockchain technology provides a firm technical
guarantee of security, immutability, and auditability of data
workflows, Al stands to greatly augment the functionality and
flexibility of ETL pipelines by endowing them with cognitive
abilities, scalability, and real-time decision-making power.
Al-fed systems continually scrutinize vast volumes of ledger
entries and metadata generated during ETL operations to
rapidly detect abnormalities, forecast potential security
threats, and intelligently assign computational resources to
ensure optimal performance [5]. Deploying Al models along
with machine learning and deep learning algorithms can
allow independent adaptive behavior toward changing data
structures, schema variation management, and complex data
cleaning with maximum accuracy while reducing manual
interventions and processing delays. Subsequently, an Al
analytical engine catalogs subtle irregularities or anomalies in
data pipelines, warranting tamper alerts, data drift, or system
failure, thus either triggering a remediation or escalation
protocol [6].

The fusion of blockchain and Al into ETL processes
gives birth to a hybrid framework that augments data security
while maximizing operational intelligence and flexibility.
Blockchain technologies, including smart contracts,
cryptographic hashing, and distributed consensus, find their
way into every stage of the ETL pipeline in this synergistic
architecture, thereby ensuring that every data transaction,
transformation, and access event is recorded permanently,
with tamper evidence and with cryptographic verification.
Such blockchain-based technologies thereby provide an
incorruptible, decentralized, transparent audit trail to ensure
data integrity, uptime for compliance, and removal of silent
data distortion at will [7]. Concomitantly, Al engines survey
the ETL stand, analyze patterns, recognize anomalies, and
intervene in system threats or performance degradation in real
time, utilizing advanced techniques like machine learning,
natural language processing, and neural networks. These
intelligent agents adapt themselves dynamically to changes in
data sources, optimize transformation rules, and raise alarms
against dubious activities or attempts of unauthorized access

[8].

The generation of a hybrid structure by fusion makes it
relevant for domains that are dealing with data sensitive to the
highest degree, critical to life momentarily, or data
intensively regulated. In the healthcare sector, since patient
records are extremely private and must be accurate, the
blockchain can timestamp and trace all interactions with the
data from diagnosis through treatment updates to insurance
claims to ensure complete data lineage and non-repudiation,
while the Al systems examine the access logs and movement
of patient data to spot anomalies, unauthorized access, or
compliance breaches in real-time [9]. In the financial
industry, Al can detect fraud or suspicious behavior in high-
frequency market transaction streams faster and more
accurately than has ever been possible before, while
blockchain immutably records every single transaction and
audit event that takes place, thus ensuring compliance with
regulations like AML and KYC [10].

Another big advantage of blockchain integration with Al
is that the process has become smoother to facilitate
regulatory compliance. With global attention growing on data
privacy, protection, and governance, legislation such as
GDPR, HIPAA, and PCI DSS, among others, applies
rigorous criteria to data collection, processing, storing, and
sharing. Organizations must keep verifiable and real-time
audit trails to show compliance proactively. The power of
blockchain is that every data transaction, transformation, and
access event within an ETL process gets recorded on a
decentralized and immutable ledger that is public and tamper-
proof [4]. Such traceability assures that every interaction with
sensitive data is recorded chronologically, cryptographically
secured, and verifiable to an independent party crucial
element while proving compliance in audits or legal scenarios
[11]. Al on the other hand, infuses an element of automation
and smartness in managing compliance by monitoring ETL
processes consistently, alerting on any breaches of policy,
verifying data access controls, and comparing real-world
practices to regulatory standards.

With the above-explained advantages, the research study
focuses on conceptualizing, designing, and implementing the
next-generation ETL frameworks with blockchain and Al
synergistically to create a secure, intelligent, and resilient data
processing environment [12]. At its heart, the design of the
pipeline must ensure full-stage encryption and security at
extraction, transformation, and load while having the
cognitive capability to learn from historical data behavior,
identify anomalies, and preemptively address any potential
risks and vulnerabilities [13] [14]. This approach secures the
data using blockchain with decentralized and immutable
records that provide tamper-proof logging and data lineage
verifiability and leverages Al models for situational
awareness and complexity in decision-making, including
deep learning, anomaly detection algorithms, and predictive
analytics. The research evaluates various blockchain
platforms for their suitability in secure ETL integration (e.g.,
Hyperledger ~Fabric, Ethereum, and Corda) while
simultaneously researching Al-based techniques suitable for

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2025, 13(1), 395-406 | 396



embedding into systems for real-time monitoring and fraud
detection.

The Key contributions of the article are given below,

A novel integration of blockchain technology into the ETL
pipeline ensures data immutability, tamper-proof logging,
and traceability across extract, transform, and load
operations, enhancing transparency and regulatory
compliance.

The proposed model intelligently detects anomalies in ETL
operations by combining an MLP for feature abstraction and
a GRU for temporal behavior learning, enabling real-time
detection of irregular patterns or security threats.

Smart contracts are deployed to enforce access control,
workflow validation, and automated responses to anomalies,
providing decentralized self-governance and improving the
reliability of data operations.

Instead of storing raw data, the system logs cryptographic
hashes, timestamps, and anomaly flags on the blockchain,
ensuring lightweight, cost-effective, and audit-friendly
metadata storage while preserving confidentiality.

This document is organized as follows for the remaining
portion: Section II discusses the related work. The problem
statement is discussed in Section III. The recommended
method is described in Part IV. In Section V, the experiment's
results are presented and contrasted. Section VI discusses the
paper's conclusion and suggestions for further study.

