
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-679921-679                 9www.ijisae.org          Original Research Paper 

 

 

International Journal of Intelligent Systems and Applications in Engineering          IJISAE, 2025, 13 (1s), 301–312 | 301  

 

Federated Learning Analysis in Decentralized Systems 

Billa Prahas Reddy 

Submitted: 01/06/2025               Revised: 05/07/2025                 Accepted: 15/07/2025 

Abstract: The growing necessity to protect sensitive health information has led to the rise of federated learning (FL), a 

distributed architecture for machine learning. Improving the healthcare system becomes necessary during a pandemic. The 

healthcare industry is continuously making use of numerous AI technology advancements. Because of its decentralized and 

collaborative approach to constructing AI models, Federated Learning (FL) has gained notice as one such innovation. One of 

FL's most notable features is that it keeps raw data hidden from prying eyes by keeping it with data sources all the way through 

training. Because it handles sensitive personal information, FL is more suited to and inevitable in the healthcare industry. Even 

if there are various privacy and security issues, federated learning (FL) enables multiple institutions to build AI models without 

sharing data. To be more specific, FL insights can compromise institutional data security. Also, problems can arise with FL 

when there isn't enough trust between the entities doing the computation. There is an urgent need to clarify the hazards 

associated with FL because of its increasing use in healthcare. Thus, in this paper, we highlight the literature on privacy-

preserving FL as it pertains to healthcare. The risks are highlighted, and methods to lessen them are examined. Researchers in 

the healthcare industry in Florida can use this review as a resource for information about patient privacy and security in the 

Sunshine State. 
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1. INTRODUCTION 

In federated learning, models are trained across 

numerous clients, such as smartphones or Internet of 

Things devices, without transmitting local data to a 

central server. This decentralized method to 

machine learning is known as "federation" [1]. On 

the contrary, local models are trained locally on-

device, and the only data communicated with a 

central server are model updates, such as gradients 

or weights. This data is then aggregated to create a 

global model. 

1.1 Key Benefits 

Privacy-Preserving: Lessening privacy concerns, 

data stays on the local device. 

Reduced Latency: For real-time applications, on-

device processing can decrease latency. 

Scalability: Massive datasets can be trained using 

distributed methods across multiple machines. 

Efficiency: Lessens the burden on data transfer 

infrastructure, which in turn conserves storage and 

bandwidth. 

Training machine learning models in tandem across 

nations and companies is at an all-time high due to 

the proliferation of big data, the lightning-fast 

progress of machine learning, and the ever-

increasing connectivity throughout the world [2]. 

Data privacy concerns are the main obstacle to 

healthcare collaboration training since they restrict 

the sharing of data and the practical application of 

technically feasible solutions [3]. Therefore, 

methods that protect users' privacy, like generative 

adversarial networks, blockchain technology, and 

federated learning (FL), are receiving a lot of 

attention. FL, Google's distributed machine learning 

framework, preserves data privacy while enabling 

multi-party collaboration; it was announced in 2016. 

With its emphasis on patient confidentiality, it offers 

a promising alternative to conventional centralized 

training in the medical industry [4]. Evidence 

suggests that FL can handle a wide variety of data 

types with ease. These include imaging images (e.g., 

X-rays of the chest for COVID-19 clinical outcome 

prediction), grayscale images (e.g., skin photos for 

skin lesion diagnostics and retinal fundus 

photographs), and histology slides (e.g., for cancer 

diagnosis, genomics, and the Internet of Medical 
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Things) [5]. An initial set of participating sites 

would have their weights for the global model 

parameters broadcast from a central server in the 

original FL framework. After that, each site uses its 

own data to train a local model, which shares its 

architecture with the global model. It then updates 

its parameters and sends them to the central server. 

By keeping all data on-site at all times, this setup 

avoids the drawbacks of traditional centralized 

learning, which involves sending raw data to a 

central location (Figure 1). The server then 

aggregates the updates from all the sites to update 

the global model weight [6]. Following this, a fresh 

batch of participating sites receives the updated 

global model, which they use to conduct local 

training once again. We keep doing this until our 

global model converges. Using FL's larger training 

datasets acquired from many sources, FL is able to 

generate a higher-quality model than what could 

have been produced with the data of a single device 

or system, all while keeping data privacy at high 

levels. The approach significantly reduces the 

expenses associated with collecting data. 

