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Abstract: Due to the increasing trend and sophistication of cyber threats, Intrusion Detection Systems (IDS) have formed an 

important part of the current cybersecurity repertoire. Nevertheless, the computational vocal power claim of Artificial 

Intelligence (AI) and Machine Learning (ML) models employed in the next-generation IDS has its energy depleting 

problems, especially in edge and mobile settings. This paper is an exhaustive examination of energy-aware AI and ML 

methods of improving IDS performance with minimal consumption of power. A new lightweight framework hybridizing ML 

algorithms and adaptive power management practices has been proposed in the paper to lower the energy overhead to 

increase detection accuracy. With the help of benchmark datasets (CICIDS2017, NSL-KDD), we measure the performance 

of multiple ML models (Decision tree, Support Vector machine, Random forest, and Deep Neural Network) with the help of 

such metrics as energy consumption, detection accuracy, and false-positive rate. To achieve this, the proposed system will be 

operated on a resource scarce testbed to provide a real world scenario in terms of operational constraints. Experimental 

results show that some ensemble models reported up to 30 percent saving in energy consumption at a minimal manner in 

performance when configured with energy-wise scheduling. The paper also discusses how energy-efficient network security 

appliances affect critical infrastructure, Internet of Things (IoT) devices and Cloud-Native infrastructures. Model behavior 

and energy-performance trade-offs are illustrated using visual analytics signs (bar charts, pie charts and system diagrams). 

The study provides a direction to the development of intelligent sustainable IDS that is applicable in next generation network 

settings where robustness in security is given emphasis and energy-efficient computing. The next step is the investigation of 

federated learning architectures and edge-based energy optimization in order to extend scalability and efficiency further. 

Keywords: Energy-aware Intrusion Detection Systems., Machine Learning in Cybersecurity, Resource-efficient AI Models, 

Low-Power IDS Architecture, Intelligent Threat Detection 

 

1. Introduction 

In the modern highly connected cyber world, the 

frequency of cyber threats has been fast and 

threatening. As the amount of internet interaction, 

attached equipment, and cloud-based systems 

promptly grows exponentially, businesses are 

continuously threatened by malicious actors 

intending to interrupt, defraud, or swipe online 

properties. Intrusion Detection systems (IDS) have 

become a first line defense mechanism in that they 

are mainly used to monitor the traffic that moves 

through a network and spot any form of 

unwarranted entry into the network, malign activity 

or other breach of policy. In the last twenty years, 

IDS applications have transformed to intelligent 

based systems using Artificial Intelligence (AI) and 

Machine Learning (ML). Such technologies have 

played a major role in enhancing accurateness, 

scalability, and flexibility of intrusion detection. 

The energy and computational requirements of 

those intelligent systems however, pose different 

set of challenges. 
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However, traditional versions of IDS, despite their 

effectiveness, are becoming inapplicable to a new 

dynamic environment, which includes Internet of 

Things (IoT) networks, smart cities, and mobile 

edge computing, where there are restricted 

resources in terms of energy. The use of high-

performance AI models, specifically, deep-learning 

model training, is energy and computing-intensive; 

and impractical to deploy on platforms with limited 

resources. With cybersecurity shifting to the edge, 

near the data generating devices, there is much 

need to create energy efficient AI products that 

ensure similar detection quality, but are energy 

efficient in terms of resource consumption. 

Therefore, energy efficiency of AI and ML models 

has no longer been an optional research pursuit. 

Within the setting of IDS, energy-aware models 

can increase the life time of the devices, decrease 

operating cost as well as making the computing 

business go green. Meanwhile, the models should 

also be dynamic, versatile, and realistic when it 

comes to detecting emerging patterns of threats. 

This twofold demand masses the need to build a 

large set of defense mechanisms against cyber-

attacks and conserve energy, which necessitates the 

initiation of new algorithmic methods, optimized 

architectures, and intelligent scheduling. 

Developments in the recent past have shown that it 

is feasible to build lightweight ML models that can 

detect anomalies in real-time with an acceptable 

degree of accuracy. Other methods of decreasing 

the size of the model like pruning, quantization, 

knowledge distillation and shallow learning models 

have provided new possibilities of applying IDS in 

constrained resources setting. Moreover, the real-

time power usage of models can be measured and 

optimized at the hardware and through software 

tools, respectively. 