IL RELATED WORKS
. ETL Systems

To handle data heterogeneity and event interpretation in
intricate systems like computer networks and telephones,
Cichonski et al. [15] outline an end-to-end data processing
architecture that blends Semantic Web technologies with
traditional NMSs and SIEMs. Semantic Web tools for
knowledge representation, including provenance tracking,
declarative data mapping using RML, batch and stream
processing, data patching, and reconciliation based on
SPARQL and SKOS, and semantic data transfer based on
Kafka, are integrated into the suggested architecture, setting
it apart from traditional systems. The offered architecture
demonstrates its remarkable ability to combine disparate
data sets for monitoring and security analytics by producing
an RDF knowledge graph that can detect cross-domain
irregularities in industrial environments.

The need for strong ETL processes in scenarios where
digital data is becoming increasingly varied in terms of both
structured and unstructured data is covered in length by
Kumaran [16]. These, along with big data frameworks like
Hadoop and Spark, will be increasingly useful since
managing unstructured data—such as text, photos, and video
content—requires more flexible Al-driven ways. Relational
databases with preset schemas are usually used to process
structured data using SQL-based tools. Additionally, it
offers comprehensive coverage of hybrid ETL pipelines,
which complement one another to deliver optimal

performance and scalability analytics. It discusses several
strategies to improve efficiency and integration across
diverse data sources and provides best practices for resolving
mixed-data ETL process problems.

B. ETL Use Cases

The typical ETL processes are about to be modified by
Seenivasan [17] for usage with cloud data engineering. It
fixes several problems, including resource waste, excessive
latency, and mismatched data transformation. Al-driven
features like intelligent workload management, automatic
schema generation, and real-time anomaly detection make
ETL pipelines more scalable, flexible, and efficient. It also
describes how to use these advantages of Al in real-world
applications that demonstrate notable improvements in data
processing accuracy, speed, and overall operational
efficiency. Finally, it points out that Al ETL systems are
already playing a significant part in modern, high-
performance data-engineering solutions in more complex
and dynamic cloud infrastructures.

The Enhanced Temporal-BiLSTM Network, or ETLNet,
is a model proposed by Ansari et al. [18] to detect road
anomalies such as potholes and speed bumps. Instead of
using visual input, which has been demonstrated to be
unsuccessful in low light or unmarked regions, this model
makes use of data from smartphone inertial sensors. ETLNet
claims that a BiLSTM layer is combined with two TCN
layers. These layers are designed to evaluate gyroscope and
accelerometer data separately to identify irregularities on
various road surfaces. This is a great study for creating
advanced automated traffic monitoring systems that can be
used in autonomous vehicles and public transportation.

C. Security Using ML

Joshi [19] examines the drawbacks of traditional batch-
oriented ETL processes for managing fast, real-time data and
proposes state-of-the-art machine-learning techniques to
build ETL pipelines that are flexible and self-improving.
Real-time ETL is enhanced by the use of predictive
modeling, anomaly detection, reinforcement learning-based
resource allocation, and schema drift management. Such
intelligent pipelines would be able to take proactive steps to
manage workloads, preserve data quality, and even adjust to
changes in data architecture on their own by utilizing time
series prediction and learning-based insights. Experimental
validations on systems like Databricks and AWS Glue
demonstrate significant benefits, including a 40% reduction
in latency and a 25% reduction in resource expenditures.
This study illustrates the potential for ML-enhanced ETL
systems to become effective and independent.

The major security concerns that emerge in cloud and
distributed systems—which can be large, flexible, and cost-
effective—are the focus of Saswata Dey, Writuraj Sarma,
and Sundar Tiwari [20]. These systems are also susceptible
to a variety of advanced threats, including DDoS attacks,
insider threats, and zero-day attacks. This elucidates how
DL models, including CNNs, RNNs, and transformers,
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enhanced the ability to define patterns and were able to
recognize these threats instantly. Scalable cloud deployment
is another consideration when handling unbalanced data and
combining DL with edge computing performance
improvements. The findings of the experiment show that DL
models perform better than traditional methods in terms of
anomaly detection and virus prevention.

Secure Data Transfer

Concerns have been expressed over the rising
cybersecurity vulnerabilities as a result of organizations'
increasing reliance on internet services, digital storage, and
software-oriented processes. Proactive  vulnerability
assessments must be carried out since digital transformation
leaves IT infrastructures vulnerable to potential threats.
Thus, the objective of Hiremath et al. [21]is to identify
system vulnerabilities and collect relevant information for
developing effective solutions using data analytics tools like
Power BI. Helping clients create a safe online environment
that protects their private information from hackers is the

aim.

For effective data transfer from Oracle BI into Salesforce,
minimizing system interruptions, and ensuring data integrity
during the transition from conventional to cloud-based
systems, Hamza et al. [22] recommend an ETL-based
strategy. It explains how the Extract, Transform, and Load
processes may enhance operational performance and
promote data mobility, especially when taking finance and
ERP into account. The research presents data virtualization
as a method that may be a very flexible and scalable
alternative for accessing data in real-time without significant
duplication to support Agile processes and expedite
decision-making. The same is applied to enhance business
intelligence skills and predictive analytics.

