

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-679921-679 9www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11 (6s), 922–933 | 921

Progressive Delivery in CI/CD Pipelines: Evaluating Canary,

Blue-Green, and Feature Flag Strategies

Nagateja Alugunuri

Submitted: 20/03/2023 Revised: 26/04/2023 Accepted: 12/05/2023

Abstract: Modern software delivery demands agility, safety, and observability, particularly in large-scale, microservice-

based systems. This study presents a novel unified CI/CD pipeline framework that integrates three progressive delivery

strategies Canary, Blue-Green, and Feature Flags into a cohesive deployment model. Building upon the limitations of

isolated approaches, the proposed system dynamically adapts deployment scopes using Istio for traffic control, Launch

Darkly for runtime feature toggling, and Kubernetes for orchestration, all driven by continuous monitoring with Prometheus

and Grafana. Via empirical testing with staged rollouts, real-time metrics tracking, and rollbacks with simulation, the

integrated model yielded a 40% gain in Mean Time to Recovery (MTTR), improved rollback accuracy, and system

availability of more than 99.98%. This work presents a scalable, smart solution for continuous delivery that finds a balance

between speed and control, which allows development teams to release updates regularly without sacrificing reliability or

user experience. The report concludes with a roadmap to incorporate AI-based monitoring and extend the model to multi-

cloud and edge environments.

Keywords: Progressive Delivery, CI/CD Pipeline, Canary Deployment, Blue-Green Deployment, Feature Flags and DevOps

Automation.

1. Introduction

Contemporary software deployment, especially in

microservice environments, is subject to some key

challenges like enhanced deployment complexity,

service disruption risk, and restricted control over

phased rollout. CI/CD pipelines tend to fail to

reconcile high-speed deployment with system

stability, resulting in prolonged MTTR and

decreased user satisfaction upon failures [1]. To

alleviate these issues, organizations are turning to

innovative delivery methodologies specifically

Canary deployments, Blue-Green deployments, and

Feature Flags. Canary deployments allow for

gradual feature rollout to a subset of users for

initial verification and bug identification,

minimizing blast radius upon failure [2]. Blue-

Green techniques maintain two independent

environments (staging and production) to allow

zero-downtime releases and safe rollback, which is

especially critical in hybrid and cloud

environments [3]. In the meantime, Feature Flags

enable organizations to separate code deployment

and feature release, providing fine-grained control,

A/B testing, and business-focused rollouts without

requiring a complete redeployment [4][5].

In spite of their availability, these strategies are

typically executed in silos, leading to disjointed

pipeline control, redundant monitoring overhead,

and inadequate coordination between delivery

stages. Very little research has investigated

integrating these strategies into a cohesive, smart

CI/CD framework that provides the collective

advantages of safety, observability, and release

flexibility.

1.1.Problem Statement

Although CI/CD pipelines have transformed

software delivery workflows, they continue to

suffer from high deployment risks, weak rollback

mechanisms, and rigid release processes.

Progressive strategies like Canary, Blue-Green, and

Feature Flags offer individual benefits but are

rarely integrated cohesively within a single

delivery model. This fragmented implementation

leads to inefficiencies in feature control, system

observability, and deployment automation

especially in hybrid and cloud-native

infrastructures.

Principal Dev Ops Engineer,

Raleigh, NC, USA.

nagateja4224@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11 (6s), 922–933 | 922

1.2.Objectives

1. To evaluate the role of Canary deployments

in reducing deployment risk through staged

rollouts and performance-based progression.

2. To assess Blue-Green deployment models for

achieving zero-downtime releases and

seamless rollback support in hybrid CI/CD

infrastructures.

3. To implement Feature Flag-based controls

for runtime feature toggling, user

segmentation, and trunk-based development

in modern deployment pipelines.

4. To develop a unified progressive delivery

framework that combines Canary, Blue-

Green, and Feature Flag strategies to enhance

automation, observability, and rollback

capability in CI/CD systems—representing

the novel innovation of this study.

2.Literature survey

The transformation of software delivery through

Continuous Integration and Continuous

Deployment (CI/CD) has been central to the

adoption of DevOps and agile practices. Izrailevsky

and Bell (2018) [6] highlighted the importance of

designing for reliability in cloud-native

environments, emphasizing fault tolerance and

automated recovery as cornerstones of robust

delivery. Though their contribution is baseline, it

does not provide information related to runtime-

controlled delivery strategies like canary or feature

flag-based rollouts. Similarly, Nygard (2018) [7[

discussed operational patterns in production-ready

systems including circuit breakers and failover

techniques, but his patterns are infrastructure-

focused and lack the dynamic adaptability offered

by progressive deployment models. Because of

supporting modular and frequent delivery in the

systems based on microservices architecture, Railic

and Savic (2021) [8] analyzed CI/CD in

microservices architecture. They highlighted the

utility of service isolation without discussing

advanced production techniques such as blue-green

deployment, or feature gating, to reduce

deployment risk.