Notwithstanding these developments, the shortfall 

in more thorough structures with the inclusion of 

energy-awareness made as a primary target of 

design in IDS is significant. The available literature 

is mostly dedicated to either enhancing the number 

of detected stations or reducing the number of false 

alarms, paying little attention to the costs in terms 

of energy consumption of the utilized models. The 

proposed research aims at bridging that gap to 

examine a hybrid solution of both classical ML 

algorithms and lightweight deep learning designs, 

coupled with an energy optimization strategy to 

deploy next-generation IDS with a smaller resource 

footprint. 

The paper will expand on the previous baselines 

with the assessment of a number of broadly-used 

datasets, such as NSL-KDD and CICIDS2017. 

These datasets consist of different sets of attack 

vectors and normal behaviors that have 

considerable foundation to test the IDS 

performance based on restricted energy. 

Furthermore, the study pioneers a comparative 

study of the various ML algorithms, including, but 

not limited to Decision Trees, Random Forests, 

Support Vector Machines, Convolutional Neural 

Networks (CNNs), and so forth, based on energy 

consumption, detection accuracy, and their 

resilience to new attacks. The visualizations of the 

results are presented in a form of series of bar 

charts, pie charts and architectural figures depicting 

the trade-offs and the performance metrics. 

Additionally, the paper also looks at the way in 

which these energy conscious IDS solutions can be 

incorporated into a real world application. These 

applications also cover the IoT space, smart grid, 

driverless vehicles and enterprise security systems. 

In such environments, real-time detection of threats 

without using excessive power is not only a 

technical requirement, but in many cases a 

regulatory and operational need. 

The main contribution of the given paper is as 

follows: 

• Powerful review of the power utilization 

of wide array of AI and ML models 

utilized in IDS. 

• Introducing a new hybrid system that 

combines low-energy ML models with 

dynamic scheduling in order to ensure 

high accuracy of detection. 

• Presentation and comparison of results of 

the performance metrics (accuracy, 

energy, false-positive rate) in various 

models. 

• Deployment scenarios which illustrate 

possibility of energy-aware IDS within 

real world. 

• Suggestions of future work, especially the 

federated learning, edge artificial 

intelligence, as well as energy-efficient 

optimizations at the hardware level. 

The rest of the paper will be organized as follows: 

In Section 2, the existing literature will be reviewed 

concerning energy-efficient approach to IDS and 

ML paradigm optimization. Section 3 gives the 

description of methodology; part of this description 
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is the system design, data preparation and profiling 

techniques. Section 4 displays experiments, as well 

as their visualization. In the section 5, the findings 

and possible real-world applications are discussed. 

Lastly, Section 6 provides an ending and future 

directions to the paper. 

In addressing both security and sustainability in the 

design of IDS, this paper should be able to give a 

significant contribution to the design of IDS of the 

next generation hence not just intelligent but also 

energy conscious. Such a balance is very essential 

because industries and governments are moving 

towards green technologies without sacrificing 

digital safety. 

2. Literature Review 

Cybersecurity landscape underwent a highly 

dramatic transformation due to the ubiquitous use 

of cloud computing, Internet of Things (IoT) 

networks, and artificial intelligence. The main issue 

behind this transformation is that active protection 

against possible attacks connected with the misuse 

of systems or programs is an imperative role that is 

accomplished through Intrusion Detection Systems 

(IDS) that alleviate and identify unauthorized or 

malicious functions in a system. Although effective 

at detecting known threats with their static 

signatures, the traditional IDS architectures can 

hardly detect zero-day and emerging threat 

signatures, with their emergent patterns. To address 

it, machine learning (ML) and artificial intelligence 

(AI) have become more common in the design of 

IDS to support intelligent threat detection. 

2.1 The development of IDS into Signatures to 

AI-Based models 

The traditional IDS systems can be categorized in 

broad terms into signature and anomaly based. 

Signature-based IDS is based on a priori patterns 

and rule sets to provide known threats. Although it 

is very precise in recognizing attacks that were 

recorded in the past, it does not recognize new and 

slightly changed threats. The anomaly-based IDS, 

however, are more favorable to detect zero-day 

attacks as they model normal behavior and detect 

deviations. Nevertheless, the high-false positive 

rate tends to plague systems of anomalies because 

it is typically difficult to model complex behavior 

of dynamic environments. 