III.  RESEARCH METHODOLOGY
Research Gap

With the rising concern about the architecture of secure
data pipelines, ETL systems have been focused mainly on
traditional security considerations such as encryption, access
control, and rudimentary audit logging. These techniques,
although useful up to a point, fail to offer a concrete set of
solutions against advanced cybersecurity efforts, insider
threats, and data lineage tampering [23]. Most ETL
frameworks are therefore designed around a centralized
architecture, inherently prone to single points of failure and
limited traceability, and vulnerable to illicit changes, among
others. While some attempts were made to secure the data
flowing inside them, the little literature available has hardly
explored the entire range of end-to-end security for ETL.
There is an obvious absence of frameworks that provide
decentralization along with real-time monitoring and
immutable audibility, all integrated coherent and scalable
manner.

The application of advanced technologies such as
blockchain and AI toward ETL security
underexplored and fragmented in the literature. Blockchain

remains

is typically discussed in the context of financial transactions
or supply chain management, with the question of how the
same technology should be applied to ETL pipeline integrity
and audit seldom explored [24]. Likewise, Al has found
varied applications in anomaly detection and optimization
methods, yet rarely is its capability to improve ETL
pipelines, especially when paired with blockchain, studied.
Experimental evaluation of performance trade-offs and
while merging these
technologies within real-world, data-heavy scenarios is also
missing. Hence, this research aims to fill this gap by
proposing a unified intelligent and secure ETL framework
that harnesses blockchain and Al toward strengthening
robust data processing, end-to-end visibility, and predictive
threat mitigation.

interoperability challenges two

B. Proposed Framework

The layered diagram in Fig. 1 offers a representation of
a blockchain and Al-empowered secure and intelligent ETL
framework for anomaly detection. At the highest point in the
stack lies Raw Data, which acts as the primary input and
consists of unstructured or structured dataset types from
different sources, including databases, IoT devices,
enterprise applications, etc. The raw data then proceeds to
Data Collection, during which appropriate fields are
extracted and structured for processing. Data Preprocessing
transforms the input, cleaning and normalizing it (Min-Max
scaling, for instance) and selecting the salient features
needed for the analysis to ensure consistency and readiness
for modeling. Blockchain Integration subsequently records
every step of the transformation, metadata information, and
corresponding hashes into an immutable secure ledger,
providing traceability, lineage, and tamper-proof audit trails.
Anomaly detection comes next, whereby the system uses
sophisticated Al models based on the MLP-GRU
architecture to track temporal patterns and detect abnormal
behaviors that provide indications of system faults, security
intrusion, or data inconsistencies.

Raw Data

|

Data Collection

Blockchain Integration

Performance Evaluation

Anomaly Insights
Fig. 1. Proposed Framework
C. Extract — Data Collection

Having to evaluate the proposed blockchain-integrated
ETL pipeline with MLP-GRU-based anomaly detection, a
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comprehensive and diversified dataset was needed; one thate
truly represents ETL operations in a real-world environment.
Both synthetic and publicly available operational log®
datasets were employed for this purpose. Synthetic data
configurations emulated different ETL activities regarding
data extraction, transformation, and loading, both under
normal and abnormal scenarios. Anomalous events were
described as abrupt surges in data volume, unauthorized
access attempts, transformation failures, irregular job
durations, and changes in access roles. The parameters
included in this dataset ranged from job ID, timestamp, user
role, type of task (extract, transform, load), processing time,
and data size, to system response codes. This dataset's
diversity ensured the training and testing of the model with
an enormous variety of patterns, which will sharpen its
generalization and subtle deviation-detecting capability.

The model was also evaluated in real settings and further
validated with real-world datasets generated from platforms
such as Kaggle and open-source ETL tools. Logs extracted
from these systems contained records arranged in a
structured manner to give complete accounts of data flow
activities and system behaviors. They were then
preprocessed to discard irrelevant features, impute missing
values, normalize numerical fields, and encode categorical
variables. For the temporal modeling aspect adopted by the
MLP-GRU, sliding windows were set up within time series
to sufficiently represent the sequential nature of ETL
operations. Labeled sequences encompassed both normal
and anomalous instances so that the model could learn the
patterns displaying safe versus attacked states. This mixture
of synthetic data plus real data has made the training dataset
balanced and contextually rich enough to fairly evaluate
performance and assist in building a strong, secure ETL
framework.

. Transform - Data Preprocessing Using Min-Max
Normalization

During the ETL pipeline transformation process, data
preprocessing plays a great role in preparing the raw data for
efficient and accurate anomaly detection. One of the
important preprocessing techniques applied in the present
study is Min-Max normalization, which scales all numerical
features into a uniform range, typically between 0 and 1. This
prevents features with larger magnitudes from dominating
the learning process, thereby giving a chance to the MLP-
GRU model to learn from each given input variable
meaningfully. If the dataset contains measurements from
heterogeneous variables such as job execution time, data
size, block commit duration, and throughput values that
differ enormously in scale, normalization becomes even
more critical. Min-max normalization ensures consistency
within the data so that all features become comparable,
which in turn helps the model learn faster and converge
better. It is given in Eq. (1).