Furthermore, it has proven to be resilient even when 

faced with customers having data that is not 

independent and identically distributed (IID) or has 

an unequal quantity of data.6 Because of this, FL is 

a desirable machine learning subject in the 

healthcare domain, and it is particularly useful in 

specialized study areas with limited or restricted 

public data [7].  

 

Figure 1. Federated learning as contrasted with centralized and localized learning 

Efforts to boost clinical translation are ongoing, but 

FL has not yet achieved widespread clinical use 

despite its advantages [8]. In addition to FL's youth 

as a privacy-preserving technology, studies are 

continuing to compare it to established machine 

learning frameworks and evaluate its resilience 

across a variety of clinical areas. Furthermore, even 

if FL offers better privacy protection, sharing model 

updates could still jeopardize privacy. Because of 

this, more recent FL models incorporate additional 

privacy techniques such differential privacy and 

cryptographic methods like secure multi-party 

computation, blockchain, and homomorphic 

encryption. 

1.2 The rise of Federated Learning  

The COVID-19 pandemic has only added to the 

tremendous expansion of Big Data in the past few 

years. Since this data is so massive, there has been a 

surge in interest in artificial intelligence (AI) 

techniques like machine learning (ML) and deep 

learning (DL), which teach computers to sift through 

it all and find insights. The standard procedure for 

constructing ML/DL models involves transmitting 

all data generated by all entities to the server or 

service provider's location, which is typically in the 

cloud. Only on the server will the whole model-

building and training procedure occur. Some 

difficulties arise with this approach. There are a lot 

of different, geographically dispersed places to find 

the data that is required to construct an ML model. 

Factors like insufficient network connectivity make 

it difficult to integrate this fragmented data from 

distant remote places. In addition, a large portion of 

the data pertains to personally identifiable 

information. Ensuring the secure transmission of 

private data across international borders while 

respecting users' privacy rights is thus a challenging 

task. It will be more expensive and strain the 

network's capacity to send massive amounts of data 

from all across the globe to one central site [9]. 
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Alternatively, an ML model's accuracy improves as 

the amount of data supplied into it increases. As a 

result, Federated Learning has emerged as a viable 

alternative approach to data migration and 

integration that prioritizes the protection of sensitive 

information. Clients, which can be smart devices or 

organizations, and servers, which coordinate the 

process, work together to train and construct the 

model in federated learning, a form of distributed 

ML [10]. Instead of exchanging or transmitting raw 

data to a server, FL uses it locally on each client. 

Every client that wants to be a part of it trains an ML 

model on their own data for a set amount of rounds 

till some qualifying criterion is satisfied. They 

change the ML model parameters between iterations 

and send them to the server to be aggregated. The 

server sends the aggregated model parameters back 

to all clients, so they can use them in the next 

iteration. Until the model converges or the target 

accuracy is reached, this iterative process is 

repeated.  

2. LITERATURE REVIEW 

Data parallelism established a paradigm shift in 

traditional FL toward centralized aggregation and 

decentralized learning. The term "data parallelism" 

describes a scenario in which clients' raw data is 

created in parallel on-premises and is neither 

transmitted nor made public. In order to get a global 

model, all the clients combine their local data to train 

a model, and then they send the model's parameters 

to the server. This way, the learning results from all 

the clients are effectively integrated. The taxonomy 

of FL frameworks, which includes cross-silo and 

cross-device FL frameworks, is based on the 

quantity and type of clients that are part of the 

learning network [11]. Companies, universities, data 

centers, etc., that fall within the "clients" category in 

cross-silo FL often have better communication, 

greater computing power, and more data to work 

with. Big mobile or IoT devices are the clients in 

cross-device FL, and they could run into problems 

with computation and communication. Regarding 

variations in client data distribution, another FL 

taxonomy is taken into account, which includes 

transfer, horizontal, and vertical [12]. There are 

fewer users with identical sample features and more 

clients with similar sample features in horizontal FL. 

