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Abstract—The emergence of Large Language Models (LLMs) has revolutionized clinical decision-making, yet 

most remain static post-deployment. This research introduces a self-evolving LLM ecosystem designed for 

precision medicine, capable of adapting continuously to real-time clinical data, genomic profiles, and treatment 

outcomes. Based on a structured dataset of personal medications integrated with patient demographics, diagnoses, 

treatments, and outcomes, this paper emulates a shifting learning mechanism as a result of reinforcement-based 

retraining and the returns of LLM-agents via feedback loops. An evolution of a Random Forest based 

TreatmentAgent is performed and the performance is measured over five evolution cycles. The predictive 

accuracy of the model increases by 14% to 41% based on fine-tuning through heavier data samples. An LLM-

agent simulator with rules is proposed to recommend treatment refinements using side effects and time of 

recovery. Exploratory data analysis reveals valuable patterns such as diagnosis-related length of recovery and 

BMI differentiation to three levels of treatment effectiveness. This study produces an experimental blueprint of 

how changing AI agents can power hyper-personalized drug choice. The results indicate the viability as well as 

revolutionary of installing self-evolving intelligence in healthcare infrastructures to maximize patient-specific 

treatment regimens at scale. 

Keywords—Precision Medicine, Self-Evolving LLM, Treatment Optimization, Reinforcement Learning, 

Personalized Medication, Clinical AI, Multi-Agent Systems, Random Forest Classifier 

I. INTRODUCTION  

The idea of precision medicine marks a paradigm 

change in medical practice and consists of 

emphasizing patient-specific treatments as opposed 

to a one-size-fits-all solution. Precision medicine 

incorporates genetic, environmental, and lifestyle 

data so that it can provide better diagnosis and 

treatments. Nonetheless, the standard medical 

systems tend not to be flexible enough to adjust to the 

latest treatment regimen timely with new data 

available. 

Artificial Intelligence (AI) has in recent years 

been proposed as powerful facilitator of precision 

medicine. Trained on enormous biomedical literature 

and clinical notes, LLMs, have demonstrated 

potential in aiding diagnosis, drug discovery, and 

treatment strategies. Regardless, the majority of 

current LLMs remain unresponsive after 

deployment, lacking the ability to respond to new 

clinical knowledge or patient outcomes. 

To fill this gap, this study considers self-evolving 

LLM ecosystems as AI systems that learn and adjust 

on new information (real-time clinical information, 

genomic data, and treatment outcomes). It is 

imagined that such ecosystems could apply 

reinforcement learning and multi-agent work, and 

that treatment processes can adapt based on patient 

needs and medical discovery. 

In this paper, we introduce a prototype of an 

ecosystem of this sort using a personalized 

medication data. The development of its learning 

agent proceeds in a process of simulated evolution, 

with the successive improvement of performance 

based on the Random Forest model. Another 

feedback module inspired by LLM gives rule-based 

recommendations on treatment, simulated 

collaborative action of multi-agent systems. 

The originality of this work is that it shows how 

learning-based AI agents can provide adaptive 

precision medicine in a scalable manner, and fill the 

divide between fixed models and dynamic reality of 

patients. 

II. LITERATURE REVIEW 

Utilizing artificial intelligence in healthcare is a 

topic that was studied widely within the last ten 

years, and Large Language Models (LLMs) are 

already becoming the drivers of clinical intelligence. 

These models have been fine-tuned using biomedical 
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corpora, including BioBERT and ClinicalBERT and 

used to aid in a variety of tasks, including medical 

question answering, and diagnostic reasoning. And 

these models have superb skills in capturing complex 

clinical narratives and aiding in inference, but are 

fundamentally fixed once trained, constraining 

flexibility to new medical facts or patient feedback. 

One mechanism of precision medicine that has 

attracted recent investigation includes the use of 

machine-learning tools to offer customized growth, 

relying on individual demographics, genetic lists, 

and comorbid statuses. Research has demonstrated 

the potential of predictive models in approximating 

drug efficacy and adverse events but the trained 

models are frequently used once without continuous 

learning mechanisms [1]. As a result, they could 

prove to be less effective over time as new medical 

knowledge and patient situations arise. 