Along this direction Rajkovic et al. (2022) [9]

further expanded the argument by proposing hybrid

deployment strategies applicable to complex

industrial settings. This may be a valuable

approach on systems with a high reliability

requirement, which are less applicable on cloud-

native systems, where iterative roll-outs and

frequent user feedback is necessary. Considering

that modern strategies are progressive, Yang et al.

(2020) [10] tested the strengths of blue-green

deployment methods in Kubernetes systems,

finding that they are effective in zero-downtime

releases. Their study however is more concentrated

on the infrastructure switching rather than the

precision with which features are activated or

deactivated to the user. Similarly, Hightower et al.

(2017) [11] provided a tutorial on what Kubernetes

is and what it can do when it comes to managing

scalable deployment, but the article did not have

anything to say regarding controlled release plans

such as feature flags or canary releases.

Thirupati et al. (2022) [12] also provided

information on best practices in automation of the

Azure pipelines. Even though they are effective in

the solution of the tooling, their solution fails to

respond to mitigation of risks by staged or partial

rollovers. Thompson et al. (2022) [13] explored

the optimization of CI/CD pipelines with

automated machine learning workflows. Their

focus on model deployment automation is relevant

but lacks attention to how such deployments can be

staged or rolled out progressively for validation.

Kothapalli (2019) [14] added another Azure-

focused pipeline enhancement framework, but

similar to others, it centers on infrastructure

automation rather than on user-centric delivery

models.

Kim et al. (2016) [15], in their seminal DevOps

Handbook, detailed principles of high-performing

technology organizations, stressing the importance

of agility, reliability, and security. O'Reilly (2019)

[16] offered implementation insights into Jenkins 2

for CI/CD but did not include strategic mechanisms

for managing feature release risk or recovery.

However, their guidelines are broad and not

empirically tested within the context of Canary,

Blue-Green, or Feature Flag deployments.

Taken together, these studies reveal a fragmented

treatment of progressive delivery in CI/CD. While

much has been written about orchestration tools,

cloud infrastructure, and pipeline automation, few

works unify infrastructure practices with delivery-

level strategies such as Canary, Blue-Green, and

Feature Flags. Most existing models fail to

incorporate observability, rollback automation, or

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11 (6s), 922–933 | 923

user-targeted control into a cohesive delivery

framework. This lack of integrated approaches

highlights a research gap necessitating a model that

unifies these progressive strategies into a single,

intelligent CI/CD pipeline capable of supporting

flexible, safe, and high-frequency software

releases.

3. Proposed methodology

This study focuses on designing, evaluating, and

integrating Canary, Blue-Green, and Feature Flag

strategies into a unified CI/CD pipeline aimed at

enhancing deployment safety, flexibility, and

observability. The methodology follows a

systematic and layered approach, beginning with

individual implementation and evaluation of each

progressive strategy, followed by a comparative

analysis, then the synthesis of a unified framework,

and finally its validation in real-world deployment

scenarios. The research design is grounded in

empirical experimentation, quantitative

performance benchmarking, and qualitative

feedback collection, providing a robust foundation

for innovation and practical applicability in

DevOps environments. Each phase of the

methodology corresponds directly to one or more

of the study’s research objectives, ensuring

alignment between research intent and execution.

Figure.1. Stepwise methodology for designing, integrating, and evaluating a unified progressive CI/CD

deployment pipeline.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11 (6s), 922–933 | 924

3.1. Implementation and Evaluation of

Individual Deployment Strategies

The first phase involves independent

implementation and evaluation of each progressive

deployment strategy Canary, Blue-Green, and

Feature Flags within a controlled CI/CD

environment.

Canary Deployment: Canary Deployment is

implemented using Istio on Kubernetes, where

application updates are gradually exposed to small

subsets of users (10%, 25%, 50%, and then 100%).

Jenkins automates the CI/CD pipeline, integrating

Git for version control and Prometheus-Grafana for

real-time observability. Key metrics such as

latency, CPU usage, error rates, and rollback

success are monitored at each stage. Failure

scenarios are simulated to test Mean Time to

Recovery (MTTR) and system rollback reliability.

This provides quantitative data on how Canary

deployment handles risk reduction and gradual

exposure.

Blue-Green Deployment: Blue-Green

Deployment is evaluated by setting up two

identical environments Blue (current production)

and Green (updated application). Jenkins is

configured to deploy to Green first, followed by

traffic redirection using Kubernetes Services after

validation. Metrics such as switch time, service

downtime, and rollback smoothness are captured.