There are fewer shared sample characteristics and 

more similar users across vertical FL clients. Neither 

the sample features nor the users of federated TL 

clients are really similar.  

 

Fig. 2. A demonstration of CFL, DFL, centralized learning, and local learning. (a) Train your clients 

using data from your local users exclusively. Clients do not converse or exchange raw data with one 

another. (b) The user data packets are sent to the server by the clients, and then the server uses all the 

data to train a generic model. After then, every client gets access to the standardized model. c) A client 

will communicate with the server and transmit the parameters of the model that have been trained 

locally. After collecting all the local models, the server sends the aggregated global model parameters to 

every client. (d) Users can collaborate with other users by sharing their locally trained model. Later on, 

clients build upon this foundation by learning and customizing the model locally, sharing and 

propagating model parameters with local knowledge, and so on. 

Learning at the local, centralized, CFL, and DFL 

levels is depicted in Fig. 2. Overfitting might occur 

in the local learning method since each client keeps 

their own data and trained model and doesn't share 

it with any other clients or servers (Fig. 2(a)). In 

contrast, as seen in Fig. 2(b), a centralized learning 

technique uses raw data transmission in client-server 

connection to centralize and consolidate learning, 

but it does not ensure user privacy. Researchers 

typically compare FL to both of these methods as a 
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starting point. Centralized client-server architectures 

(CFLs) rely on a central server to manage, 

coordinate, and interact with all clients. A client-

server conversation is depicted in Fig. 2(c). After 

learning on local data, clients send the server the 

parameters of the model that they have trained. In 

order to create a global model, the server compiles 

all of the local models and makes it available to the 

clients. Without server cooperation, clients 

communicate directly with each other, as seen in 

Fig. 2(d). The communication network between 

clients is more heterogeneous due to the lack of 

consistent server coordination and configuration. 

With increased confidence in varied versions, DFL 

dismissing the server can further save 

communication and processing costs because it is 

regarded more adaptable.  

One explanation is the absence of standardized 

electronic health records. Because of financial 

constraints, hospitals in economically disadvantaged 

areas may not be able to participate in research that 

need electronic patient data management, which 

could lead to the continuation of the problems with 

equity and bias that have already been highlighted. 

Nowadays, medical imaging practices almost 

exclusively use electronic data management 

systems: Almost everywhere in the world, people 

are using electronic file storage and the imaging data 

format is called Digital Imaging and 

Communications in Medicine (DICOM). The CBIS-

DDSM dataset, which includes digitized film breast 

radiographs, is one example of how archival film 

radiography enables post hoc digitization even in 

settings where non-digital formats are still in use 

[13]. The aforementioned achievements of medical 

imaging AI are driven by digital imaging data that is 

easily shareable, permanently stored, and remotely 

available on the cloud.  The stringent regulation and 

protection requirements for patient data are the 

second major obstacle to conducting AI trials across 

several institutions and countries. Concerns about 

data handling, ownership, and AI governance have 

been sparked by the stringent regulations imposed 

by both HIPAA and the General Data Protection 

Regulation (GDPR)25 in the European Union. 

These regulations demand authentication, 

authorization, accountability, and, with GDPR, the 

interpretability of artificial intelligence (AI). 

Respect for privacy, defined here as the capacity to 

maintain complete control and confidentiality over 

one's personal information, is also mandated by 

scientific, ethical, and moral principles (soft law). In 

this article, "privacy" refers to the goal of preventing 

data leaks, whether accidental and intentional (i.e., it 

is synonymous with "confidentiality").  