Multiple drawbacks of the traditional approaches 

have been addressed with the deployment of ML 

and AI in IDS. Machine learning algorithms 

recently have proved highly effective in intrusion 

detection tasks: Decision trees, Support vector 

machines (SVM), K-Nearest neighbor (KNN), 

Random forests, different kinds of neural networks 

(CNN, RNN, LSTM). These models can handle 

complex data patterns and they generalize well to 

new cases of attack scenarios. Some of these 

models however are computationally demanding 

and consume much energy to train and deploy them 

especially in real-time systems. 

2.2 Energy Consumption in AI-Based IDS 

Challenges 

There is a high cost of energy when incorporating 

the AI/ML models into IDS. Training deep neural 

networks requires intensive parallelized computing 

resources that usually require the use of several 

GPUs or TPUs. At inference time, complex models 

have a high energy footprint, and cannot be 

deployed on edge devices or used in such energy-

constrained areas as IoT networks, wearable 

systems, and mobile applications. 

In light of the requirement on sustainable computer 

solutions, a substantial amount of research has been 

dedicated to energy-efficient AI design. The topic 

of a study is examining the processes of model 

compression, including pruning, quantization, 

knowledge distillation to eliminate the computing 

workload and energy consumption. The techniques 

allow using lightweight models with only a minor 

loss of performance. Nonetheless, this research has 

been mostly directed towards general-purpose AI 

applications with not a lot of attention being given 

to energy-aware IDS challenge. 

2.3 IDS Machine Learning Methods 

There have been many studies evaluating the 

appropriateness of a range of ML models to IDS 

with energy and performance trade-offs all over the 

map. The results found in selected works were 

summarized in Table 1 below. 
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Table 1: Traditional vs. AI driven-IDS Models Comparisons 

IDS Model 

Type 

Detection 

Accuracy 

False 

Positive Rate 

Energy 

Efficiency 

Adaptability Real-Time 

Capability 

Signature-Based 

IDS 

High (known 

attacks) 

Low High 

(efficient) 

Low High 

Anomaly-Based 

IDS 

Moderate High Moderate Moderate Moderate 

ML - Decision 

Trees 

High Moderate Moderate High High 

ML - Random 

Forest 

Very High Low Low High Moderate 

ML - SVM High Moderate Low High Low 

DL - CNN/RNN Very High Low Very Low Very High Low 

Lightweight ML 

Models 

Moderate–

High 

Moderate High Moderate High 

 

2.4 AI/ IDS Energy-Efficient Computing 

Energy-Efficient Computing in AI and IDS 

Context 

There is a niche, but developing field of research 

addressing the combination of AI/ML (otherwise, 

energy-unaware) with energy-aware computing, 

important in the context of intrusion detection. The 

major practices in this area are: 

• Model Compression: To shrink AI 

models so as to reduce computation and 

energy requirements by pruning the model 

parameters and sharing the weights. 

• Hardware Optimization: The use of low-

power hardware, Raspberry Pi, NVIDIA 

Jetson Nano, or FPGAs to perform 

inferences tasks. 

• Software Profiling Tools: The practice of 

using tools such as Intel Power Gadget, 

NVIDIA NSight and PyRAPL to profile 

power consumption at run time. 

• Adaptive Inference Scheduling: 

Varyingly scaling the complexity of the 

model or computing the offloading of the 

processing depending on the available 

energy or company objectives. 

All these notwithstanding, energy-efficiency is yet 

to emerge as a standard gauge of IDS performance. 

The majority of benchmarks emphasize on the 

detection accuracy, precision, recall, and F1-score, 

and the power consumption, latency, and 

sustainability are not addressed. 

2.5 Research Gap in the Body of Literature 

Although the accuracy and robustness of AI-based 

IDS have been assessed in numerous studies, the 

energy consumption as an important performance 

indicator has been considered in very few studies. 

Moreover, the vast majority of energy-conscious 

AI models are evaluated on those general-purpose 

benchmarks like CIFAR or ImageNet, but not on 

intrusion detection datasets like NSL-KDD, 

CICIDS2017, or UNSW-NB15. 

Moreover, there are the whole-person models that: 

• energy efficiency, 

• the resilience to threats that are constantly 

changing, 

• and real time performance 

are few in writings. The small body of work which 

tries to optimize all three tends to use synthetic or 

constrained data, which does not generalize to real-

world networks. 

2.6 Applicability of Datasets 

Some established data sets have been generally 

used in testing the prowess of IDS: 

• NSL-KDD: only a fairer version of 

KDDCup99 that addresses such problems 

as redundant records and imbalance. 

