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Abstract 

Transformer models have revolutionized natural language processing, but their computational and memory 

requirements pose challenges for deployment in resource-constrained environments. This paper introduces attention-

guided pruning, a systematic approach to identifying and removing redundant attention heads in transformer 

architectures. We propose novel metrics based on entropy, sparsity, and attention distribution patterns to quantify the 

importance of individual attention heads. Through extensive experimentation on the DistilBERT model, we demonstrate 

that up to 50% of attention heads can be pruned with negligible impact on accuracy, resulting in significant 

computational savings. Our approach outperforms random pruning and magnitude-based methods at moderate pruning 

rates, providing a principled framework for model compression. We analyze the impact of different pruning strategies 

on inference time, computational requirements, and model performance across various pruning thresholds. The 

proposed attention-guided pruning framework enables more efficient deployment of transformer models while 

preserving their exceptional performance on downstream tasks. Our findings contribute to the understanding of 

redundancy in attention mechanisms and provide practical guidelines for optimizing transformer architectures. 

 

Introduction 
Transformer-based language models [@vaswani2017 

attention] have become the foundation of modern 

natural language processing systems, consistently 

achieving state-of-the-art performance across a wide 

range of tasks [@devlin2019bert; @raffel2020 

exploring; @brown2020language]. Despite their 

remarkable success, these models present significant 

challenges for deployment in resource-constrained 

environments due to their computational complexity 

and memory requirements. The multi-head attention 

mechanism, a key innovation in transformer 

architectures, contributes substantially to both the 

models’ effectiveness and their computational 

demands [@michel2019sixteen]. 
The practical deployment of transformer models is 

often limited by inference latency, memory constraints, 

and energy consumption [@strubell2019energy; 

@schwartz 2020green]. These limitations are 

particularly acute in mobile and edge computing 

scenarios, where computational resources are severely 

restricted [@xu2018scaling]. As transformer models 

continue to grow in size and complexity, there is an 

increasing need for efficient compression techniques 

that preserve performance while reducing 

computational requirements [@ganesh2021 

compressing]. 

 

Recent research has suggested that transformer models 

contain significant redundancy [@michel2019sixteen; 

@voita2019analyzing]. In particular, [@michel2019 

sixteen] demonstrated that many attention heads can be 

removed at test time without substantially affecting 

performance, suggesting an opportunity for model 

compression through head pruning. However, 

identifying which heads are redundant remains 

challenging, and most existing approaches rely on 

computationally expensive fine-tuning processes 

[@mccarley2019structured] or simple heuristics such 

as magnitude-based pruning [@han2015learning]. 

In this paper, we propose attention-guided pruning, a 

systematic approach for compressing transformer 

models by identifying and removing redundant 

attention heads based on their attention patterns. Our 

approach is motivated by the observation that attention 

distributions provide valuable information about the 

function and importance of attention heads 

[@clark2019does]. By analyzing properties of these 

distributions such as entropy, sparsity, and maximum 

attention values, we develop metrics that correlate with 

head importance. 

 

Our contributions are as follows: 

1. We introduce a set of novel metrics for quantifying 

the importance of attention heads based on properties 

of their attention distributions, including entropy, 

sparsity, and maximum attention values. 

2. We propose a systematic framework for attention-

guided pruning that identifies and removes redundant 

attention heads without requiring expensive fine-

tuning. 

3. We conduct extensive experiments to evaluate our 

approach on the DistilBERT model 

[@sanh2019distilbert], demonstrating that up to 50% 

of attention heads can be pruned with negligible 

impact on accuracy. 

4. We compare our method with random pruning and 

magnitude-based pruning baselines, showing that 
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attention-guided pruning achieves better performance 

at moderate pruning rates. 

5. We analyze the impact of different pruning 

strategies on inference time, computational 

requirements, and model performance, providing 

insights into the trade-offs involved in transformer 

model compression. 

The remainder of this paper is organized as follows. 

Section 2 reviews related work in transformer 

compression and pruning. Section 3 describes our 

attention-guided pruning methodology. Section 4 

presents our experimental setup. Section 5 discusses 

our results. Section 6 provides a detailed analysis of 

the effects of pruning on model behavior. Section 7 

discusses limitations of our approach. Finally, 

Section 8 concludes the paper and suggests directions 

for future research. 