The novel distributed interactive AI idea of 

Federated Learning holds great promise for smart 

healthcare. It enables multiple clients, like hospitals, 

to engage in AI training while ensuring the privacy 

of their data. Authors dug deep into FL's potential 

use in smart healthcare to find out why [15]. First, 

we will go over the most recent FL developments, 

followed by the rationale and necessary conditions 

for implementing FL in smart healthcare. Medical 

data recording, biomedical image processing, 

remote patient monitoring, and COVID-19 detection 

are just a few of the emerging FL applications in 

healthcare that the authors have provided a 

comprehensive overview of. Recent studies have 

suggested FL for use in many Internet of Things 

(IoT) initiatives, such as intelligent transportation 

systems and electronic healthcare. One example is 

how FL has facilitated the expansion of e-health 

services by enabling ML modeling in the lack of 

health data [16]. Hospitals and other health data 

owners can use FL to prevent the exchange of 

sensitive patient information. Alternatively, medical 

staff can train the model locally before sending the 

parameters to an accumulator to use in data 

collection. Federated learning has shown promise as 

a way to build revolutionary healthcare systems that 

are both cost-effective and private [17]. Due to FL, 

AI models may be trained even in the absence of 

local data by averaging local updates from several 

healthcare institutions and smart devices, like IoMT.  

However, due to the rapid growth of AI technology, 

AI has found applications in numerous fields, such 

as robotics, machine vision, natural language 

processing, and the Internet of Things (IoT). To be 

more precise, scientists have sought to improve 

healthcare sector efficacy by increasing scientific 

analysis and remedy analysis through the application 

of AI [18]. For decades, people have speculated 

about the potential benefits of AI in healthcare. An 

evaluation of AI's function in biomedical 

engineering has also taken place. There have been 

significant advancements in the use of AI in 

healthcare in recent times [19]. Using AI can help 

medical facilities become more personalized by 

providing them with predictive instincts, 

preventative measures, and the ability to participate 

in their own care. Drawing on what we know about 

AI's past performance, we anticipate that it will 
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continue to develop into a formidable tool for 

healthcare in the years to come.  

Due of recent developments in the field, numerous 

studies have been conducted to investigate FL based 

AI-related topics, such as healthcare. For instance, 

the concepts and protocols underlying FL, as well as 

the technical challenges associated with FL design 

and implementation, are presented in the works cited 

in [9]. [20] discusses some approaches to evaluating 

dangerous dangers in FL networks and the privacy 

and security issues in FL systems. Concerns like 

security, resource allocation, and communication 

costs are some of the topics covered in the authors' 

investigation of FL-based AI implementation in 

[21]. Researchers examine the intersection of FL-AI 

and the Internet of Things (IoT) in [22], reviewing 

the technical hurdles in FL schemes (such as 

sparsification, security, and extensibility) and 

offering a brief overview of FL-based AI 

technologies in the IoT [23]. In addition, the authors 

paid little attention to FL's usage in healthcare in 

their assessment of FL's applications in industrial 

IoT ([24]), which focused on FL's characteristics and 

fundamentals. The requirements and technical 

hurdles of implementing FL-based AI strategies in 

the near future of digital health are the subject of 

another study [25].  

2.1 Challenges of Federated Learning 

Despite FL's promise of allowing numerous devices 

to work together on ML model training without 

exchanging raw data, there are a number of issues 

that must be resolved [26]. Figure 10 shows a 

structure of problems related to FL. Here are some 

of the major obstacles: 

Heterogeneity of Data and Devices: 

There are many different types of data and devices 

in the healthcare industry, which makes it difficult 

to deploy FL efficiently. 

• Data Heterogeneity: Different types of healthcare 

data, including text, pictures, and time series, have 

different properties and necessitate different 

processing approaches for training models. Device 

specifications, sensor accuracy, and patient 

demographics all have a role in the variation in data 

quality among devices. This is a difficulty. 

Consequently, FL can't succeed without first pre-

processing and standardizing the data. 

• Device Heterogeneity: There is a wide range in 

the power consumption, network connectivity, 

software requirements, and hardware needed by 

healthcare equipment. The ability to engage in FL 

may be out of reach for certain devices because to 

limited resources, such as processing power or 

memory. More work on data interoperability and 

communication is also needed because different 

devices use different operating systems or 

programming languages. In order for healthcare to 

overcome disparities in data and equipment, 

numerous approaches have been developed to tackle 

this variability in FL. 

• Federated Transfer Learning: To expedite 

model training on diverse devices, this approach 

makes use of pre-trained models on relevant data 

domains. Adaptive learning algorithms can use the 

computing power of the device to change the model 

parameters. It is feasible to reduce data transfer and 

device computing burden by using efficient 

communication protocols. 