X—Xmin
KXscaled =35 — (1)

Xmax—Xmin

Where:

X = Original value
Xmin = Minimum value in the feature column

Xmax = Maximum value in the feature column

This normalization of data preserves the integrity of
patterns within temporal sequences, something critical for
the GRU component to comprehend trends as they evolve. It
is also advantageous for the MLP to receive inputs on a
uniform range so that the training is faster and mitigation
measures against computational catastrophes, such as
exploding gradients, are in place. Before normalization, the
dataset went through the removal of missing values and one-
hot encoding of categorical variables to ensure that the entire
dataset was numerical and machine-readable. Finally, the
normalized data was divided into training, validation, and
testing sets, with the normalization set applied to each of the
three. This transformational step makes sure to standardize
the dataset while making sure that the Al model can work
with inputs optimized for anomaly detection, resulting in
higher model performance and more reliable deviation
detection in the ETL workflow.

E. Blockchain Integration for logging

Within the blockchain integration stage, all critical
happenings within the ETL pipeline, from data extraction,
transformation, and loading, are hashed and stored as log
entries on the blockchain ledger, The metadata involved
includes job start and end times, job IDs, cryptographic
hashes of processed data, transformation types, and
anomalies detected during processing. To conserve storage
and protect privacy, the raw data itself never resides on the
blockchain--only pertinent, non-sensitive details are logged.
Smart contracts will regulate access to the environment
based on agreed-upon rules while concurrently ensuring that
ETL tasks occur in the correct order and report real-time
inconsistencies. In this manner, the entire ETL life cycle
becomes open, transparent, and tamper-proof, thereby
considerably increasing information integrity, data security,
and regulatory compliance.

Blockchain Platform Selection

Choosing the right blockchain platform is fundamental
to developing a decentralized and secure ETL pipeline.
Ethereum (via Ganache), Hyperledger Fabric, and
Multichain are some hot choices, each presenting specific
peculiarities that could serve particular organizational needs.
Ethereum works well with Ganache in a stage-like
environment for testing and development. It also supports
smart contracts where the validation of ETL stages can be
done automatically, and certain rules may be enforced from
within the ETL process. The decentralized ledger of
Ethereum makes sure that each transaction goes immortal,
and in this way, it offers one layer of transparency and
auditability. From this perspective, one can begin to consider
Ethereum for any scenario that calls for public verifiability,
a level of trustlessness, and an immutable log. Ganache
especially allows developers to run a blockchain locally to
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give quick feedback on iterations on the ETL logic and
security model being developed.

On the other hand, Hyperledger Fabric and Multichain
are better suited for private, enterprise-centric applications.
Hyperledger Fabric is a permissioned blockchain framework
offering modular components, such as pluggable consensus
mechanisms and private data channels, making it highly
configurable in the business environment. It is best suited for
cases in which data privacy and access control take
precedence, for example, while implementing sensitive
applications in banking institutions or healthcare providers.
Multichain is another private chain focused on ease of
deployment, scalability, and management of access
permissions. It allows users to handle large volumes of
metadata securely without compromising on performance.
Hyperledger Fabric and Multichain give much more control
over the participant nodes and the visibility of transactions;
this is fundamental to industries that are heavily regulated
and governance-driven. In general, among these platforms,
the choice should be driven by the specific needs of the ETL
system, whether it calls for public transparency, private
control, or fast prototyping.

ETL Pipeline Integration

The integration of blockchain technology into an ETL
pipeline fundamentally alters the manner of recording,
verifying, and securing data at every step of the operation:
extraction, transformation, and loading. In the Extraction
phase, data is pulled out from one or more sources such as
transactional databases, sensors, APIs, or data lakes. The
instant the extraction process starts, an integration with the
blockchain-based system kicks off by logging important
metadata: the identifier of the data source, the exact time of
extraction, data type, and data volume. Every one of these
details is cryptographically hashed using hashing algorithms
such as SHA-256, giving rise to a unique name coined as the
digital fingerprint of that extraction event. This hash is then
written to the blockchain as an immutable transaction. As
such, the system guarantees that the data's provenance and
contextual clues are recorded in perpetuity, thereby
eliminating any future disputes or unauthorized tampering. It
also provides full traceability, which is important for audit
purposes, compliance, and forensic investigations, setting a
secure basis for later ETL operations.

During the Transform and Load phases, blockchain
technology assures operational transparency and maintains a
tamper-proof layer of security. Data undergoes some form of
preprocessing, such as cleaning, filtering, normalization,
encoding, or feature extraction, with each transformation
step then recorded on the blockchain alongside certain
metadata. Examples of such metadata include the
transformation type, version of the algorithm, timestamp,
and a hash of the transformed data. Should an inconsistency
or anomaly arise in the dataset, the blockchain log could be
used to correlate and trace the exact step and the responsible
agent. Loaded into the destination, a Data Warehouse, an
Cloud-based Storage—the last

Analytics Engine, or

operation is immutably recorded. The metadata could
include a storage location identifier, load timestamp, status
of the load job, and the hash of the final dataset. Continuous
logging in all ETL phases builds an unbreakable, verifiable
audit trail for operational diagnostics and regulatory UX
compliance. Along the ETL fabric, by implementing
blockchain, the system shifts pages from being traditionally
dull to extremely transparent, secure, and accountable.

Smart Contract Enforcement

The most important aspect of smart contracts is the
trust, security, and automation implemented into the
blockchain-embedded ETL pipeline. Smart contracts, acting
as programmable agents deployed over the blockchain,
execute certain pre-defined rules autonomously and need no
outside intervention. An important function of the contracts
is access control, whereby they verify and authorize a user
or system before an ETL job can commence. Therefore, only
an approved role, such as a data engineer, system
administrator, or certified automated script, can initiate or
change processes listed under extraction, transformation, or
loading. System-level permissions are embedded inside the
contract; hence, access is forcibly enforced by every actor,
ruling out the hazard of manual intervention. Other
capabilities of these smart contracts are vested in ensuring
compliance with the workflow logic of ETL operations.
Thus, it confirms that each process is carried out in the pre-
determined order-meaning, for example, that data cannot be
loaded before transformation. Any violation of the defined
workflow will result in either rejection or alert, thus
preempting malicious, unauthorized operations or accidental
missteps.