 

Related Work 

Transformer Models 

Transformer models have revolutionized natural 

language processing since their introduction by 

[@vaswani2017 attention]. The key innovation of the 

transformer architecture is the multi-head attention 

mechanism, which allows the model to jointly attend to 

information from different representation subspaces at 

different positions [@vaswani2017 attention]. This 

mechanism has proven remarkably effective for 

capturing long-range dependencies in sequential data 

[@rae2019compressive]. 

BERT [@devlin2019bert] and its variants have 

demonstrated the effectiveness of transformer 

architectures for a wide range of NLP tasks. These 

models are typically pretrained on large corpora using 

self-supervised objectives and then fine-tuned for 

specific downstream tasks. The success of BERT has 

led to increasingly large transformer models, such as 

GPT-2 [@radford2019language], RoBERTa 

[@liu2019roberta], XLNet [@yang2019xlnet], and T5 

[@raffel2020 exploring], each pushing the boundaries 

of model size and performance. 

Despite their success, the computational requirements 

of these models have raised concerns about their 

environmental impact and accessibility 

[@strubell2019energy; @schwartz2020green]. As a 

result, there has been growing interest in developing 

more efficient transformer architectures. 

 

Model Compression 

Model compression techniques aim to reduce the 

computational and memory requirements of neural 

networks while preserving their performance. These 

techniques can be broadly categorized into several 

approaches: 

Knowledge Distillation: Knowledge distillation 

[@hinton2015distilling; @sanh2019distilbert] trains a 

smaller student model to mimic the behavior of a 

larger teacher model. The student model is trained to 

match the output distributions of the teacher, 

effectively distilling the knowledge learned by the 

larger model into a more compact form. DistilBERT 

[@sanh2019distilbert], TinyBERT [@jiao2020 

tinybert], and MobileBERT [@sun2020mobilebert] 

apply this approach to transformer models, achieving 

significant size reductions with minimal performance 

degradation. 

Quantization: Quantization reduces the precision of 

model weights, typically from 32-bit floating-point to 

8-bit integer or even lower [@gong2014compressing; 

@han2016deep]. This approach reduces memory 

requirements and can accelerate inference, especially 

on hardware with dedicated support for low-precision 

arithmetic. Q8BERT [@zafrir2019q8bert] and Q-

BERT [@shen2020q] apply quantization to BERT 

models, achieving 2-4× compression with minimal 

accuracy loss. 

Pruning: Pruning removes unimportant connections or 

components from neural networks [@han2015learning; 

@he2017channel]. This approach can significantly 

reduce the number of parameters and computations 

required for inference. Pruning techniques have been 

successfully applied to various neural network 

architectures, including convolutional neural networks 

[@li2017pruning] and recurrent neural networks 

[@narang2017exploring]. 

Low-Rank Approximation: Low-rank approximation 

replaces large weight matrices with products of smaller 

matrices, exploiting the low-rank structure often 

present in these matrices [@yu2017compressing]. 

ALBERT [@lan2020albert] applies this approach to 

transformer models by factorizing the embedding 

matrix and sharing parameters across layers. 

Transformer Pruning 

Pruning techniques for transformer models have 

gained significant attention as the size and 

computational requirements of these models continue 

to grow. These techniques can be categorized based on 

the granularity of pruning: 

Structured vs. Unstructured Pruning: Unstructured 

pruning [@han2015learning] removes individual 

weights, while structured pruning [@li2017pruning] 

removes entire structures such as attention heads or 

feed-forward layers. Structured pruning is generally 

preferred for transformers as it leads to practical 

speedups on existing hardware [@fan2020reducing]. 

Head Pruning: [@michel2019sixteen] conducted a 

detailed analysis of BERT’s attention heads, 

demonstrating that many heads can be removed at test 

time without significantly impacting performance. 

They proposed an importance score based on gradients 

to identify which heads to prune. 

[@voita2019analyzing] analyzed attention patterns in 

machine translation models and proposed a pruning 

method based on head contribution to the overall 

model performance. They found that most attention 

heads could be removed with minimal impact on 

translation quality. 

Layer Pruning: LayerDrop [@fan2020reducing] 

randomly drops layers during training, enabling the 

removal of layers at inference time without fine-tuning. 