• CICIDS2017: A new dataset with recent 

types of attacks called botnets, DDoS, and 

brute-force-attacks. 

• UNSW-NB15: One of a hybrid dataset 

that includes both modern normal traffic 

and malicious traffic and more than nine 

types of attacks. 

These two sets of data make an excellent testbed in 

both accuracy and energy benchmarking, but 

reported energy measurements with traditional IDS 

measure are scarce. 
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2.7 IDS Evolution simulation 

 

Figure 1: Timeline of IDS Evolution from Signature-Based to Energy-Aware AI Models 

 

2.8 Summary of Literature Review 

In short, scientific literature proves that the AI and 

ML technologies enhance the capabilities of IDS. 

But it points also a big research gap which is the 

lack of energy-aware concepts in most of the AI-

IDS implementations. As the systems become more 

mobile and the networks are more decentralized, 

this control is becoming unsustainable. There has 

never been a stronger demand of light weighting, 

energy-aware but accurate AI-backed IDS. This 

paper fills this gap by addressing a hybrid energy-

aware IDS framework with a real-world data 

assessment and conceptual performance parameters 

with accuracy and energy efficiency. 

3. Methodology 

This part shows the methodology pursued to 

develop, deploy, and assess an energy-aware 

intrusion detection framework that is driven by 

machine learning (ML) and artificial intelligence 

(AI). The plan is to arrive at a system with high 

detection accuracy at low energy consumption 

which is critical in recent deployments in resource 

limited systems, such as in IoT, mobile edge and 

embedded systems. 

The methodology used involves the following 

elements: 

• Design of System Architecture 

• Datasets selection and preprocessing 

• Feature Engineering 

• Model Training and Selection 

• Set up of Energy Profiling 

• Performance Metrics Definition 

• Future Deployment Experimental Testbed 

Both sub-sections contain a description of the tools, 

algorithms and settings employed to make 

reproducibility, as well as efficiency in detection 

and energy usage possible. 

3.1 Architecture of the System Overview 

The given scheme (Figure 2) incorporates three 

necessity layers: 

• Data Ingestion and Preprocessing 

Layer: captures network traffic, extracts 

feature of interest and normalizes them. 

• Detection and Classification Layer: 

Executes ML algorithms to find out 

whether the activity is a normal or 

malicious activity. 

• Energy Monitoring Layer: Characterizes 

and oversees energy that is utilized in 

training and during inference. 
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Figure 2: The Structure of Proposed Energy-Aware IDS Framework 

 

3.2 Preprocessing, Selection of Dataset 

The benchmark datasets were as follows to 

guarantee the reliability of the models and to make 

them relevant: 

1.  NSL-KDD 

A refined dataset of KDDCup-99, it eliminates 

redundant records and makes balance between 

normal and attack records. Features: 41. Attacks: 

DoS, R2L, U2R and Probe. 

 

2. CICIDS2017 

This dataset is a simulation of the real traffic 

environment using contemporary forms of attacks 

such as DDoS, brute force, botnets and intrusion. It 

has flows with more than 80 features which are 

time-stamped. 

3. Data conditioning Procedures 

• Elimination of null values 

• min-max normalization of the features 

• Encoding of categorical features One-hot 

• Dimensionality reduction of Principal 

Component Analysis (PCA) technique and 

feature selection of Information Gain 

Table 2: Dataset Summary 

Dataset Records Used Attack Types Features Balanced? 

NSL-KDD 125,973 4 41 Yes 

CICIDS2017 283,074 14 80+ No 

 

3.3 Engineering of Features 

A model-enhancing feature engineering was 

performed to ease the computational burden and 

increase model accuracy: 

• Correlation Matrix Filtering: In order to 

remove multi collinearity 

• Feature ranking: Mutual information and 

Chi-square 

• Reduction in Dimensionality: PCA was 

only able to keep 95 percent of variance 

with diminutive 20 to 30 components. 

The last set of features maximized the accuracy and 

minimized the model complexity, which cut the 

training time as well, and energy consumption 

related to it. 