Besides, smart contracts provide for data integrity
validation by cross-verifying cryptographic hashes
generated at every stage of ETL. Should there be any
mismatch or irregularity between the expected hash value
and the actual hash value, it means a potential case of data
tampering or corruption, which the contract instantly logs
onto the blockchain immutably. When synergized with the
MLP-GRU-based Al engine, an even more potent feature
arises: in case the Al detects aberrant patterns such as
irregular timing of execution or unexpected behaviour on the
data, the smart contract can suspend operations
autonomously, notify concerned parties, or reroute the job
for further examination. Hence, this on-the-fly ETL
interaction forms a self-regulating ETL system ensuring
transparent and accountable data processing and intelligent
reaction toward security threats. Embedding such
governance directly in the pipeline fabric enables smart
contracts to remove manual intervention, reduce latency in
addressing threats, and increase compliance in sensitive,
regulated environments.

Data Stored on the Blockchain

In the blockchain-embedded ETL framework, the data
that is on the blockchain is carefully decided so that it
adheres to transparency, security, and performance. Instead
of raw data being stored on the chain, which would have
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been expensive and computationally heavy, the blockchain
hosts crucial metadata that provides traceability and
accountability while keeping the systems efficient. The ETL
job hash is one of the fundamental building blocks for the
solution and serves as a cryptographic fingerprint (like SHA-
256) that uniquely identifies the input, processing logic, and
output of every single job. This makes it almost impossible
to meddle with the system because any attempt to manipulate
either the input, output, or process would result in a
completely different hash. The system also logs timestamps
ofall ETL jobs, representing the moments when the jobs start
and finish. They serve as a method for measuring pipeline
latency and outage time and can therefore be correlated with
security incidents or anomalous behavior.

The blockchain also saves job IDs, status flags (OK,
error), summarization of execution, operational hashes, and
timing data. These are all combined to give a complete
picture of pipeline health and performance. Importantly,
whenever the MLP-GRU-AI engine detects abnormalities
from usual processing behavior, access from unauthorized
users, or irregular throughput, anomaly flags are
immediately raised and logged. The flags serve to enforce
real-time monitoring and are finally stored in the audit trail
used for forensic analysis and regulated reviews. Lastly, log
hashes are recorded to maintain the integrity of detailed off-
chain execution logs. Hence, auditors can validate the logs
without touching sensitive internal information. By adopting
a metadata-centric storage model, the blockchain
implementation achieves availability for audits while
maintaining inherent confidentiality and security, and
verifiability of operations without compromising on
efficiency or data privacy.

System Benefits and Reliability

In terms of ETL processes, the fused combination of
blockchain and Al promises more transformative reliability,
security, and transparency to systems. Fundamentally,
blockchain imparts immutability to blockchain network
records and stores every action taken on the ETL pipeline,
whether it is data extraction, transformation, or loading, and
these records cannot be forged or retroactively altered. It
essentially confers an immutable audit trail for all involved
parties to refer to for the accurate history of all operations
recorded. Transparency within the network is maintained as
job metadata, including timestamps, hashes, and status
indicators, is publicly verifiable (for permissioned
blockchain). This openness builds trust among various
departments, external auditors, and regulatory bodies, which
are empowered to trace the complete lineage of any data
record without fear of manipulation or loss of integrity.

In effect, with an Al engine such as MLP-GRU,
intelligent anomaly detections and response automation are
derived. Any attempt at unauthorized access, process
behaviors, or unauthorized job activity that causes anomalies
in the system is immediately flagged, and the jobs may be
suspended or escalated without manual intervention. Hence,
opportunities for data breaches via malicious persons, insider

threats, or accidental errors are reduced. Through
blockchain-based logging, auditability becomes
straightforward to comply with various stringent laws such
as GDPR, HIPAA, and PCI-DSS. The auditors may retain
immutable records for reviewing without requiring
exhaustive manual tracking or documentation. This
combination and this framework offer operational resilience,
increased fault tolerance, and additional features demanded
by the industries for a modern, secure, accountable, and
automated data infrastructure in sensitive fields such as
healthcare, finance, and telecommunication. This brings
forth ETL systems of the future, which depart from just being
technically sound and embrace the moral and legal
responsibility of society.

The diagram for ETL on blockchain depicts a secure and
intelligent data-processing pipeline, harnessing the power of
blockchain technology and Al for ensuring data integrity,
transparency, and timely threat mitigation, as depicted in
Fig. 2. The steps begin with data extraction from any source
such as a database, IoT device, or cloud repository,
immediately followed by hashing of extracted metadata and
logging it onto a blockchain. This ensures an immutable
record of the origin and time of extraction of the data. During
the transformation step, operations such as normalization or
encoding occur, and all changes are recorded as hashed
entries. Embedded smart contracts in the blockchain check
every step of the ETL process, processing based on rules and
verifying the sequence in which ETL steps are performed. If
an anomaly or irregularity is found either in the job sequence
or in the job itself, the Al modules powered by MLP-GRU
raise an alert that is recorded immutably. In the loading step,
the cleansed data is loaded into the destination warehouse or
data lake, with additional metadata about job completion
time, data volume, and transformation checksum being
recorded.