Data privacy and security: 

Enhanced privacy and reduced communication costs 

are just two of the many advantages of this approach, 

but it poses serious challenges to data protection 

[27]. Some of the most serious problems that FL has 

with data privacy are as follows: 

• Leakage of data: Devices in FL disseminate 

model updates, however these revisions may still 

contain sensitive local data. Threat actors may be 

able to eavesdrop on these changes and use them to 

learn sensitive information about the local data. Data 

leaking must be prevented by utilizing encryption 

and other privacy-protecting technologies. 

• Model inversion attacks: This issue with privacy 

could potentially arise in Florida. In order to re-

create the original training data used by the local 

devices, these attacks take advantage of the model 

updates. To prevent these attacks, it is crucial to 

implement privacy-preserving methods that secure 

the local data. 

• Attacks using membership inference: In FL, 

attackers with access to certain devices might 

potentially determine which device was utilized for 

model training. This data could potentially expose 

sensitive information about the device's owner or the 

local data. To thwart membership inference attacks, 

acy-preserving techniques such as differential 

privacy can be used. 

• Attacks on the central server: When using FL, 

the local devices send model updates to a central 
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server. Hacked primary server means attacker can 

access all updates and potentially derive critical 

information about local data. Consequently, strong 

security measures must be implemented to protect 

the central server. 

Figure 3: Difficulties with FM in healthcare. 

As a whole, FL has a lot of trouble with data privacy 

protection. Tackling these difficulties calls for a 

combination of privacy-focused approaches, robust 

security measures, and meticulous FL system 

development and execution. In addition, the 

difficulties of FL in several areas of healthcare are 

illustrated in Figure 3  

2.2 Communication and computation efficiency: 

Since FL relies on the secure and timely 

transmission of data from participating devices to a 

central server for model training, the efficacy of 

communication is an important concern [28]. To 

ensure the models are updated promptly and to 

protect the privacy of the user's data, the data must 

be sent with minimal delay. But FL also needs 

assistance in making its computers more efficient. 

This means that the model's accuracy could be all 

over the map, depending on the hardware 

components used. Plus, training the models with the 

device's limited resources could lead to battery 

overconsumption. FL approaches are regularly 

upgraded to tackle these problems. One possible 

solution to the issue of communication and 

computation efficiency is to use model compression 

techniques to reduce the model's size. This could 

lead to faster communication. Compute efficiency 

also with the help of data segmentation, selective 

participation, and model parallelism. To sum up, 

improving FL's overall efficacy requires fixing its 

serious communication and computation efficiency 

problems. Efforts are ongoing to enhance FL's 

communication and compute efficiency so that it can 

continue to be a viable option for ML. 

2.3 Handling Non-IID (Independent and 

Identically Distributed) data: 

One of the biggest problems with FL is that it doesn't 

handle data in an Independent and Identically 

Distributed (NID) way [29]. The training data in ML 

is typically thought to be IID, or independent and 

uniformly distributed. But FL uses a plethora of 

sources, some of which should be more dispersed or 

independent, to compile its data. Several issues arise 

in FL due to the data's non-IID nature. For example, 

it could be challenging to train a generic model that 

performs well across all clients due to the fact that 

data distribution can change substantially between 

them. There is a risk that training with non-IID data 

will introduce bias, which could have detrimental 

effects on performance.  

To get around these problems, others have proposed 

several solutions, such as client weighing, data 

augmentation, and transfer learning. The process of 

client weighting entails giving each customer a 

unique value according to the distribution of their 

data. This method enhances the model's overall 

performance by directing training efforts towards 

clients with more representative data. To make the 

data more representative, data augmentation 

involves adding noise or making small changes to 

the existing data, as well as creating new data 

samples. Several studies have sought to develop 

effective FL algorithms for data that does not 

contain IID, such as FedProx, SCAFFOLD, and 

FedNova [30]. To solve the problems of non-IID 

data, one transfer learning strategy is to use a pre-

trained model as a starting point for training on the 

non-IID data.  
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3. METHODOLOGY  

 

Figure 4. Exemplification of various methods for collaborative learning 

(A) In a data-sharing paradigm, all three data 

custodians send their data to a single location for 

training. In a federated learning setup, however, 

each data custodian trains its model independently 

and only sends its updated model to a secure central 

server. 