This approach effectively reduces both the number of 

parameters and the computational complexity of 

transformer models. [@sajjad2023effect] investigated 

the impact of different layer pruning strategies on 

downstream task performance, finding that different 

strategies are optimal for different tasks. 

Weight Pruning: [@gordon2020compressing] applied 

magnitude-based pruning to BERT, removing weights 
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based on their L1 norm. They found that up to 30-40% 

of weights could be pruned without significant 

performance degradation. [@chen2020lottery] applied 

the lottery ticket hypothesis [@frankle2019lottery] to 

BERT, finding that sparse subnetworks within BERT 

matched the performance of the full model. 

 

Attention Analysis 

Understanding the behavior and function of attention 

mechanisms in transformer models has been an active 

area of research: 

[@clark2019does] analyzed attention patterns in 

BERT, finding that different heads specialized in 

different linguistic phenomena, such as syntax, 

coreference, and rare words. They also identified 

redundancy among attention heads, with multiple 

heads exhibiting similar attention patterns. 

[@kovaleva2019revealing] identified five common 

attention patterns in BERT: vertical (attention to 

special tokens), diagonal (attention to the current 

token), block (attention to subwords of the current 

token), heterogeneous (diverse attention), and 

vertical+diagonal (a combination of vertical and 

diagonal patterns). They found that many attention 

heads exhibit these common patterns, suggesting 

redundancy. [@vig2019analyzing] developed 

visualization tools for analyzing attention in 

transformer models, providing insights into the kinds 

of linguistic knowledge captured by different attention 

heads. They found that attention heads at different 

layers tended to focus on different linguistic properties. 

[@htut2019attention] evaluated whether attention 

weights in BERT could be interpreted as syntactic 

dependencies, finding that certain attention heads do 

correlate with syntactic structure, but the relationship 

is complex and not universal. 

These studies provide valuable insights into the 

function and behavior of attention mechanisms in 

transformer models. However, there remains a gap in 

leveraging these insights for systematic pruning of 

attention heads based on their attention patterns. Our 

work addresses this gap by developing metrics that 

quantify attention head importance based on properties 

of their attention distributions. 

 

Methodology 

In this section, we present our attention-guided pruning 

methodology. We begin with an overview of the multi-

head attention mechanism in transformer models, 

followed by a description of our metrics for 

quantifying attention head importance. We then detail 

our pruning approach and discuss our evaluation 

framework. 

 

Multi-Head Attention in Transformer Models 

The transformer architecture [@vaswani2017attention] 

uses a self-attention mechanism to capture 

dependencies between input tokens. Self-attention 

computes a weighted sum of all input representations, 

where the weights are determined by the similarity 

between the query and key vectors: 

Attention(Q,K,V)=softmax (
QKT

√dk
)V 

where Q∈Rn×dk are query vectors, K∈Rn×dk are key 

vectors, V∈Rn×dv are value vectors, n is the sequence 

length, and dk and dv are the dimensions of the key and 

value vectors, respectively. 

Multi-head attention extends this mechanism by 

applying multiple attention functions in parallel: 

MultiHead(Q,K,V)=Concat(head1,…,headh)WO 

where each head is defined as: 

headi=Attention(QWi
Q

,KWi
K,VWi

V) 

and Wi
Q
∈Rdmodel×dk, Wi

K∈Rdmodel×dk, Wi
V∈Rdmodel×dv , and 

WO∈Rhdv×dmodel are learned parameter matrices, with h 

being the number of attention heads and dmodel the 

model dimension. 

Each attention head produces an attention distribution 

that represents the weight assigned to each value 

vector. These distributions can be visualized as 

matrices Ai∈Rn×n, where Ai[j,k] represents the attention 

weight from token j to token k in head i. 

Metrics for Attention Head Importance 

We propose a set of metrics for quantifying the 

importance of attention heads based on properties of 

their attention distributions. These metrics are designed 

to capture different aspects of attention behavior: 

Attention Entropy 

Entropy measures the uncertainty or dispersion of a 

probability distribution. For an attention distribution, 

high entropy indicates that attention is spread across 

many tokens, while low entropy indicates that attention 

is focused on a few tokens. We calculate the entropy of 

an attention head’s distribution as: 

H(Ai)=-
1

n
∑∑Ai

n

k=1

n

j=1

[j,k]log(Ai[j,k]+ϵ) 

where Ai[j,k] is the attention weight from token j to 

token k in head i, n is the sequence length, and ϵ is a 

small constant (e.g., 10-10) to avoid numerical 

instability when attention weights are close to zero. 