Hashed Log Entry Smart Contracts

Hashed » S VG 0T |

Transform
Log Entr
Rule-based Access,

Data Lineage Verificaion
Data

Load

Stored Data
* ETL job hashes

» Job start/end times
» Anomaly flags (if any)
» Log hashes

Fig. 2. Blockchain Framework
F. MLP-GRU for Anomaly Detection

Preprocessed ETL pipeline data are fed into a hybrid deep-
learning model composed of an MLP and GRU for the
detection of anomalies. It handles both anomaly detection
and pattern characterization, learning static patterns with the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 395-406 | 401



MLP architecture, while handling temporal dependencies
with the GRU. Features like job duration, fluctuations in data
volume, access frequency, hash mismatch indicators, and
timestamp series are normalized and fed into the model. The
GRU gains knowledge of both time-series trends and
behavioral deviations after successive ETL executions,
whereas the MLP compresses the dimensionality and
classifies the feature-rich data. Hence, this setup helps spot
any abnormally suspicious job executions, unusual delays, or
security breach attempts. Anomalies detected are logged and
flagged so that reactive measures and further analyses can be
conducted. Thus, the step is vital in the proactive assessment
and mitigation of risk in secure ETL systems.

Input Layer

The ETL system takes inputs in the form of features that
are preprocessed in a particular manner, thereby ensuring
that these features, spanning different operational metrics
that vary temporally and structurally to detect anomalies, are
well considered. Job duration measures how long an ETL
task takes, where extraordinary values, either too high or too
low, become suspicious for performance issues or for
tampering or interference in the process. Hash mismatch
indicators put forth the inconsistencies that come up between
what is supposed to be the cryptographic hash and what
comes about at a given stage of ETL-as-they-may-indicate a
probable data manipulation or downright corruption.
Another important feature is data volume changes, which
could help detect abnormal rises or drops in the amount of
data being processed, and such occurrences could be caused
by intrusion, data loss, or even a system misconfiguration.
By measuring these variations against historical baselines,
the model will immediately flag a sudden change in behavior
that is not in line with expected behavior.

Added to these are timestamp sequences that keep track
of the temporal order and spacing of operations to catch
timing anomalies such as unauthorized access during off-
hours. Frequency of access denotes the number of times
certain data sources or transformation scripts are activated,
usually to recognize irregular returns or possible insider
abuses. Transformation types are encoded to express the
essence of operations (like normalization, aggregation,
encoding) brought to the data, for different combinations of
transformations may mark different sensitivity or risk. All
these are normalized through Min-Max normalization,
scaling all the features into a uniform range (say, 0 to 1), so
that no feature potentially dominates any other and thus
interferes with the whole learning process. This step is
necessary for the stability and accuracy of the model,
particularly when it faces static features such as job metadata
in conjunction with dynamic features of time-series
behaviors. This comprehensive, normalized set of features
forms the input vector to the MLP-GRU model, thus
permitting it to learn, detect, and respond to anomalies in real
time.

MLP Component: Feature Abstraction

The MLP module has a crucial responsibility in
abstracting and refining features coming from the ETL
pipeline. As a feed-forward type of neural network, it takes
normalized input features such as job duration, hash
mismatches, transformation types, access frequencies, etc.,
passing these through one or two fully connected hidden
layers equipped with activation functions like ReLU or
Leaky ReLU. This ensures that the model is capable of
learning nonlinear feature interactions. This stage acts
primarily as the dimensionality reduction of inputs and
brings into focus the most important aspects of data while
eliminating irrelevant information that will act as noise. This
process simplifies the feature space so that the next GRU
layers would have a more relevant and distilled form of data
representation.

In addition, dropout layers were embedded into the MLP
architecture to alleviate overfitting and to increase the
robustness of the model. During training, the model
randomly disables a subset of units so that not too much
importance can be assigned to any one feature, thereby
providing a regularization mechanism to the network. MLP
learning provides an additional layer of regularization to
allow the model to generalize better on the unseen data,
which is quite important in a setup where the ground truth is
gathered for a relatively small set of anomalies that are either
quite specialized or very subtle to ETL operations. Overall,
the MLP segment acts as a pre-processing neural stage that
transforms the raw feature vectors into an abstract low-
dimensional embedding to be temporally considered by the
GRU layers, enabling it to be an important module in the
hybrid architecture for intelligent anomaly detection.

GRU Component: Temporal Pattern Learning

The GRU component models the temporal patterns and
interdependencies existing in ETL pipeline installations.
ETL operations tend to be time-based sequences, which
include, for example, the sequence of operations, job run
intervals, and access schedules. Using the GRU, these
relations can be satisfactorily modeled. GRU has a gating
mechanism standing in contrast to a classical RNN: it
consists of an update and reset gate, which make decisions
on how much of the past information should be kept or
forgotten at a given time. This, in essence, holds more
prolonged dependencies with no risk of gradient vanishing,
allowing the model to notice subtle drifts in operational
behavior over time. Additionally, the bidirectional GRU
layers enable the model to factor in time in two directions,
from both past and future time steps, to construct a more
holistic timeline out of the ETL processes.