There is a lot of hope that AI techniques can improve 

healthcare workflows. But to train generalizable and 

stable AI models for clinical applications, you need 

big and diverse datasets. Collaborative efforts 

involving multiple institutions, sometimes referred 

to as "data pooling" (Figure 4A), can help gather 

enough information. There are a number of reasons 

why this kind of centralized data collecting isn't 

always feasible, including worries about patients' 

privacy, the high expense of data storage and 

maintenance, and data-sharing regulations at the 

institutional or even regional levels. Since model 

learning is done locally at each institution and only 

the generated local model parameters are shared, 

federated learning (FL) starts to solve certain 

privacy concerns, offering an alternative to the data 

pooling paradigm for multi-institutional cooperation 

(Figure 4B).  

While FL does make it possible to train an AI model 

on private data without actually sharing it, there are 

still unanswered questions about why and how to 

prevent the disclosure of sensitive information 

through the model updates shared during the FL 

workflow. More security and privacy features added 

to FL should allow for a more trustworthy 

federation, according to those who are hoping for 

something like this. Institutional information 

security, compute hardware needs, data preparation 

coordination and overhead, and trust are just a few 

of the many obstacles that can discourage 

institutions from taking part in FL training. More 

diverse collections of healthcare institutions are 

likely to be eager to join in FL initiatives if more 

secure and private FL frameworks are used to 

increase trust in the system. Better model 

generalizability may be a consequence of the 

increased data diversity that can emerge from such 

partnerships. In industries like healthcare, where 

data exchange regulations are quite strict, secure and 

private FL has the potential to significantly improve 

partnerships.  

3.1 Decentralized data and federated machine 

learning 

A lot of people started paying attention to the idea of 

federated machine learning about 2015. It is a type 

of distributed system that uses the principle of 

remote execution, which is sending training 

iterations and their results (such as updated neural 

network weights) to a central repository to update 

the main algorithm. The data is stored on individual 

sites or devices called nodes. The key advantage is 

that data can be trained on algorithms without 

leaving the owner's possession (retention of 

sovereignty). Full decentralization, for instance, 

coupled with contribution tracking/audit trails 

utilizing blockchains, or model sharing across the 
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nodes and aggregation later on (peer-to-peer/gossip 

method) are both possible in a federation topology. 

The ability to conduct training offline and receive 

results at a later time means that constant access to 

the internet is unnecessary. As a result, federated 

learning methodologies are now, in both commercial 

and healthcare AI contexts, among the most popular 

next-generation privacy preservation techniques.  

Unless paired with the other approaches outlined 

below, federated learning cannot provide security 

and privacy, despite its adaptability and success in 

addressing data ownership and governance 

concerns. If the data is not encrypted, malicious 

actors can access the nodes directly and steal 

sensitive information or disrupt the network. For big 

data sets or machine learning models, this 

communication need could be a pain. Verifying the 

accuracy and reliability of the findings requires data 

curation, which is made more difficult by the 

dispersed nature of the data. The best way to update 

the state of the central model (distributed 

optimization, federated averaging) needs to be 

determined via technical study. It is unacceptable 

from an intellectual property, patent restriction, or 

asset protection standpoint if data leaks or 

algorithms are tampered with, rebuilt, or stolen 

(parameter inference) due to insecurely aggregated 

updates or unencrypted local algorithms. Neural 

networks also function as a memory mechanism, as 

they retain compressed versions of the training data 

in their weights, which can lead to accidental 

remembering. Parts of the training data can be 

reconstructed using the algorithm weights on a 

decentralized node. It has been demonstrated that 

images may be recreated with remarkable accuracy 

and detail, enabling display of the original training 

data; however, such model inversion or 

reconstruction assaults might lead to disastrous data 

leaking. Thus, federated learning provides an 

infrastructure-level solution to security and privacy; 

but, more steps are necessary to broaden the scope 

of its privacy-preserving capabilities, as will be 

discussed below.  