Clinical applications The reinforcement learning 

(RL) and multi-agent systems have gained interest to 

overcome these shortfalls. RL models have also 

applied to treatment planning of sepsis, diabetes, and 

cancer cases where policies will adjust depending on 

rewards structures based on patient outcomes. In the 

meantime, multi-agent systems model cooperating 

intelligence, where various agents, each with a 

clinical point of view or task, engage each other to 

streamline healthcare provision. Although these 

approaches have conceptual advantages, they are 

rarely combined with LLMs and are commonly not 

real-time aversive or integrated with longitudinal 

patient data [2]. 

Very limited literature is available that tries to 

simulate ecosystems where the AI agent evolves over 

time using feedback of the outcomes. Self-improving 

mechanisms, i.e., feedback loops, online learning, 

and agent-based evolution, have yet to be studied 

alongside LLMs. This discrepancy is acute, 

especially in precision medicine, where the efficacies 

of treatment may change exponentially even between 

populations and conditions. 

The study spaces itself between the borders of 

these areas, uniting LLM-inspired decision-making 

with a self-evolving learning agent, trained, and 

assessed on a personalized medication dataset. The 

strategy does continuous model re-evaluation and 

introduces rule-based feedback to emulate the 

cooperation of the agents [3]. In such a way, it helps 

with answering the emerging demands of intelligent, 

yet respondent, adaptive, and personalized AI 

systems in real clinical circumstances. 

III. DATASET AND PREPROCESSING 

The data that will be used in this research article, 

Personalized Medication Dataset, is maintained to 

help work on AI-powered precision medicine. It 

includes a full suite of patient-specific data that 

facilitates the predictive modeling of treatment 

success and drug suggestions. The dataset provides a 

simulation of the type of real-world clinical data that 

will come into a self-evolving LLM ecosystem to 

make adaptive decisions in healthcare. 

The dataset encompasses a number of important 

feature groups. The demographic data involves 

changes like Age, Gender, Weight (kg), Height (cm) 

and Body Mass Index (BMI), each of which are 

important aspects of the suitability and dosing of 

medication. The medical history packet indicates 

chronic problems (e.g., Hypertension), drug allergies 

(e.g., Penicillin, Sulfa), and hereditary diseases (e.g., 

Cystic Fibrosis, Sickle Cell Anemia), which are 

significant to know about patient susceptibility and 

contraindication. These fields (symptoms and 

diagnosis) explain presenting conditions and clinical 

determinations [4]. The proposed drug, dose, and 

treatment span are the features of treatment. Lastly, 

there are result measures like treatment efficacy, the 

occurrence of side effects, and time of healing in 

days which form a crucial guide of training and 

testing of the model. 

 

Figure 1: Label encode categorical columns 
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(Source: Google Colab) 

And before developing models, the data have 

been preprocessed to be ready for interpretation. The 

categorical variables were converted to ordinal by 

using label encoding, e.g., Gender, Chronic 

Conditions, Drug Allergies, Genetic Disorders, 

Diagnosis, Recommended Medication and 

Treatment Effectiveness. Label encoders were saved 

to harmonize the training and prediction stages [5]. 

Other cleaning actions implied the null value 

check, cleaning of doses formats, removal of 

unstructured fields (free-text symptom descriptions 

and unreliable durations) that could not be easily 

parsed. Such simplifications made sure that attention 

was paid to ordered, measurable characteristics that 

could be used during model training [6]. 

Such organization of the preprocessing pipeline 

allowed building a clean dataset readable by 

machine. It guaranteed the learning agent with 

proper, ready-to-use input variables that it needed to 

develop a strong-self evolving forecast model. 

IV. METHODOLOGY 

The innovative study is conducted through the 

modelling to develop a self-improving AI agent that 

can adjust itself in the treatment predictions using 

new patient information and feedback. It is based on 

the architecture which includes three main parts: a 

supervised learning agent, simulated evolutionary 

process, and an LLM-agent feedback system, 

simulating human-like thinking [7]. 

The central figure of the system is the 

TreatmentAgent, a class of machine learning devised 

with the Random Forest Classifier which, being a 

strong ensemble, is characterized to be more efficient 

with varying and medical information. The model is 

trained on structured patient features not containing 

outcome related fields like Recovery_Time_Days, 

Adverse_Reactions and descriptions like Symptoms, 

Dosage, and Duration that were not uniform or 

complete in a number of records. 