In practical terms, it signifies that the GRU can find
slow-changing or context-dependent anomalies; for
example, when a job becomes abnormal under certain
conditions, following a series of prior events. This could
mean the gradual increase in data volume and recurring hash
mismatch patterns in consecutive ETL runs, which the GRU
can almost perfectly learn and flag. Such time-sensitive
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insight is needed to catch complex security threats or
operational failures that cannot be spotted when they occur
in isolated events, but through changes in behavior over time.
The output of this GRU module, a sequence of hidden states
that encode the temporal behavior learned by the GRU about
the data pipeline, is then fed to the final anomaly scoring or
classification layers. This makes the GRU an effective
counterpart to the MLP layer while building a deep,
intelligent system for secure real-time anomaly detection in
ETL environments.

Output Layer

The output layer of this MLP-GRU architecture acts as a
great final decision-making stage in the anomaly detection
framework. Once the temporal sequence data has been
processed and contextualized by the GRU part, the output is
fed to a binary classification layer that uses either the
sigmoid activation function to map the input to a probability
value in the range [0, 1]. The value corresponds to the
likelihood of the presence of an anomaly. Using some
threshold (0.5 is common), the data are labeled normal (0) or
anomalous (1). The softmax could instead be used wherever
the output needs to be multi-class or have more detailed
intermediate levels of certainty. This step transforms learned
temporal and abstract patterns into a straightforward,
interpretable label for immediate decision-making.

The output layer can also be defined to return confidence
scores or severity scores for anomalies besides merely
performing binary classification. These core values will
allow us to assess how certain the model is about a particular
prediction and how severe the anomaly may be. To illustrate,
a high confidence score would imply that the system is quite
certain about the occurrence of a real threat. In contrast, a
low confidence score may indicate that it is merely
suspicious or potentially risky behavior. These extra outputs
are great for feeding into alerting systems or prioritizing
responses in automated security workflows. Finally, the
output layer takes all the complexity of multi-dimensional
ETL activity patterns and converts them into actionable
insights, thus enabling intervention well before any failure or
breach.

Figure 3 exhibits the architecture of the proposed MLP-
GRU model used for anomaly detection in blockchain-
integrated secure ETL pipelines. The model can learn both
spatial and temporal features of the data by combining the
power of MLP and GRU. The leftmost side represents the
input layer, which takes several features from the ETL
process, such as data flow features, transformation logs, and
access metadata. Such inputs are first fed into the MLP,
where the hidden layer learns an abstract representation of
the features for better classification. The MLP output is then
fed into stacked GRU layers designed to capture temporal
dependencies and sequential anomalies over ETL stages.
With a gating mechanism, the GRU allows the model to keep
or discard information selectively, hence improving the
detection of subtle or evolving threats. Finally, the processed
sequence is sent to an output layer for producing the

prediction; the output is typically a classification of normal
or anomalous behavior.

Input MLP Output
o r N I N
Hidden
@ | > Layer >
@ >/ | GRU >
Cn D ——1| eru >
N J < 4

Fig 3. Architecture of MLP-GRU

IV. RESULTS & DISCUSSION

The results section provides a thorough evaluation of the
proposed Blockchain-augmented ETL pipeline, techno-
integrated with MLP-GRU anomaly detection. The
experiments focused on addressing the system's performance
on multiple fronts. Different visualizations in the form of bar
charts and line graphs help prove the model's efficacy in
anomaly identification and preservation of data integrity
while processing data with the increasing volume of events
at no compromise to performance. These findings have
further demonstrated the hybrid framework's practicability
and strength in bringing about secure, scalable, and
intelligent ETL operations, particularly in data-sensitive and
regulation-heavy fields.

A. Experimental Outcome

The latency-differentiating view of the three ETL pipeline
architectures- Traditional ETL, Blockchain-Enhanced ETL,
and Blockchain Integrated with AI ETL- from 100 to 10,000
record data volumes. As shown in Fig. 4, the Traditional ETL
pipeline incurred the least latency in smaller data sizes, but
its response time behaves very poorly when large numbers
of data records are involved, indicating poor efficiency and
limited scalability under heavy load situations. On the other
hand, the Blockchain ETL pipeline shows ever so slightly
higher latency at low volumes because of the cryptographic
overhead associated with block creation, transaction
validation, and ledger maintenance. However, its growth of
latency remains rather controlled, presenting acceptable
trade-offs in exchange for enhanced data integrity. The
Blockchain + AI ETL framework achieves compromises and
remains consistently lower concerning latency for
Blockchain at higher volumes. The possibility is meant for
Al to help with the intelligent scheduling of tasks, prediction
of bottlenecks in processing, and intelligent routing of data

within the pipeline.
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Fig 4. Latency

Throughput performance in Fig. 5, measured in records
processed per second, has been illustrated for Traditional
ETL, Blockchain-Enhanced ETL, and Blockchain + Al-
based ETL systems against increasing data volumes. As the
figure indicates, the Traditional ETL pipeline achieves the
highest throughput at lesser data volumes, with minimal
processing overhead on direct data handling; however, as the
data volume increases, its throughput decreases drastically,
making it an inefficient and unsuitable kind for heavy data
analysis. The Blockchain ETL pipeline offers smaller
throughput at the start, owing to the additional costs of
cryptographic processing and consensus, with the
performance cost accentuating as the data volume rises,
further decreasing speed. Oddly enough, the Blockchain +
Al ETL framework maintains a stable throughput curve
through volumes of data. Even with a low-throughput
solution when compared with Traditional ETL, the
Blockchain + AI ETL framework can enforce intelligent task
allocation, predictive optimization, and real-time anomaly
detection, enabled by Al, to maintain high service efficiency
adaptively.
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Fig 5. Throughput