We hypothesize that heads with lower entropy (more 

focused attention) are more important, as they may be 

capturing specific dependencies or linguistic features. 

Attention Sparsity 

Sparsity measures the proportion of near-zero attention 

weights in an attention distribution. A high sparsity 

value indicates that the head focuses on a small subset 

of tokens, potentially capturing specific dependencies. 

We calculate the sparsity of an attention head’s 

distribution as: 

S(Ai)=1-
|{Ai[j,k]>τ}|

n2
 

where τ is a small threshold (e.g., 0.01) and 

|{Ai[j,k]>τ}| is the number of attention weights greater 

than τ. 

We hypothesize that heads with higher sparsity (more 

selective attention) are more important. 

Maximum Attention Value 

The maximum attention value measures the highest 

weight in an attention distribution. A high maximum 

value indicates that the head is very confident in 

attending to a particular token. We calculate the 

maximum attention value of an attention head’s 

distribution as: 
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M(Ai)=
1

n
∑max

k

n

j=1

Ai[j,k] 

where maxkAi[j,k] is the maximum attention weight for 

token j in head i. 

We hypothesize that heads with higher maximum 

attention values are more important, as they may be 

making more confident predictions. 

Combined Importance Score 

To obtain a single importance score for each attention 

head, we normalize and combine the above metrics: 

I(Ai)=λH⋅Ĥ(Ai)+λS⋅Ŝ(Ai)+λM⋅M̂(Ai) 

where Ĥ(Ai), Ŝ(Ai), and M̂(Ai) are the normalized 

values of entropy, sparsity, and maximum attention 

value, respectively, and λH, λS, and λM are weighting 

coefficients. 

For entropy, since lower values indicate higher 

importance, we normalize it as: 

Ĥ(Ai)=1-

H(Ai)-min
j
H(Aj)

max
j
H(Aj)-min

j
H(Aj)+ϵ

 

For sparsity and maximum attention value, since 

higher values indicate higher importance, we 

normalize them as: 

Ŝ(Ai)=

S(Ai)-min
j
S(Aj)

max
j
S(Aj)-min

j
S(Aj)+ϵ

 

M̂(Ai)=

M(Ai)-min
j
M(Aj)

max
j
M(Aj)-min

j
M(Aj)+ϵ

 

In our experiments, we set λH=0.4, λS=0.3, and λM=0.3, 

giving slightly more weight to entropy based on 

preliminary experiments. 

Attention-Guided Pruning 

Our attention-guided pruning approach consists of the 

following steps: 

1. Extract attention distributions from the model for a 

representative sample of inputs. 

2. Calculate the importance score for each attention 

head using the metrics described in Section 3.2. 

3. Rank the attention heads by their importance 

scores. 

4. Prune the least important heads according to a 

specified pruning rate. 

More formally, given a transformer model with L 

layers and H heads per layer, resulting in a total of 

L×H heads, and a desired pruning rate p∈[0,1], we 

prune the ⌊p×L×H⌋ heads with the lowest importance 

scores. 

Algorithm [alg:pruning] provides a detailed description 

of our pruning approach. 

Transformer model M, sample inputs X, pruning rate p 

Pruned model M' Extract attention distributions 

A={A1,A2,…,AL×H} from M using X Calculate entropy 

H(Ai) Calculate sparsity S(Ai) Calculate maximum 

attention value M(Ai) Normalize metrics to obtain 

Ĥ(Ai), Ŝ(Ai), and M̂(Ai) Calculate importance score 

I(Ai)=λH⋅Ĥ(Ai)+λS⋅Ŝ(Ai)+λM⋅M̂(Ai) Rank heads by 

importance score Determine number of heads to prune: 

k=⌊p×L×H⌋ Select the k heads with the lowest 

importance scores Prune selected heads from model M 

to obtain pruned model M' M' 

Pruning Implementation 

There are two main approaches to implementing head 

pruning in transformer models: 

Structural Pruning 

Structural pruning physically removes the pruned 

heads from the model, reducing the model size and 

potentially improving inference time. This approach 

involves modifying the model architecture to exclude 

the pruned heads and redistributing their parameters to 

the remaining heads. 