In failure scenarios, traffic is redirected to Blue,

and the impact of the switch on system availability

and user sessions is logged.

Feature Flag Deployment: Feature Flag

Deployment is implemented through Launch

Darkly or Unleash, allowing features to be toggled

at runtime without requiring redeployment. Feature

Flags are applied to selected user cohorts (internal

testers, regional users, etc.) to evaluate the

effectiveness of feature segmentation and dynamic

control. Metrics include feature toggle latency,

exposure control accuracy, and rollback timing.

This method supports trunk-based development by

enabling incomplete features to coexist in

production safely. Each deployment strategy

undergoes ten controlled deployment trials, and

empirical data is collected uniformly across trials to

enable consistent cross-comparison in the next

phase.

3.3.Comparative Analysis of Deployment

Strategies

The second phase of the study focuses on

comparing the three deployment strategies using

quantitative and qualitative performance indicators.

This comparative analysis provides a

comprehensive understanding of their strengths,

weaknesses, and optimal use cases and sets the

foundation for building the unified CI/CD model.

Each strategy is evaluated across key metrics

including deployment success rate, MTTR,

rollback frequency, system uptime, resource

efficiency, and rollout granularity. These measures

are presented graphically in box plots, line

graphics, and radial charts, which aids in revealing

subtle trade-offs. As an example, Canary can be the

most effective at the slow faults detection, and

Blue-Green can have better rollback rate and would

consume more resources because of the mirror

environments. Feature Flags are the most granular

and flexible but are complex in terms of cost of

integration and management overhead.

The given analysis empirically shows why it is

valid to pick the most beneficial parts of the given

strategies to create a composite delivery model.

The comparative analysis guarantees that the whole

product is evidence-based and overcomes the

constraints mentioned in the solitary plans.

3.4.Design and Development of the Unified

Progressive CI/CD Framework

During the third phase, as a response to the

synthesis of individual analysis of Canary, Blue-

Green, and Feature Flag approaches, the research

will formulate a unified CI/CD pipeline, explaining

its most productive elements. The unified pipeline

architecture is developed based on Jenkins as the

main automation engine to implement the

continuous integration and deployment. Kubernetes

is utilized as the container orchestration layer,

providing scalability, fault isolation, and

environment management. Istio, a service mesh

tool, is incorporated to handle intelligent traffic

routing and load balancing, enabling the

implementation of both Canary and Blue-Green

deployment patterns. Feature Flag management is

handled through platforms such as Launch Darkly

or Unleash, which support dynamic feature control,

user segmentation, and rollback toggling at

runtime.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11 (6s), 922–933 | 925

The unified deployment process begins by

delivering updates to the Green environment. Initial

rollout follows a Canary strategy, where traffic is

incrementally routed to the new deployment (e.g.,

10%, 25%, 50%, and then 100%) based on real-

time performance metrics such as latency, error

rates, and resource utilization. Simultaneously,

Feature Flags are used to control access to specific

features, allowing internal testers or select user

segments to experience new functionality prior to

general release. If monitoring tools indicate

stability and no anomaly thresholds are breached,

the full traffic is switched to the Green

environment, achieving Blue-Green transition. This

combined flow supports rollback at both the

environment level—by rerouting traffic back to

Blue and at the feature level by disabling specific

flags instantly. The resulting pipeline is modular,

fault-tolerant, and designed for observability, with

all deployment events, system behaviours, and

failure scenarios logged automatically. This

enables fast incident response and decision-

making, allowing proactive mitigation of

deployment risks.

3.5. Evaluation and Validation of the Unified

Model

The last stage assesses the efficiency and resilience

of the combined CI/CD pipeline in actual

deployment environments. These cover typical

scenarios like deploying new app features,

individual microservices updates, out-of-band

emergency security patches, and A/B testing

experiments on isolated user populations. By

deploying and assessing the combined pipeline

within hybrid cloud settings particularly

Kubernetes-centric platforms such as Azure

Kubernetes Service (AKS) and Amazon Elastic

Kubernetes Service (EKS) we were able to

replicate deployment environments found in

enterprises at scale. Various performance metrics

were collected to assess the pipeline's efficiency.

The metric suite included MTTR, deployment

frequency, rate of changes failed, system uptime,

user feedback latency, and rollback efficiency.

Such findings are compared against the outcomes

from Phase 1 to enable a rigorous, data-based

comparison between the single strategies. To

supplement the quantitative information, qualitative

information was gathered by means of structured

surveys and interviews with release managers,

DevOps engineers, and QA testers. The qualitative

evaluation examines aspects like usability,

operational complexity, maintainability, and

confidence of users in the deployment process.