3.2 Real-time monitoring 

Users are able to keep tabs on the status and 

performance of active federated scenarios thanks to 

Fedstellar's real-time monitoring capabilities. Users 

are provided with real-time updates on various 

metrics created by each device in the network 

architecture using this function. This real-time 

intelligence allows users to make informed 

decisions, intervene when necessary, and 

dynamically measure the experiment's effectiveness. 

This capability's specialized usage of TensorBoard, 

a package for visualizing ML experiments, is a key 

component. That is, the suite is designed to process 

metrics updated in real-time from multiple devices 

at once, guaranteeing accurate and quick data 

representation. The user experience in large-scale 

federations is greatly improved as metrics loading 

time is substantially reduced. Better use of network 

resources and quicker visualization rendering are 

additional benefits of incorporating a new 

compression method for TensorBoard events at the 

controller level. To further guarantee 

interoperability with other ML/DL libraries, 

Fedstellar includes an extendable Logger that acts as 

an adaptor. To make sure everything works together, 

this Logger converts the metrics it generates into a 

format that TensorBoard can understand.  

The platform also keeps the logging library and the 

metrics definitions separate. The adaptor may be 

easily extended to support other popular logging 

libraries like Wandb, MLFlow, or Neptune, thanks 

to this design decision. At the same time, customers 

can still reliably transfer their data to widely-

supported formats like CSV or JSON because to the 

platform's powerful data export capabilities. Users 

are able to gain a deeper knowledge of how their 

scenarios performed thanks to this functionality, 

which allows for smooth data integration with 

different data analysis and visualization tools.  

3.3 Federated Learning for Healthcare 

Applications 

Healthcare Monitoring 

FL's ability to facilitate communication between 

academics and healthcare providers bodes well for 

the future of healthcare monitoring. The 

construction of accurate ML models to estimate 

patient health outcomes is made possible by FL, 

which pools data from multiple sources such as 

medical equipment, patient records, and wearable 

technology. Using information gathered from EHRs, 

medical devices, and patient-generated data, these 

models may forecast the likelihood of illness, the 

likelihood of readmission, and the effectiveness of 

medications. By keeping tabs on a patient's heart 

rate, blood pressure, and sleep patterns from a 

distance, wearable tech like fitness trackers can 

notify doctors of any irregularities. The proposed 

frameworks utilize FL to retrain ML models locally 

with user-generated data while maintaining privacy. 



International Journal of Intelligent Systems and Applications in Engineering          IJISAE, 2025, 13 (1s), 301–312 | 309  

 

One example is edge-assisted data analytics. To 

lessen the likelihood of data breaches and illegal 

access, FL encrypts patient data before storing it 

locally and transmitting it to a central server. When 

it comes to healthcare monitoring, FL has the ability 

to completely transform things by making forecasts 

more accurate, delivering more targeted care, and 

protecting patients' privacy. 

Medical Imaging 

One application of FL in healthcare is medical 

imaging, where ML techniques are used to 

decentralize the processing of medical images. 

Medical imaging plays an essential role in patient 

diagnosis and treatment, making this technique 

critical for healthcare. Imaging centers, hospitals, 

and clinics are common places to find medical 

imaging data, and they all have their own distinct 

datasets. With FL, these organizations can work 

together to train global models, which, as time goes 

on and more data becomes available, makes illness 

detection and treatment more effective. By 

preserving data securely and privately while 

utilizing collective knowledge from several 

organizations to improve model development, FL 

solves privacy concerns that come with centralized 

data systems. Federated Averaging (FedAvg) and 

other FL algorithms allow for real-time 

collaboration across enterprises, which speeds up 

the creation of models and the detection of diseases. 

FL improves models' robustness and diagnostic 

accuracy by resolving data imbalance issues 

prevalent in medical imaging through data pooling 

from multiple sources. In the realm of medical 

imaging, FL holds great potential for better patient 

outcomes and lower healthcare expenditures. 

Electronic Health Record 

Clinical decision-making within EHR systems could 

be greatly improved by FL. Google first suggested 

FL for board question recommendation; it entails 

training a global model with data from many 

sources, such as wearable gadgets, hospital systems, 

and personal health information. Every participant's 

device updates the global model by first training it 

locally and then aggregating its parameters. FL 

eliminates the need to transfer data in order to solve 

the problem of data silos in electronic health record 

systems, enabling more diversified and 

comprehensive datasets to provide insights and 

forecasts.  