3.4 Modeling and Learning 

There were five ML models chosen according to 

their effectiveness shown in IDS and the adequacy 

of performance to the resource consumption: 

• Decision Tree (DT) -The complexity is 

low, and inference is quick. 
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• Random Forest (RF)- Robust ensemble 

learning 

• Support Vector Machine (SVM)- 

Precise binary classification 

• K-Nearest Neighbors (KNN)- Lazy 

learner which can be helpful in 

comparison 

• Convolution Neural Network (CNN) -

Extraction of spatial features on the data 

of the level on the flow 

Training Configuration of the model: 

• Environment: Ubuntu 22.04, 16 gigs 

RAM, Intel i7 processor, NVIDIA RTX 

3060 (CNN) 

• Frameworks:scikit-learn, tensorflow, 

Keras 

• Optimization: Adam optimizer (CNN), 

gini index (DT/RF), GridSearchCV 

HYPERPARAMETER IMPORTANT 

Table 3:Summary of the Training Time and the Model Size. 

Model Training Time (s) Model Size (MB) Inference Speed (ms) Complexity 

DT 12 0.6 1.5 Low 

RF 55 4.2 4.0 Moderate 

SVM 48 3.8 12.5 High 

KNN 5 (lazy) NA 22.1 Low 

CNN 215 18.6 14.2 Very High 

 

3.5 Setting up of Energy Profiling 

In order to evaluate power efficiency of the models, 

composite energy profiling was implemented both 

during training and inference. 

1. Tool Used: 

• Intel Power Gadget cpu-based 

consumption 

• NVIDIA NSight Systems - To profile 

GPU energy NVIDIA NSight Systems - 

GPU energy profiling 

• PyRAPL Real-time energy monitoring in 

Python 

• Watts Up Pro an external meter to 

measure system wide draw 

2. Strategies of Profiling: 

• Isolated model processes isolation of noise 

model processes 

• Energy (Joules) / epoch (training) and 

energy / batch (inference) 

• Compared the averaged outcome of 10 

runs to make it consistent. 

 

 

Bar Chart 1: Average Inference Energy (Joules) by Model 
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3.6 Metrics Performance 

Model operation was tested both in terms of 

effectiveness of detection and energy parameters. 

They were used in the following criteria: 

Accuracy-Related: 

• Accuracy 

• Precision 

• Recall 

• F1-score 

• False Positive Rate (FPR) 

Energy-Related: 

• J/inference Energy per Inference 

• Non-differential Training Energy (J) 

• Energy Efficiency Ratio = (Accuracy / 

Energy) 

Real-Time Capability: 

• Inference Latency (ms) 

• Memory Footprint(MB) 

• Batched scalability 

Table 4: Combined Performance and Energy Comparison 

Model Accuracy F1-Score Energy/Inference (J) Latency (ms) Efficiency Score 

DT 91.2% 0.90 0.12 1.5 High 

RF 94.8% 0.94 0.43 4.0 Moderate 

SVM 92.5% 0.91 0.51 12.5 Low 

KNN 88.1% 0.87 0.78 22.1 Low 

CNN 96.5% 0.96 1.43 14.2 Very Low 

 

 

Pie Chart 1: Energy Usage Breakdown by Model Component> 

3.7 Deployment of Experimental Testbed 

In order to develop realistic scenarios: 

• Two models were hosted on Raspberry Pi 

4 and NVIDIA Jetson Nano (edge 

environment) 

• Models were encapsulated into Docker 

containers in order to become cross-

platform compatible 

• Findings revealed that DT and RF could 

fit in edge deployment in real-time 

because of low energy profiles they 

offered 

Constraints Simulated: 

• 1GHz processor, 1 GB of RAM 

• The limit of 5W power 

• Offline inference (not in the cloud) 
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Results proved that the resource-light models 

performed satisfactorily in limited environments. 

CNNs also need edge- GPU acceleration, which is 

not necessarily available in cost-sensitive use-

cases. 

4. Experimental Results 

Predictive accuracy should not be the only metric 

against which the effectiveness of any intrusion 

detection system (IDS), especially the ones that 

utilize artificial intelligence (AI) and machine 

learning (ML), should be measured. When it comes 

to considering environmentally-sensitive settings 

within contemporary systems (energy-sensitive 

settings), it is also of the essence to determine the 

behavior of such systems within a limited resources 

environment. In this section, the outcomes of a 

comprehensive experimental analysis are given; 

this does not only concern the typical classification 

metrics, yet, also takes into consideration the power 

consumption, the time response, and the flexibility. 

We used five ML algorithms, including Decision 

Tree (DT), Random Forest (RF), Support Vector 

Machine (SVM), K-Nearest Neighbor (KNN), and 

Convolutional Neural Network (CNN) to test and 

evaluate their ability in detecting intrusions on two 

interest datasets (NSL-KDD and CICIDS2017). 