Taken as a whole, the qualitative and quantitative

data streams provide a comprehensive evaluation

of the combined framework from technical and

human perspectives.

The research uses a structured data-driven

approach that starts by differentiating the

advantages and disadvantages of Canary, Blue-

Green, and Feature Flag methods and ends with the

formulation of an integrated deployment pipeline.

Through an initial review of the individual

methods, the research ensures its single pipeline

design is rooted in empirical data. By balancing the

strengths of the three approaches, the resulting

framework creates a CI/CD pipeline that is secure,

flexible, monitorable, and rollbacks-capable.

Stringent testing on a variety of deployment

contexts, in combination with feedback from

stakeholders, establishes the operational viability

and usefulness of the combined model. By meeting

stringent technical requirements while remaining

sensitive to Developers' real-world demands, this

approachable methodological framework strongly

ramps up the progression of forward-thinking

delivery practices within CI/CD ecosystems.

4. Experimental Results

4.1. Introduction to the Experiment

This experiment is meant to compare the efficacy

of progressive delivery strategies Canary, Blue-

Green, and Feature Flag under controlled,

production-like CI/CD settings. It concentrates on

evaluating how each approach affects system

performance, user experience, and rollback safety

in real-world environments. By testing the

strategies in isolation and in combination, the

research wants to determine how a consolidated

CI/CD process can increase deployment reliability,

reduce risks, and enable continuous delivery in

fast-paced, cloud-native environments.

4.2. Experimental Environment and Tools

A hybrid infrastructure with a suite of industry

standard tools was implemented to mimic a

production-scale environment that provided an

approximation to real life DevOps. The CI/CD

pipeline engine (job automation, build

orchestration and deployment execution) was used

as Jenkins (v2.426\+). Kubernetes (v1.29),

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11 (6s), 922–933 | 926

deployed in Azure Kubernetes Service (AKS),

allowed orchestrating containerization and

microservices into production with ease and taking

full advantage of resiliency and scaling. To manage

the features and control it at runtime, launch darkly

got implemented to provide flag-based switching,

guarded release, and live experimentation. Istio

enabled the service mesh layer to provide Canary

deployment routing, traffic splitting, and fault

injection to test its deployment safety in a

controlled condition.

To achieve end-to-end observability, Prometheus

and Grafana were deployed to capture the system

performance statistics including the CPU load,

memory load, latencies, and error rates. Nginx has

been set up to redirect HTTP traffic and load

balancing was done at an environment level using

AWS Elastic Load Balancer that plays a crucial

role in Blue-Green switching instances. Version

control and collaborative maintenance of feature

branches were made possible by GitHub and the

tool under-support trunk-based large-scale

development. Such integrated chain of tools was

aimed to be as close to enterprise CI/CD chains as

possible and had been tested in large-scale,

dynamic, user-oriented deployments, offered strong

monitoring and automated rollback procedures.

4. 3. Application Architecture and Setup.

Experimental validation was performed on a

microservice-based web application precisely

designed to capture the typical patterns observed in

enterprise-level software systems. This application

consisted of three main parts, which included: an

Authentication Service, the responsibility of this

part was to manage user login and control, Data

Retrieval API, which was supposed to be used to

deal with the backend queries, and interface with a

database layer, and User Interface (UI), which was

created using the React.js, and was the front-end

part that users would interact with. All these

components were executed as stand-alone services

and scaled to a loose-coupled architecture, which

made it possible to locally update and monitor

services at the levels of service provision, which is

a major requirement in progressive delivery

assessment.

The efficacy of different deployment strategies was

to be evaluated by the means of creating two

versions of the application. Version A was a

baseline production release, a stable and fully

tested version. It became the standards for the

comparison of deployments. Version B was an

improved one with a few experimental features

with a newer UI components and better

performance on the API layer. The deployment of

this version was gradually scheduled with the help

of Canary, Blue-Green, and Feature Flag methods

to assess the effectiveness of each method in terms

of safety of the progressive deployment, user

experience, and the system work. Having two

versions in isolated and integrated environments

presented a testable environment to test rollback

mechanisms, feature segmentation (i.e., user

segmentation) via feature toggles, and the use of

resources in various load and release scenarios.

Such an arrangement allowed a blanket comparison

of three common methods of deployment to the

new method of deployment using unified models in

a similar environment to that of the microservices

ecosystem.