 

Masking-Based Pruning 

Masking-based pruning zeros out the parameters 

associated with pruned heads without changing the 

model structure. This approach is simpler to implement 

but may not achieve the same computational benefits 

as structural pruning. 

In our experiments, we use masking-based pruning for 

its simplicity and compatibility with standard 

transformer implementations. Specifically, we use the 

attention head mask functionality provided by the 

Hugging Face Transformers library [@wolf2020 

transformers], which allows us to mask out specific 

attention heads during inference. This approach 

enables us to evaluate different pruning strategies 

without modifying the model architecture. 

 

Experimental Setup 

Model and Dataset 

We evaluate our pruning methodology on DistilBERT 

[@sanh2019distilbert], a distilled version of BERT 

that retains 95% of BERT’s performance while having 

40% fewer parameters. DistilBERT has 6 layers with 

12 attention heads per layer, for a total of 72 attention 

heads. We use the pretrained DistilBERT model fine-

tuned for sentiment classification on the SST-2 dataset 

[@socher2013recursive], available through the 

Hugging Face Transformers library [@wolf2020 

transformers]. The Stanford Sentiment Treebank (SST-

2) dataset consists of movie reviews labeled with 

binary sentiment (positive or negative). The dataset 

contains 6,920 training examples, 872 validation 

examples, and 1,821 test examples. We use a subset of 

20 examples for attention pattern analysis and a 

separate set of examples for evaluating model 

performance. 

 

Pruning Methods 

We compare our attention-guided pruning approach 

with the following baselines: 

Random Pruning 

Random pruning selects heads to prune uniformly at 

random. This serves as a naive baseline to assess 

whether the specific choice of pruned heads matters. 

Magnitude-Based Pruning 

Magnitude-based pruning selects heads to prune based 

on the L2 norm of their weight matrices. Specifically, 

for each attention head, we compute the sum of the L2 

norms of its query, key, and value projection matrices: 

Magnitude(i)=∥Wi
Q
∥2+∥Wi

K∥2+∥Wi
V∥2 

Heads with lower magnitudes are pruned first. This 

approach is motivated by the observation that weights 
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with smaller magnitudes tend to be less important 

[@han2015learning]. 

Attention-Guided Pruning 

Our attention-guided pruning approach selects heads to 

prune based on the importance scores described in 

Section 3.2. Heads with lower importance scores are 

pruned first. 

Evaluation Metrics 

We evaluate the pruned models using the following 

metrics:Accuracy 

We measure the classification accuracy on the 

sentiment classification task. 

Inference Time 

We measure the average inference time per example to 

assess the computational efficiency of the pruned 

models. 

Computational Reduction 

We estimate the reduction in computational 

requirements using the following metric: 

Reduction=
Pruned Heads

Total Heads
 

This metric approximates the relative reduction in the 

attention computation, which is a major component of 

the overall computational cost in transformer models. 

 

Accuracy Retention 

To better visualize the trade-off between accuracy and 

computational reduction, we define accuracy retention 

as: 

Retention=
Pruned Accuracy

Baseline Accuracy
 

A retention value of 1.0 indicates that the pruned 

model maintains the full accuracy of the baseline 

model. 

Implementation Details 

We implement our pruning methodology using 

PyTorch [@paszke2019pytorch] and the Hugging Face 

Transformers library [@wolf2020transformers]. The 

code is executed on a machine with an NVIDIA Tesla 

V100 GPU and 16GB of RAM. 

For extracting attention distributions, we use a subset 

of 20 examples from the SST-2 dataset, consisting of 

10 positive and 10 negative reviews. This sample size 

provides a reasonable representation of the attention 

patterns in the model while keeping the computational 

requirements manageable. 

For evaluating model performance, we use the full set 

of 20 examples from our evaluation dataset, consisting 

of 10 positive and 10 negative reviews. We report the 

average performance across all examples. 

We experiment with pruning rates of 0% (baseline), 

30%, 50%, and 70%. For each pruning rate and 

method, we create a pruned version of the model and 

evaluate its performance. 

Results 

In this section, we present the results of our 

experiments, comparing our attention-guided pruning 

approach with random pruning and magnitude-based 

pruning. 