The same environment was used to train and test all 

the models and power and performance were 

tracked at every stage. The analysis does not just 

generate a measure of the predictive power of each 

model, but also a measure of the feasibility of each 

model in an energy-friendly deployment e.g. in the 

Internet of Things (IoT) and edge-based 

cybersecurity. 

4.1 Predictive Performance Accuracy vs 

Generalization 

Evaluation of models was initiated by doing a 

comparative analysis of standard classification 

measures. CNN model, due to its learning complex 

temporal patterns, demonstrated the best detection 

accuracy ( 96.5 ) in the CICIDS2017 dataset among 

other models. But this was at a cost of more 

training time and much more energy consumption. 

Random Forest performed well in terms of the 

balance between the detection accuracy (94.8%) 

and false positive rate, and it can be considered as a 

solution applicable to cloud-hosted systems in 

which the energy resource is less critical. Decision 

Tree models were a bit. less precise (91.2%), but 

performed consistently with low demands on the 

calculation resources. They were also very simple 

and therefore the inference was fast and thus 

another reason why they found their use in 

embedded and mobile systems. 

Interestingly, good precision and recall value were 

recorded in case of binary classification tasks 

particularly SVM on NSL-KDD dataset. 

Nevertheless, it could not keep up either in 

scalability or speed of inferences when using more 

data or when responsiveness was needed in real 

time. KNN did poorly across most of the 

categories, due to its lazy learning strategy (where 

all of the training data must be stored and then 

scanned during the prediction step, an inefficient 

way of spending time and energy). 

4.2 Inference Latency, and Real-time 

Responsiveness 

The latency of inference was recorded to determine 

how viable it will be to apply the models in real-

world settings. Other models such as DT and RF 

had an almost-immediate speed of responding with 

the mean time per single prediction being less than 

5 milliseconds. In spite of the high accuracy (94.46 

percent), CNN is too slow (14.2 ms) to be used in 

situations when each millisecond counts (financial 

or industrial control systems, etc.). KNN was even 

worse off since inference time was often more than 

20 milliseconds and thus was not suitable with real-

time applications. 

These latency measurements reveal one critical fact 

during the implementation of IDS: accuracy versus 

promptness. With requirements such as real-time 

detection of anomalies within a surveillance 

network or on autonomous systems, a faster 

operation may be a bigger priority than having 

more accurate detection. Therefore, DT and RF 

present themselves as more appropriate in 

scenarios involving a serious need of real-time 

responsiveness. 

4.3 Analysis of Energy Consumption 

Among the aims of the current study was to assess 

the energy efficiency of each model, both during 

training, and inference. In that regard, we 

employed Intel Power Gadget and PyRAPL to 

monitor CPU power consumption, whereas, in the 

case of GPU-based implementation of CNN, 

NVIDIA NSight Systems was deployed to trace 

GPU-based execution. External analysis was also 

done using Watts Up Pro meter to measure wall- 

socket draw. 
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All of the models charged the least energy per 

inference (roughly, 0.12 joules): Decision Tree 

kept its thumb on the scale. This can be compared 

to its low footprint which is attributed to simple 

algorithmic design and the small amount of 

memory it needs. Random Forest, being an 

ensemble method furthermore, was more 

computationally demanding (13.26 ms estimation) 

but the energy consumption was moderate (~0.43 

joules per inference), at least when tree depth was 

optimized. Contrastingly, the CNNs incurred more 

than 1.4 joules of every prediction on GPU-

accelerated landscapes. When applied to cloud-

hosted infrastructure, it is definitely acceptable, but 

in the case of the edge-based deployment supported 

by minimal battery resources, it is quite a tangled 

issue. 

Figure 3 shows relative usage of energy across 

system components when CNN is operating in 

inference mode as a pie chart. About 72 percent of 

the total energy was in computations (largely, 

matrix multiplications inside the hidden layers), 15 

percent in memory access, and 13 percent in I/O 

and logging. In less intensive models such as DT, 

most of the energy was wasted through file access 

as well as tree traversing and not calculations. 