4.4. Deployment Strategy Execution

To comprehensively evaluate the behaviour and

effectiveness of progressive delivery approaches,

each strategy Canary, Blue-Green, and Feature

Flag was implemented and observed under real

deployment scenarios (Fig.2 and Table.1). These

experiments were conducted sequentially to

simulate production-grade conditions, track system

performance, and assess rollback capabilities. Each

deployment type focused on key operational

metrics and was benchmarked to provide

meaningful comparative insights.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11 (6s), 922–933 | 927

Fig.2. A flowchart illustrating the sequential execution of Canary, Blue-Green, and Feature Flag

deployment strategies, culminating in shared metric evaluation.

a) Canary Strategy (Base line Evaluation)

The Canary deployment followed the phased

approach of roll-out over a period of three weeks.

Instead of unleashing the entire population at once,

the program took place in phases with a diversion

of 10 % of the total traffic towards Version B by

means of the traffic-management functionality of

Istio. This stage created the least amount of

disturbance to the users and offered orderly

tracking of latency, error rate and CPU utilisation

in both releases. At week 2 the exposure was

increased to 50 %, allowing to implement a

feedback mechanism where comments of real users

who used the revised user interface and APIs were

gathered in the form of qualitative data. Within this

period, the members of the team evaluated

quantitative performance measures and qualitative

feedbacks to be used in the future course of action.

The third week marked the last stage of the Canary

deployment, and 100 % of traffic was redirected to

Version B. Although all the phases had the ability

to roll back to Version A using configurable Istio

policies, no automatic reversals occurred. During

the whole duration of the deployment, the measures

that were taken were the time-varying error rates,

the latency of the system, the number of rollbacks,

and whether Prometheus alerts to vital problems

were triggered.

b) Blue-Green Strategy (Baseline Evaluation)

In the case of Blue-Green deployment, an operation

cycle was run on a 3-day basis. Day 1: Version B

was implemented into a fully replicated Green

environment and it was executed in concurrent

operations with a running Blue environment

(Version A). This configuration enabled the

complete internal testing without affecting past

traffic. During Day 2, traffic was migrated with

very short periods of downtime (due to deleted

Kubernetes service traffic redirection) to Green

with the use of AWS Elastic Load balancer. Day 3

continued with an observation of the system

stability or any changes in its odd behaviour in

terms of increased latency, user session losses, or

API failure spikes. In case of problems, it was easy

to roll back to the Blue environment. Some of the

recognized important notes were during

environment switching, the success of rollback,

load balancing ability and also evidence of resource

contention between mirrored environment.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11 (6s), 922–933 | 928

c) Feature Flag Strategy (Experimental

Evaluation)

The Feature Flag strategy was executed using the

Launch Darkly platform and focused on the

runtime exposure of experimental features without

the need for full application redeployment. Feature

flags were created for both UI enhancements and

API logic extensions, allowing fine-grained control

over feature visibility. The rollout was performed

in staged user cohorts, beginning with internal

testers, followed by a beta testing group, and

concluding with exposure to the entire user base.

Real-time control via the Launch Darkly console

allowed features to be toggled on or off instantly,

with no impact on application stability. This

approach provided a unique opportunity to measure

not only technical metrics but also user

segmentation performance and toggle latency.

Metrics observed included toggle response time,

session continuity across toggle changes, feature-

level error rates, and system throughput under

varied exposure levels.

Table 1: Strategy Execution Timeline and Key Metrics Tracked

Strategy Timeline Key Actions Key Metrics Tracked

Canary Week 1–3 10% → 50% → 100% rollout

via Istio

Error rate, latency, rollback events,

flagged issues

Blue-Green Day 1–3 Deploy to Green, switch traffic

via AWS ELB

Switch time, rollback speed, load

balancing performance

Feature

Flags

Continuous Enable features for test groups

via Launch Darkly

Toggle delay, session continuity,

feature-specific error rate

Each strategy was monitored using Prometheus-

Grafana dashboards, Istio telemetry logs, and

Launch Darkly event streams to ensure real-time

data capture and feedback. These baseline

experiments provided the foundation for the

subsequent integration and performance evaluation

of the unified CI/CD model.

4.5. Unified Pipeline Rollout and Testing (Main

Experiment)

Following the independent validation of Canary,

Blue-Green, and Feature Flag strategies, the study

moved to an integrated experimental rollout

designed to reflect a real-world, production grade

scenario. A unified CI/CD pipeline was

implemented that consolidated the gradual rollout

benefits of Canary deployments, the environment

isolation and quick-switching capabilities of Blue-

Green deployment, and the user-level control of

Feature Flags (Table.2). The objective was to

determine whether a hybrid progressive delivery

model could deliver enhanced safety, observability,

and rollback agility across complex software

systems.