And to imitate self-evolution, the training was 

planned as a cycle. First, 70% of data were randomly 

chosen as training set and the agent was trained and 

tested on the 30% remaining data. Within more than 

five evolutionary cycles, new subsets of data (10% of 

the dataset in each cycle) were added to our training 

pool [8]. After each cycle, the model was retrained 

from scratch on the expanded dataset to simulate a 

real-time learning process, reflecting how an AI 

agent would evolve as new clinical data becomes 

available. 

The LLM-agent feedback system was designed 

as a rule-based simulation to mimic the decision-

making behavior of a collaborative language model 

in a clinical setting. It evaluates patient outcomes and 

returns one of three feedback types: 

• Refine Treatment Protocol (for adverse 

reactions and long recovery times), 

• Recommend Alternative Medication 

(for low treatment effectiveness), and 

• Retain Current Recommendation (for 

successful treatments). 

This layer introduces expert-like reinforcement, 

allowing the ecosystem to incorporate basic clinical 

logic, mimicking how a human specialist might 

refine or retain a given recommendation based on 

outcomes. 

The methodology relies on several assumptions: 

• Patient cases are independent and 

identically distributed. 

• Treatment effectiveness labels are 

accurate and reflect true clinical 

outcomes. 

• Introducing random data subsets in 

evolution cycles approximates real-time 

data acquisition. 

• The feedback logic, though simplistic, 

provides a valid proxy for human-in-

the-loop refinement. 

Together, these components form a closed-loop 

system where the TreatmentAgent learns from 

historical data, evolves with new inputs, and receives 

simulated feedback, thereby creating a prototype of a 

self-evolving LLM ecosystem for personalized 

precision medicine [9]. 

V. RESULTS AND DISCUSSION 

The results of this study demonstrate the potential 

of a self-evolving AI agent to incrementally improve 

treatment predictions through iterative learning and 

intelligent feedback. The findings are structured into 

key themes: exploratory data analysis, agent 

evolution, LLM feedback integration, and model 

performance evaluation. 
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A. Exploratory Data Analysis (EDA) 

Initial EDA uncovered significant insights into 

treatment effectiveness and patient variability. A 

count plot revealed a relatively balanced distribution 

of the three effectiveness categories—Effective, 

Neutral, and Ineffective—with a higher proportion of 

cases falling under the Effective class. A heatmap of 

numerical features showed notable correlations, 

particularly between BMI, age, and recovery time, 

suggesting these variables contribute meaningfully 

to treatment outcomes. 

 

Figure 2: Correlation Heatmap 

(Source: Google Colab) 

A bar plot of average recovery time by diagnosis 

highlighted variation in condition-specific recovery 

trends. For instance, patients diagnosed with 

inflammation showed shorter recovery periods 

compared to those with chronic infections. A boxplot 

examining BMI across treatment effectiveness 

categories revealed that patients with lower BMI 

tended to experience more effective outcomes, 

indicating that body composition may influence drug 

response. 

 

Figure 3: BMI Distribution by Treatment Effectiveness 

(Source: Google Colab) 

B. Initial and Evolving Agent Performance 

The first training cycle of the TreatmentAgent 

yielded a baseline accuracy of 0.27, reflecting 

moderate predictive power from the initial training 

data. However, as the agent underwent five 

additional evolution cycles, each incorporating 10% 

of new patient records, its performance improved, 

peaking at 0.41 accuracy. Although the gains were 

incremental, they validate the core hypothesis that 

exposing the model to fresh, diverse data improves 

predictive ability over time [10]. 
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Figure 4: Simulate Evolution 

(Source: Google Colab) 

This evolutionary behavior mimics a clinical 

learning environment, where physicians refine 

treatment decisions as they encounter more patient 

cases. The agent’s ability to generalize improved as 

its exposure to complex combinations of symptoms, 

conditions, and outcomes increased. 

C. LLM-Agent Feedback Distribution 

The simulated LLM-agent feedback mechanism 

categorized patient records based on treatment 

results and generated one of three suggestions. 

Analysis of the resulting distribution showed that 

513 cases were labeled Retain Current 

Recommendation, while 487 cases were flagged for 

Recommend Alternative Medication [11]. 