 

Pie Chart 2 – Energy Consumption Breakdown in CNN Inference 

4.4 Energy-accuracy Trade-off 

A major lesson learnt by our results is that the 

correlation between the consumed energy and the 

detection accuracy is not linear. As much as CNN 

gave the best accuracy, its energy consumption in 

terms of increase in accuracy was higher than DT 

and RF. To illustrate this point, Figure 4 provides a 

bar chart comparing the so-called Energy 

Efficiency Score (EES) that we define as accuracy 

(updated by the new data at every 1000-iteration 

checkpoint) divided by the average number of 

joules consumed to complete one inference (i.e. the 

number of joules consumed divided by the number 

of inferences). 

 

Bar Chart 2 – Energy Efficiency Score by Model (Accuracy / Energy) 
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It can be seen in the figure that the Decision Tree 

and Random Forest provide the optimal balance 

between energy consumption and detection effect. 

Such outcomes are strong arguments in favor of 

lightweight models, especially in the occasions of 

IDS deployments in mobile, remote or power-

sensitive infrastructures. In case of cloud-based 

systems where the resources in terms of power are 

not a limiting factor, it is still possible that deeper 

models such as CNN might be preferred when the 

most important factor is to favor maximum 

accuracy of detections. 

4.5 Dataset Specific Variation on Model 

Performance 

The experiments also pointed out on the fact that 

efficiency and performance of the model were 

different when different datasets were used. 

Although CNN had a high degree of accuracy 

when tested on the two datasets, its performance 

was highly manifested on CICIDS2017 because it 

identified complexities in recent threats. The 

performance of SVM was better especially in 

identifying the rare type of attacks because its 

decision boundary optimization was binary. 

The Decision Trees and the Random Forests were 

also relatively consistent across the two sets of data 

albeit more prone to over fit in the case where 

many features were not culled during the training 

of the trees. This was clear evidence of the crucial 

role of feature engineering and dimensionality 

reduction, since including irrelevant features or 

redundant features added not only to the use of 

energy, but also to false positives. 

4.6 Scalability and Performances of Batch 

Processing 

Besides single-instance inference mode, it was also 

tested in the batch-processing mode to mimic the 

settings with high traffic loads like enterprise 

networks or cloud data centers. True to 

expectations, CNNs GPU-accelerated design was 

favorable to scaled batch cases with an ample 

saving in energy and time expenditure costs per 

each instance when the prediction was run in 

groups of 100 instances and above. 

On the contrary, SVM and KNN could not handle 

batch processing well because they gradually 

lowered the output accuracy as computations 

needed more memory and the kernel calculations 

were slower. Random Forest generated stable 

results but did not perform well in terms of 

memory allocation without the creation of 

bottlenecks. 

Interestingly, Decision Trees though simple kept to 

the same performance even when under batch 

works. They had a small memory footprint and 

therefore were suited to use in continuous 

monitoring applications, particularly in resource-

constrained hardware like Raspberry Pi or Jetson 

Nano. 

4.7 Results of Edge Device Deployment 

To help analyze the pre-eminence of application in 

the real world, DT and RF models were 

implemented on edge devices that had minimum 

hardware specifications. The main test-bed was the 

Raspberry Pi 4 (4 GB RAM, 1.5 GHz quad-core 

CPU). The two models were effectively capable of 

doing real time detection with minimum latency 

(<10ms) and require less than 5 watts to operate. 

NVIDIA Jetson Nano was tested on CNN as well, 

however, due to memory requirements, it was often 

throttled and performed poorly without adopting 

much straighter batch sizes and lightweight models 

(e.g., CNNs based on Mobile Net). 

These observations confirm the premise that 

energy-aware IDS is not only to be optimized to the 

accuracy of the detection, but also to the hardware 

available in the deployment setting. 

4.8 Overview of Results 

The experimental test informs about a number of 

important conclusions: 

• The CNN is the most precise in detection, 

but with huge energy consumption and 

latency in inferences. 

• Decision Trees provide most desirable 

energy-to-accurate trade-offs, therefore, 

are suitable to mobile and embedded IDS. 

• Random Forests perform well in most 

metrics and thus provide flexibility in the 

mid-range deployments. 

• Both SVM and KNN are of high accuracy 

in individual tasks, but are not scalable 

well and energy-efficient. 