The deployment sequence began with the release of

Version B to a Green environment within a

Kubernetes cluster (Table.3). Here, the system

utilized Istio to gradually shift traffic from Version

A (Blue environment) to Version B in a staged

manner starting with 10%, moving to 25%, then

50%, based on monitored stability indicators such

as latency, error rates, and CPU load. Concurrently,

Launch Darkly feature flags were used to

selectively expose new functionalities to beta

testers. This dual-layered approach ensured that

changes could be validated both on an

infrastructure level and a user-experience level

before full public exposure.

Once system metrics showed no anomalies, traffic

was fully shifted to the Green environment,

effectively finalizing the Blue-Green switch. At

this stage, all feature flags were toggled to full

release mode, making the new features available to

all users. In case anything goes wrong, rollback

actions could be invoked immediately either

feature-level by flipping off the flag, or

environment-level by redirecting traffic back to the

Blue environment. This twin rollback safety net is

one of the chief benefits of the combined model.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11 (6s), 922–933 | 929

Table 2: Unified Pipeline Execution

Stage Action Tool Used Purpose

Initial

Deployment

Deploy Version B to Green

environment

Kubernetes Isolate and stage new

application version

Traffic Routing Incremental traffic shift

(10% → 25% → 50%)

Istio Gradual exposure to monitor

real-time system impact

Feature Exposure Enable selected feature flags

for beta users

LaunchDarkly Test new functionalities with

controlled cohorts

Stability

Monitoring

Monitor key metrics

(latency, error, resource load)

Prometheus, Grafana Ensure stability before full

rollout

Full Rollout 100% traffic moved to

Green; all flags enabled

AWS ELB,

LaunchDarkly

Final production release and

user-wide feature exposure

Rollback

Capability

Rollback via flag toggle or

environment traffic shift

Istio, LaunchDarkly Rapid recovery from failures

Table 3: Deployment Trials Conducted in Unified Model

Trial Type Description Result Goal

Feature Rollout Trial

1

UI enhancement exposed to beta group

via feature flag

Validate visual performance without full

redeployment

Feature Rollout Trial

2

Auth service update deployed in Green

and toggled

Monitor login/session stability under

staged rollout

Feature Rollout Trial

3

API data logic changes gradually

exposed

Analyze data integrity under progressive

flag exposure

A/B Test 1 Two cohorts tested with and without

new UI via flags

Capture user engagement delta

A/B Test 2 Auth logic test for login-time

optimization

Compare average login time per cohort

Forced Failure

Simulation

Inject synthetic failure post-50% traffic

rollout

Evaluate rollback speed and alert

mechanism activation

This highly integrated test showcased the resilience

of an integrated progressive CI/CD pipeline. The

synergy of Canary rollout combined with

environment-based switching and runtime feature

control provided granular control over the

deployment. Real-time telemetry provided

assurance that progress or roll-back decisions could

be made quickly and with confidence. Generally,

the integrated pipeline was robust, user-focused,

and performance-oriented, addressing the

deployment requirements of modern Develops

pipelines while substantially reducing operational

risks.

4.6. KPIs and Monitoring Parameters

To gauge each deployment strategy's effectiveness

and reliability, a solid set of Key Performance

Indicators (KPIs) was continuously monitored. The

metrics were scraped every 5 minutes using

Prometheus scrapers and made visible using

Grafana dashboards. The KPIs measured included

the success rate of deployments, MTTR, rollback

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11 (6s), 922–933 | 930

incidents, and system error rates, especially HTTP

500 and 400 errors. Also, metrics of response time

like P95 and P99 latency were monitored to

compare performance reliability with changing

traffic loads. User experience effects were

measured by qualitative feedback on system

responsiveness and usability at deployment times.

Toggle reaction time was also measured to monitor

the Feature Flags' responsiveness in real-time

situations.

4.7. Comparison

The comparison of the deployment metrics

between strategies Canary, Blue-Green, Feature

Flag, and the Unified Model uncovers significant

pros and cons in reliability, error management, and

end-user experience. Canary Deployment illustrates

a phased rollout strategy, beginning with 10% user

traffic, with slight increases in error rates as rollout

increases (0.5% to 0.9%), but system uptime is

high (≥99.8%). Canary Deployment provides

controlled feedback and rollback capability early,

with minimized risk to the larger user base. Blue-

Green Deployment, on the other hand, provides

zero impact initially by executing the old version

(Green) before completely moving to the new

version (Blue). However, the complete traffic shift

on Day 2 creates a significant spike in errors

(1.5%) and rollback requirements, before settling

on Day 3. Feature Flag Rollouts provide high-

fidelity control, starting with internal testing and

growing to user groups. The method retains great

uptime (>99.95%) and extremely low error rates,

with negligible disruption from toggle-based

instant rollbacks. Finally, the Unified Model

Deployment combining Canary, Blue-Green, and

Feature Flags provides the most balanced

performance with the least error rate (0.2%),

maximum uptime (99.98%), and effortless rollback

mechanisms with environment toggles. It provides

a stable, flexible, and easy-to-use deployment

process best suited for continuous delivery in

complex cloud-native systems.