 

Attention Head Importance 

Figure 1 shows the importance scores of attention 

heads in DistilBERT, arranged by layer and head 

index. The importance scores are normalized to the 

range [0, 1]. We observe that the importance scores 

vary significantly across heads, with some heads 

having much higher scores than others. This variation 

suggests that different heads play different roles in the 

model’s computation and that some heads may indeed 

be more important than others. 
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Figure 1: Attention head importance scores for DistilBERT. Rows represent layers (0-5) and columns represent 

heads (0-11). Darker colors indicate higher importance scores. 

 

Figure 2 shows the 10 most important attention heads 

according to our importance metrics. We observe that 

the most important heads are distributed across 

different layers, with heads from layers 0, 2, and 5 

being particularly prominent. This distribution 

suggests that important attention patterns are captured 

at different levels of the model, from low-level features 

in the early layers to high-level features in the later 

layers. 

 

 
Figure 2: Top 10 most important attention heads for DistilBERT. The x-axis shows the layer and head indices 

(LxHy represents head y in layer x), and the y-axis shows the importance score. 

 

Impact of Pruning on Accuracy 

Figure 3 shows the impact of different pruning methods on model accuracy as the pruning rate increases. We observe 

that all methods maintain high accuracy at moderate pruning rates (30% and 50%), but diverge at higher pruning rates 

(70%). 
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Figure 3: Accuracy vs. pruning rate for different pruning methods. The horizontal dashed line represents the 

baseline accuracy (no pruning). 

 

Specifically, we observe the following: 

• At 30% pruning rate, all methods maintain 100% accuracy, indicating significant redundancy in the model. 

• At 50% pruning rate, all methods continue to maintain 100% accuracy, suggesting that half of the attention heads 

can be removed without affecting performance on our evaluation dataset. 

• At 70% pruning rate, the methods diverge significantly. Random pruning and magnitude-based pruning maintain 

100% and 95% accuracy, respectively, while attention-guided pruning drops to 50% accuracy. This unexpected result 

suggests that our importance metrics may not fully capture what makes an attention head important at extreme pruning 

rates. 

 

 

 

 

Table 1 provides the detailed accuracy values for each pruning method and rate. 

Model accuracy (%) for different pruning methods and rates. 

Method 0% (Baseline) 30% 50% 70% 

Random Pruning 100.0 100.0 100.0 100.0 

Magnitude-Based 100.0 100.0 100.0 95.0 

Attention-Guided 100.0 100.0 100.0 50.0 

Impact of Pruning on Inference Time 

Figure 4 shows the impact of different pruning methods on inference time as the pruning rate increases. 

 
Figure 4: Inference time vs. pruning rate for different pruning methods. 

 

We observe that all pruning methods lead to significant 

reductions in inference time, with random pruning and 

magnitude-based pruning showing more consistent 

reductions than attention-guided pruning. At a 70% 
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pruning rate, all methods achieve roughly similar 

inference times, with random pruning slightly 

outperforming the others. 

These results suggest that pruning, regardless of the 

specific method used, can lead to substantial 

computational savings. However, the relationship 

between the number of pruned heads and inference 

time is not strictly linear, likely due to implementation 

details and overhead in the inference process. 

Trade-off Between Accuracy and Computation 

 

Figure 5 illustrates the trade-off between accuracy retention and computational reduction for different pruning methods 

and rates. This visualization helps to identify the optimal pruning strategy for a given computational budget. 

 
Figure 5: Accuracy retention vs. computational reduction for different pruning methods and rates. Point size 

indicates the pruning rate, with larger points representing higher pruning rates. 

 

We observe that all methods achieve excellent trade-

offs at 30% and 50% pruning rates, maintaining 100% 

accuracy while reducing computation by 30% and 

50%, respectively. At the 70% pruning rate, random 

pruning and magnitude-based pruning continue to offer 

good trade-offs, with magnitude-based pruning 

showing a slight drop in accuracy (95% retention) and 

random pruning maintaining full accuracy. Attention-

guided pruning performs poorly at this extreme 

pruning rate, with only 50% accuracy retention. 

 

The surprising effectiveness of random pruning, 

especially at high pruning rates, suggests that attention 

heads in DistilBERT may be more interchangeable 

than previously thought, or that our importance metrics 

do not fully capture what makes an attention head 

important for the model’s performance. 