Fig 6 presents the analytics of accuracy levels for
anomaly detection embedded within three different types of
ETL frameworks: Traditional ETL, Blockchain-Enhanced
ETL, and Blockchain + Al, across the five test scenarios.
Looking at the results, they serve to illustrate the highest
levels of detection accuracy, forged by the Blockchain + Al
ETL pipeline, which in all tests had an accuracy level of
detection greater than 90%, setting the highest one at 95
percent in the last test. The reason for this high degree of

accuracy is mostly due to the Al's side of learning from past
experiences and patterns, from ever-flexible data behavior to
raising alarms with fewer false positives. In comparison, the
Blockchain-only ETL, with its feature of secure and
immutable logging coupled with transparency in transactions
to detect suspicious activities, had moderately higher
accuracy than the traditional system. In real-time, however,
it can not adapt intelligently to tweak detection. The
Traditional ETL system, on the other hand, has the lowest
and least stable accuracy, which keeps decreasing as test
complexity rises-which is indicative of it being prone to
undetected anomalies and being unable to automate threat
responses.

Anomaly Detection Accuracy Comparison
100
~&- Traditional ETL
Blockchain ETL
95 { =4~ Blockchain + Al ETL B s

Detection Accuracy (%)
g

0 . - . . -
Test1 Test 2 Test 3 Test 4 Test5
Test Scenario

Fig. 6. Detection Accuracy

Figure 7 depicts the average block commit time concerning
data volume for the two ETL system configurations, i.c.,
Blockchain ETL and Blockchain integrated with Al As
more data is processed, from 10 MB onwards to 1000 MB,
in both systems, the commit time rises. Indeed, increasing
the chunk of data processed entails higher computational
efforts to marshal the data into blocks and to validate
transactions in a blockchain network. Nonetheless, the
Blockchain + Al method records lower commit times for all
cases of data volume, indicating an efficient approach.
Superiority in efficiency comes with Al choosing block sizes
dynamically, limiting consensus contention, and anticipating
peak loads to shorten transaction queue delays. Whereas the
block commit time for Blockchain ETL quickly peaks at well
beyond 25 seconds at the volume of about 1000 MB, the Al-
based system arrests this upsurge to less than 20 seconds,
thereby establishing higher scalability and responsiveness
when high volume matters. In worth noting that Fig 7 thus
very much emphasizes the practical value that the integration
of Al might infuse into blockchain systems for scaling up the
challenges of secure and large-scale ETL operations.
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Figure 8 illustrates a bar chart comprising key
performance indicators for the proposed Blockchain + Al-
based ETL-security method, presenting extremely high
values for all evaluation measures. The model achieves an
accuracy of 99%, which indicates the overall effectiveness
in correctly identifying normal and anomalous ETL
operations. The precision of 98.21% shows a strong ability
to minimize false positives; the flagged anomalies are
suspicious activities from a forensic perspective. A Recall
rate of 98% makes this method stronger to ensure almost all
relevant threats or anomalous events are considered without
missing any critical ones. The F-1 score of 98.77%, a
balanced value between precision and recall, proves the
model's consistency and reliability in variable underpinning
situations. That way, the results corroborate the usefulness
of using integrated blockchain and Al for ETL-pipeline
security, with threats being either detected with high
accuracy or at least getting less attention from undetected
ones or falsely flagged ones.

- Performance Metrics of Blockchain + Al ETL Model
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Fig 8. Performance Metrics

V.  CONCLUSION AND FUTURE WORK

This paper first advances the development of a secure
ETL pipeline framework by interweaving Blockchain
technology with an Al anomaly detection system that is
based on MLP-GRU networks. A traditional ETL pipeline,
even when standard encryption and firewall-based protection
mechanisms are employed, remains subject to insider
threats, tampering, and breaches of compliance owing to its
centralized and opaque architecture. The hybrid model

proposed in this paper aims to solve these issues by ensuring
data immutability, traceability, and intelligent threat
detection. In contrast, blockchain technology decentralizes
the ledger, providing an auditable trail for every ETL
operation, whereas the Al model based on MLP-GRU
networks is capable of analyzing both static and sequential
features of ETL logs to differentiate suspicious from
legitimate operations in real-time. Experiments evaluate the
performance of the model, effectively showing that it can
detect threats while minimizing false alarms. Conversely,
metrics such as block commit time and anomaly detection
latency suggest that the hybrid architecture will continue to
be scalable and responsive in the face of high data
throughput, validating its suitability.

Several research paths lie ahead. Firstly, we could extend
the system to support federated or edge ETL architectures
where the Al models run locally near the data source and
synchronize with the blockchain network. A second way to
augment data privacy (while still maintaining verifiability)
would be the integration of Zero-Knowledge Proofs (ZKPs)
or Homomorphic Encryption with the blockchain. An
additional research direction, of course, would be attempting
to use more advanced Al models like Transformers or Graph
Neural Networks (GNNs) for anomaly detection in relational
or more complicated ETL settings. Last but not least, real-
time dashboard integrations and automated regulatory audit
generation using smart contracts could work toward better
usability for an enterprise-level implementation. This
research lays the foundation for a futuristic data engineering
setting, secured, intelligent, and compliant by merging
blockchain and Al along ETL pipelines.
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