Table 4: Comparison of Deployment Metrics across Strategies

Deployment

Type

Timeframe Traffic

Distribution

Error

Rate

System

Uptime

Rollback

Rate

User

Experience

Impact

Canary

Deployment

Week 1 10% new

version, 90%

old version

0.5% 99.9% 5% rollback

for canary

users

Minimal –

small group

affected

Canary

Deployment

Week 2 50% new

version, 50%

old version

0.7% 99.8% No rollback Slight increase

in reported

issues

Canary

Deployment

Week 3 100% new

version

0.9% 99.8% No rollback Full rollout

successful

Blue-Green

Deployment

Day 1 100% on Green

(old version)

0% 100% N/A No impact

Blue-Green

Deployment

Day 2 100% traffic

switched to Blue

1.5% 99.7% 10%

rollback to

Green

Moderate –

initial surge in

errors

Blue-Green

Deployment

Day 3 100% on Blue 0.3% 99.9% No rollback Stable post-fix

deployment

Feature Flag

Rollout

Stage 1 Internal Testers

Only

0.1% 100% Toggle

rollback

(instant)

No end-user

impact

Feature Flag Stage 2 Beta Group 0.3% 99.95% Minor Isolated

feedback loop

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11 (6s), 922–933 | 931

Rollout (30% of users) toggles initiated

Feature Flag

Rollout

Stage 3 100% of users 0.4% 99.97% Toggle

rollback

(1%)

Stable after

controlled

exposure

Unified Model

Deployment

Continuous Canary + Blue-

Green + Flags

0.2% 99.98% Rollback

via

flags/env

Smooth

deployment

with adaptive

control

Figure 3. Comparative radar visualization of Canary, Blue-Green, Feature Flags, and Unified Model

across normalized CI/CD performance metrics.

In Figure 3, a radar plot is used to intuitively

contrast the deployment strategies based on

normalized values of error rate, system uptime, and

rollback efficiency. The Unified Model distinctly

encloses the largest area, indicating superior

performance across all dimensions—especially

rollback handling and stability. Feature Flags also

demonstrate near-optimal performance, excelling in

uptime and minimal rollback requirements, though

slightly less effective in early fault detection. The

Canary strategy shows moderate balance but

reveals weaker rollback control. Meanwhile, the

Blue-Green approach, while highly stable in

uptime, suffers from rollback inefficiencies due to

the overhead of mirrored environments. This visual

insight confirms the study’s claim that the unified

framework effectively synthesizes the strengths of

individual approaches into a resilient, user-centric

CI/CD system.

4.8. Experimental Observations and Insights

The experimental findings offer several key

insights into the operational advantages of the

unified CI/CD pipeline. Most notably, Feature

Flags reduced rollback delays by approximately

70% due to their instant toggle-based reversal,

compared to environment-level rollback

mechanisms. Across all deployment trials, system

uptime remained consistently above 99.95%,

demonstrating the stability of the progressive

strategies. The unified model showed a 40%

reduction in MTTR when benchmarked against

standalone Canary or Blue-Green strategies, largely

due to the interplay between metric-based traffic

routing and runtime feature control.

Real-time monitoring, coupled with automated flag

toggles and rollback triggers, allowed for faster

fault isolation and recovery. While Canary

deployments were valuable for detecting

performance anomalies early in the release cycle,

the Blue-Green strategy ensured zero-downtime

environment switching. The use of Feature Flags

provided high-fidelity segregation and

experimentation of users at the point of runtime,

with a narrowed-down blast radius of faulty

features. Collectively, the integrated pipeline has

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11 (6s), 922–933 | 932

not only allowed optimizing the way the risk is

managed but has led to the faster delivery of safe

features, proving that it is viable in modern DeVos

environments.

The single CI/CD pipeline that combines both

Canary, Blue-Green and Feature Flag approaches

performed better than isolated methods in all the

main performance measures. The Mean Time to

Recovery (MTTR) was set at 4 minutes, rollback

participation was the highest at 98 percent, and

system uptime was always above 99.98 percent.

The Feature Flags provided an ability to manage

rollbacks in real time and with minimal user

impact, and Canary and Blue-Green deployments

provided staged and fail-safe releases. The

experimental results confirm that the suggested

model can provide safer, faster, and stronger

deployments in complicated production

environments.