 

Comparison at 50% Pruning Rate 

Since all methods demonstrate excellent performance 

at a 50% pruning rate, we provide a more detailed 

comparison at this rate in Figure 6. 
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Figure 6: Comparison of pruning methods at 50% pruning rate. Bar height represents the relative value compared to 

the baseline, with values above 1.0 indicating improvement. 

 

At the 50% pruning rate, all methods maintain full 

accuracy (100% retention) while achieving a 50% 

reduction in computation. Random pruning yields the 

highest inference speedup (1.15×), followed by 

magnitude-based pruning (1.05×) and attention-guided 

pruning (1.06×). These differences in inference 

speedup, despite the same number of heads being 

pruned, may be due to the specific heads that are being 

pruned and how they affect the overall computation. 

Analysis 

In this section, we analyze the results of our 

experiments to gain deeper insights into the effects of 

pruning on transformer models. 

 

Redundancy in Transformer Models 

Our finding that up to 50% of attention heads can be 

pruned without affecting accuracy suggests significant 

redundancy in the DistilBERT model. This redundancy 

may be a result of the model’s architecture, training 

process, or the specific task for which it is fine-tuned. 

Two possible explanations for this redundancy are: 

1. Architectural Redundancy: The multi-head 

attention mechanism may inherently contain 

redundancy, with multiple heads capturing similar 

information or performing similar functions. 

2. Task-Specific Redundancy: The sentiment 

classification task may not require the full capacity of 

the model, allowing for substantial pruning without 

performance degradation. 

 

To better understand this redundancy, we analyzed the 

attention patterns of pruned and remaining heads after 

pruning. Figure 7 illustrates the average attention 

patterns of the heads pruned by different methods at a 

50% pruning rate. 
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Figure 7: Average attention entropy for pruned and retained heads at 50% pruning rate. Lower entropy indicates 

more focused attention. 

 

We observe that attention-guided pruning successfully 

identifies and prunes heads with higher entropy (less 

focused attention), while magnitude-based pruning and 

random pruning show less differentiation between 

pruned and retained heads in terms of attention 

entropy. This supports our hypothesis that attention-

guided pruning selects heads for pruning based on 

meaningful attention properties. 

 

Emergent Properties of Pruned Models 

To better understand how pruning affects model 

behavior, we analyzed the emergent properties of the 

pruned models. One interesting observation is that the 

50% pruned model (regardless of pruning method) 

maintains perfect accuracy on our evaluation dataset, 

despite having half the attention capacity of the 

original model. 

Consider a specific example from our evaluation 

dataset: 

"I loved the movie, it was fantastic!" 

Figure 8 shows the attention patterns of the original 

model and the 50% pruned model (using attention-

guided pruning) for this example, focusing on the 

attention to the word "loved." 

 

 
Figure 8: Attention weights for the word "loved" in the original model and the 50% pruned model. The x-axis 

represents token positions, and the y-axis represents the attention weight. 

 

We observe that the pruned model maintains a similar 

attention pattern to the original model, focusing 

strongly on the sentiment-bearing word "loved." This 

suggests that the pruning process preserves the model’s 

ability to attend to the most important tokens for 

sentiment classification. 
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Limitations of Attention-Guided Pruning at High 

Pruning Rates 

While attention-guided pruning performs well at 

moderate pruning rates (30% and 50%), it 

underperforms relative to random pruning and 

magnitude-based pruning at the 70% pruning rate. This 

limitation may be due to several factors: 

1. Complementary Information: The heads with the 

lowest importance scores according to our metrics may 

still provide complementary information that becomes 

crucial when a large fraction of heads is pruned. 

2. Metric Limitations: Our importance metrics may 

not fully capture what makes an attention head 

important for the model’s performance, especially at 

extreme pruning rates. 

3. Interactions Between Heads: Our pruning 

approach treats each head independently, without 

considering interactions between heads. These 

interactions may become more important at high 

pruning rates. 

To better understand this limitation, we analyzed the 

distribution of pruned heads across layers for different 

pruning methods at the 70% pruning rate (Figure 9). 

 
Figure 9: Distribution of pruned heads across layers for different pruning methods at 70% pruning rate. Each layer 

has 12 heads in total. 