Interestingly, in this subset none of the records 

aroused the Refine Treatment Protocol label, 

meaning that adverse reactions, coupled with the 

long rate of recovery, were not as widespread. 

 

Figure 5: LLM-Agent Decision Summary 

(Source: Google Colab) 

This feedback system is a simplification of what 

LLMs would helpful suggest to clinicians--

explainable support that rests on quantitative 

measures of outcomes. The logic is simple but it 

shows what symbolic reasoning combined with 

statistical learning can be. 

D. Interpretation and Implications 

The gradual and steady increase in the accuracy 

of predictions throughout evolution cycles indicates 

learning of a newly presented data by the system. 

Although the peak performance of 41% might not yet 

be ready to be used in practice, it illustrates the 

potential of a system to learn to self-optimise, which 

is a crucial milestone on the road to intelligent, 

adaptable healthcare. 

The LLM-agent tier has potential as a shared 

decision support tool that can stake second-opinion 

propositions based on patient-specific metrics. This 

hybrid architecture shows the movement away from 

hard-and-fast AI modeling and toward learning 

ecosystems, which in turn lead to the basis of 

scalable real-time precision medicine tools. 

VI. IMPLICATIONS AND INNOVATION 

The invention of a self-evolving AI agent to 

precision medicine has huge implications to come 

where the health care system is concerned. Existing 

clinical-decision-support systems rely on training 

that is inflexible enough to cope with new patient 

types, or newly discovered medical findings. The 

present study shows the promise of an unceasing 

learning ecosystem, in which new data and outcome 

data modifications can be integrated into its 

predictive model in real-world clinical environments. 

One of the innovations is real-time 

personalization that includes adjusting the 

recommendations on treatment to individual patient 

responses. Incorporation of a feedback loop, which is 

simulated in this case using rule-based choices by the 

LLM-agents, the adaptive guidance is able to 

generate based on patient diversity and treatment 

variations [12]. This increases validity of predictions, 

an essential aspect in minimizing prescription 

mistakes and maximizing recovery results. 

The suggested prototype will establish formative 

premises of dynamic, LLM-driven ecosystems 

instead of their static form. It showcases the way 

reinforcement-style retraining with the help of 
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symbolic feedback can facilitate collaborative 

intelligence among the AI agents [13]. On a practical 

level, real-time interactions with electronic health 

records, genomic databases, as well as clinical 

guidelines would be possible, ensuring that patient 

care was continuously optimized by such systems. 

The study represents a paradigm change to 

responsible, self-adaptive AI ecosystems, reusing 

how machine intelligence can support experience 

and proactive prosody. 

VII. LIMITATIONS AND FUTURE WORK 

While the prototype demonstrates promising 

results, it is limited by dataset size, missing values, 

and the simplicity of the rule-based LLM-agent 

simulator. The dataset's moderate imbalance and 

absence of real-time patient data constrain model 

generalization and clinical applicability. 

Such deep learning models like a Transformer or 

LSTM-based architecture should be considered in 

future works to enable a richer pattern recognition. 

The addition of real clinical feedback, reinforcement 

learning and federated learning can enhance 

scalability, privacy and adaptiveness. A complete 

full-service multi-agent system using LLM is still a 

direction of the future. 

VIII. CONCLUSION 

This research introduces a self-evolving AI 

ecosystem aimed at enhancing precision medicine 

through dynamic learning and collaborative 

intelligence. Using a structured personalized 

medication dataset, the study demonstrated how a 

Random Forest–based agent can incrementally 

improve treatment predictions by evolving through 

exposure to new patient data. Accuracy 

improvements from 27% to 41% across evolution 

cycles confirm the feasibility of adaptive learning in 

clinical contexts. 

The integration of a rule-based LLM-agent 

feedback loop exemplifies how symbolic reasoning 

can complement statistical models, offering context-

aware recommendations. This hybrid framework 

mimics real-world clinical decision-making, where 

ongoing patient outcomes refine future treatments. 

The results highlight the potential of moving 

beyond static machine learning models toward self-

improving AI systems capable of real-time 

personalization. Although limited by data 

constraints, the system provides a scalable 

foundation for future LLM-driven healthcare 

applications. Overall, this work contributes to a 

growing body of research that envisions AI as a 

continuously evolving partner in personalized 

medicine. 
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