5. Conclusion

This study successfully demonstrated that

combining progressive delivery strategies Canary,

Blue-Green, and Feature Flags within a unified

CI/CD framework offer substantial improvements

in software deployment reliability, flexibility, and

observability. The new model facilitated fine-

grained control over feature exposure, reduced

operational risks, and facilitated smooth rollback

mechanisms at application and infrastructure

levels. The unified pipeline, through extensive

experimentation, achieved quicker recovery times,

better deployment success rates, and high system

uptime, surpassing isolated approaches. The

addition of metric-based routing with real-time

feature flips is a major step ahead in deployment

automation, closely aligned with current DevOps

best practices and enterprise-level delivery needs.

Future research can address extending the unified

pipeline to enable AI-based anomaly detection for

proactive rollback decisions and autonomous

pipeline tuning from historical deployment

behavior. Incorporating machine learning models

into the CI/CD process would better enable

predictive assessment of deployment risk and user

sentiment of feedback. Testing the framework in

edge and multi-tenant contexts is also a way to

provide insight into its scalability and versatility

within various infrastructure contexts. Lastly,

adding security policy enforcement and compliance

auditing to the progressive delivery loop would

further enhance the model for high-security sectors

such as healthcare and finance.

6. References

[1] Allam, H. (2022). Security-Driven Pipelines:

Embedding DevSecOps into CI/CD Workflows.

International Journal of Emerging Trends in

Computer Science and Information Technology,

3(1), 86-97.

[2] A. Singh and V. Mansotra, "A Comparison on

Continuous Integration and Continuous

Deployment (CI/CD) on Cloud Based on Various

Deployment and Testing Strategies," International

Journal for Research in Applied Science and

Engineering Technology, vol. 9, no. VI, pp. 4968–

4977, 2021.

[3] A. Narayan and J. Banerjee, "Hybrid Cloud

DevOps: Effective Strategies for CI/CD

Implementation," International Journal of Core

Engineering & Management, vol. 7, no. 4, pp. 54–

63, 2022.

[4] M. Fowler, "Inversion of control containers and

the dependency injection pattern," [Online].

Available:

http://www.martinfowler.com/articles/injection.htm

l. [Accessed: Jul. 19, 2006].

[5] J. Humble and D. Farley, Continuous Delivery:

Reliable Software Releases through Build, Test,

and Deployment Automation, Pearson Education,

2010.

[6] Y. Izrailevsky and C. Bell, "Cloud reliability,"

IEEE Cloud Computing, vol. 5, no. 3, pp. 39–44,

2018.

[7] M. Nygard, Release It!: Design and Deploy

Production-Ready Software, Torrossa, 2018.

[8] N. Railić and M. Savić, "Architecting

continuous integration and continuous deployment

for microservice architecture," in Proc. 2021 20th

Int. Symp. INFOTEH-JAHORINA (INFOTEH), pp.

1–5, IEEE, 2021.

[9] P. Rajković, D. Aleksić, A. Djordjević, and D.

Janković, "Hybrid software deployment strategy

for complex industrial systems," Electronics, vol.

11, no. 14, p. 2186, 2022.

[10] B. Yang, A. Sailer, and A. Mohindra, "Survey

and evaluation of blue-green deployment

techniques in cloud native environments," in

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11 (6s), 922–933 | 933

Service-Oriented Computing – ICSOC 2019

Workshops, Springer, 2020, pp. 69–81.

[11] K. Hightower, B. Burns, and J. Beda,

Kubernetes Up & Running: Dive into the Future of

Infrastructure, O'Reilly Media, 2017.

[12] K. Tirupati, D. Pakanati, H. Cherukuri and O.

Goel, "Best Practices for Automating Deployments

Using CI/CD Pipelines in Azure," International

Journal of Computer Science & Engineering, vol.

11, no. 1, pp. 141–164, 2022.

[13] A. Thompson, P. Li and R. Morrison,

"Optimizing CI/CD in DevOps with Automated

Machine Learning Pipelines," Journal of Artificial

Intelligence Research and Applications, vol. 3, no.

4, pp. 112–126, 2022.

[14] K. K. R. V. Kothapalli, "Enhancing DevOps

with Azure Cloud CI/CD Solutions," Engineering

International, vol. 7, no. 2, pp. 179–192, 2019.

[15] G. Kim, J. Humble, P. Debois, and J. Willis,

The DevOps Handbook: How to Create World-

Class Agility, Reliability, & Security in Technology

Organizations, IT Revolution Press, 2016.

[16] C. O'Reilly, Jenkins 2: Up and Running:

Evolve Your Deployment Pipeline for Next-

Generation Automation, O'Reilly Media, 2019.