Take FL and blockchain technology head-on to 

tackle the problems associated with data 

management and security, which are major concerns 

with electronic health records (EHRs). Motivating 

FL involvement, reliable model aggregation, and 

managing the massive amount of EHR data are all 

problems they take on. Their suggested approach 

improves interoperability by combining blockchain 

technology with cloud services, but it does so at the 

expense of EHRs' immutability. Updates to 

electronic health records (EHRs) may take longer 

than expected if blockchain integration causes extra 

validation stages.  

4. RESULTS AND DISCUSSION 

Table 1. Assets related to FL security and privacy, particularly CIA properties that we aim to tackle in 

our study 

 

The assets and their qualities that will be addressed 

in this study are summarized in Table 1. Each of the 

CIA's features will be defined and discussed in 

further detail in the sections that follow. From a high 

level, we expect hardware protection to already be 

in place. Participants are expected to report correct 

validation metrics with minimal privacy 

consequences. We do not address issues of 

unavailable FL system resources because we do not 
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see minimal privacy impact to participants dropping 

out or losing network connections. 

Confidentiality 

In this context, "confidentiality" means how well-

kept the asset is. Take the case of collaborator A who 

uses transport layer security (TLS) to transmit their 

model update to the aggregator. TLS provides A 

with certain guarantees regarding the update's 

confidentiality during transmission. The extent to 

which the update remains confidential after 

receiving and decryption in TLS by the aggregator 

depends on the aggregator's code logic (it could just 

broadcast it to others, for instance) and the level of 

protection the aggregator processes have against 

other processes and users on the aggregator 

infrastructure.  

Integrity 

In this context, "integrity" refers to how well the 

asset meets expectations. Collaborant A may, for 

instance, wish to verify that code executed on 

Collaborant B's computing infrastructure is secure. 

To the degree that A is certain of the integrity of B's 

infrastructure, A may in rare instances trust B with 

its operations. 

Availability 

When we talk about an asset's "availability," we 

mean how accessible it is. Consider the following 

scenarios: the aggregator may not have access to 

local model updates due to a collaborator's downed 

network infrastructure, or the entire federation could 

experience difficulties due to a loss of network 

connection at the aggregator level. Table 2 

summarizes all of the privacy threats examined in 

this review, along with the types of threat mitigation 

techniques. Because each method provides a unique 

set of safeguards, the best approach to take in any 

given situation will vary.  

Table 2. Methods for improving privacy and the qualities that should be considered for their 

implementation 

 

Each row is the property and the head of each 

column is the name of a privacy-enhancing 

technique. In controlled use, SMPC, HE, and CC 

safeguard assets, but they do not prevent an 

adversary from discovering sensitive information in 

the final results ("results unprotected from 

information extraction") or from discovering 

sensitive information in the intermediate results 

("exposure of data in use"). While free-use 

mitigation strategies like DP and PAMO do limit the 

ability to infer information about the original inputs 

from the final result of the computation, they do 

nothing to address the confidentiality of inputs or 

intermediate results on their own. While other types 

of mitigations typically do not guarantee the 

accuracy of the calculations ("execution integrity"), 

CC-category mitigations may. 

CONCLUSION 

Through maintaining the emphasis on FL in a 

healthcare context, we offer a taxonomy and a more 

thorough comprehension of present privacy issues 

along with their corresponding mitigation strategies. 

While providing the reader with basic concepts that 

may be utilized in this field, we have also offered 

extensive explanations of potential privacy 
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infractions and measures to minimize them, 

including a relevant categorization for both. Our 

investigation into the validity of these methods in 

relation to FL for healthcare has started since there 

is growing proof that FL could usher in a new era in 

which different healthcare organizations can work 

together to build AI models without disclosing any 

of their local data. Also included in this research is 

the use of Federated Learning (FL) in healthcare, 

specifically how it might improve the safety and 

confidentiality of patient information. Based on our 

research, FL has the potential to greatly reduce 

vulnerabilities like data leakage and model inversion 

attacks by utilizing procedures like safe aggregation 

and differential privacy.  
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