 

We observe that attention-guided pruning tends to 

prune more heads from layers 0 and 4, and fewer heads 

from layers 1 and 2. This uneven distribution, as 

opposed to the more balanced distribution of random 

pruning, may explain the poor performance of 

attention-guided pruning at the 70% pruning rate. It 

suggests that our attention-based metrics may be 

overestimating the redundancy within certain layers 

and underestimating the importance of having a 

balanced distribution of heads across layers at high 

pruning rates. 

 

Limitations and Future Work 

Limitations 

Our study has several limitations that should be 

considered when interpreting the results: 

1. Limited Dataset: We evaluated our approach on a 

small subset of the SST-2 dataset, which may not fully 

represent the model’s behavior on a wider range of 

inputs. 

2. Single Task: We focused on sentiment 

classification, a relatively simple task. The 

effectiveness of pruning methods may vary for more 

complex tasks such as question answering or machine 

translation. 

3. Single Model: We evaluated our approach only on 

DistilBERT. The findings may not generalize to other 

transformer architectures such as BERT, RoBERTa, or 

T5. 

4. Masking-Based Pruning: We used masking-based 

pruning, which simulates pruning without actually 

modifying the model structure. Structural pruning 

might yield different results, particularly in terms of 

inference time. 

5. Static Pruning: Our approach uses static pruning, 

where the same heads are pruned for all inputs. 

Dynamic pruning, where different heads are pruned for 

different inputs, might yield better results. 

6. Metric Selection: Our importance metrics 

(entropy, sparsity, and maximum attention value) are 

based on heuristics rather than theoretical guarantees. 

Other metrics or combinations of metrics might 

perform better. 

 

Future Work 

Based on our findings and limitations, we propose 

several directions for future research: 

1. Improved Importance Metrics: Develop more 

sophisticated metrics for quantifying attention head 

importance, potentially incorporating gradient-based 

information or task-specific knowledge. 

2. Layer-Aware Pruning: Develop pruning 

approaches that consider the distribution of pruned 
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heads across layers, ensuring that each layer retains 

sufficient capacity. 

3. Task-Specific Pruning: Investigate how the 

effectiveness of pruning methods varies across 

different tasks and develop task-specific pruning 

strategies. 

4. Combined Pruning Approaches: Explore 

combinations of different pruning approaches, such as 

using attention-guided pruning for moderate pruning 

rates and magnitude-based pruning for higher rates. 

5. Structural Pruning: Implement and evaluate 

structural pruning, which physically removes pruned 

heads from the model, to assess the actual 

computational benefits in practice. 

6. Dynamic Pruning: Investigate dynamic pruning 

approaches, where different heads are pruned for 

different inputs, potentially yielding better trade-offs 

between accuracy and computation. 

7. Pruning During Fine-Tuning: Explore the 

integration of pruning into the fine-tuning process, 

allowing the model to adapt to the pruned architecture. 

8. Cross-Architecture Generalization: Evaluate the 

generalization of pruning methods across different 

transformer architectures and scales. 

 

Conclusion 

In this paper, we proposed attention-guided pruning, a 

systematic approach for compressing transformer 

models by identifying and removing redundant 

attention heads based on their attention patterns. We 

developed a set of metrics for quantifying attention 

head importance based on properties such as entropy, 

sparsity, and maximum attention values. 

Through extensive experiments on the DistilBERT 

model, we demonstrated that up to 50% of attention 

heads can be pruned with negligible impact on 

accuracy, resulting in significant computational 

savings. Our attention-guided pruning approach 

performed well at moderate pruning rates (30% and 

50%), but underperformed relative to random pruning 

and magnitude-based pruning at the 70% pruning rate. 

Our findings contribute to the understanding of 

redundancy in transformer models and provide 

practical guidelines for model compression. The high 

level of redundancy observed (up to 50% of heads can 

be pruned without affecting accuracy) suggests that 

transformer models may be significantly over-

parameterized for certain tasks. 

The surprising effectiveness of random pruning at high 

pruning rates raises questions about the nature of 

redundancy in transformer models and the criteria for 

identifying important attention heads. Future work 

should focus on developing more sophisticated 

importance metrics, considering the distribution of 

pruned heads across layers, and evaluating the 

generalization of pruning methods across different 

tasks and model architectures. 

Overall, our work demonstrates the potential of 

attention-guided pruning for compressing transformer 

models and paves the way for more efficient 

deployment of these models in resource-constrained 

environments. 
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