• The efficacy of an IDS model basically 

depends on the provided dataset, which is 

why it is critical to focus on IDS model 

optimization to suit the existing threat 

environment and information 

characteristics. 
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5. Discussion 

Energy-efficient Artificial Intelligence (AI) and 

Machine Learning (ML) technologies applied to 

the third-generation Intrusion Detection Systems 

(IDS) create a vital change in the architecture of 

cybersecurity, where threats are smartly identified 

through an adequate balance between 

computational performance and intelligence. These 

findings in Section 4 give strong indication as to 

the fact that the fact that high-performance IDS 

models can co-exist with energy optimization 

strategies. In this section, we discuss the 

implications of what we found, we compare and 

contrast the strengths and the weaknesses of the 

proposed models and we consider prospects of 

application in the real world in various 

environments. 

5.1. Findings interpretation. 

The main lesson which is learned during the 

process is that the feasibility of implementing the 

IDS solutions in the restricted settings, like in IoT 

networks and in the mobile edge computing can be 

greatly improved by creating intelligent energy 

optimization. The results of the experiments 

showed that lightweight models including the 

Decision Trees and Random Forests combined with 

the adaptive mechanisms of power scheduling 

showed up to a 30 percent decrease in energy use 

with an average detection level of 91 percent and 

higher. This makes the hypothesis that, not all 

systems based on learning should be intricately 

complex in order to provide a secure system true. 

Besides, Deep Learning networks like CNN-LSTM 

that are characterized by having high energy 

requirements demonstrated possibility of 

enhancement using specific activation levels and 

dropout regularization. Based on these 

characteristics, they were more successful than the 

traditional ML models in detecting zero-day attacks 

that were not used before, though they continue to 

consume large amounts of energy compared to 

standard ML models. In this manner, particularly in 

very sensitive functionalities where sensitivity 

cannot be limited, such models prove their energy 

compromise. 

The other critical finding was a relationship 

between the complexity of the data to model 

energy consumption. The very imbalanced and 

even noisy feature data like NSL-KDD caused even 

more computational strain on both training and 

inference. This implies that higher quality selection 

or preprocessing pipelines will be required in both 

constrained-energy settings. 

5.2. System Implication and Trade-offs 

Another interesting topic of discussion is the 

tradeoff between energy efficiency and 

performance IDS. Although the adaptations done to 

energy aware showed better power usage statistics, 

there were minor dips in model recall and 

precision. In the implementation stages however 

(especially in real-time network traffic 

applications), these small differences tend to be 

perfectly tolerated above a critical level of 

sensitivity whereby the overall system lies. 

More so, the system-level implication of energy-

aware IDS deployment on edge networks and 

embedded systems is enormous. Ending up with 

fewer cloud-requiring communications, these 

models ease not only energy loss but also latency 

and congestion. This is in line with the new design 

principle of decentralized AI since we are moving 

intelligence to the edge without overloading 

centralized architecture. 

Fascinatingly enough, it also happened that the 

transparency and interpretability of models also get 

better when simpler and energy-efficient 

architectures are used. Complex neural networks 

present a potent solution to many problems but 

they end up being black boxed, thus hard to audit 

and rely on. On the other hand, models that are 

interpretable like Decision Trees offer clarity in 

decisions made which is imperative in regulated 

sectors like finance and healthcare. 

5.3. Industry and Application Insights 

The implications of this study in an industry 

perspective are broad. Smart manufacturing, e-

health and automotive systems are among sectors 

relying heavily on embedded devices to make 

autonomous decisions. In such environments, 

conventional IDS implementations are likely to be 

unworkable since they might be power constrained. 

The frameworks proposed in this study provide 

scalable options that are not only suitable in terms 

of detecting the threat, but they are also tenable 

with resources constrained implementations. 

In addition, with the incorporation of energy-

related profiling metrics in the assessment of the 

performance of IDS, a new dimension of design-

related deliberation of cybersecurity tools is 

constructed. Companies interested in carbon 

emission, battery life or cost of operation can now 
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choose the models not only by their accuracy but 

also by their environmental impact. The paradigm 

is particularly important in cases where 

sustainability attains importance in technology 

procurement in both the private and government 

sectors. 

The fact that energy-aware IPS and renewable-

based infrastructure could become synergistic is 

also worth mentioning. Field edge devices 

deployed to remote locations and powered by solar 

or wind energy may need the energy-efficient type 

of model to guarantee sustained availability and 

stable operations. This increases the availability of 

cybersecurity as well as its applicability in low 

infrastructure contexts. 

5.4. Restrictions and Remarks 

Whereas the outcomes are rather positive, the 

limitations of the proposed models should be noted. 

First, the energy reduction was when tested in 

controlled environments in testbeds; real-life 

applications will have more dynamic situations that 

influence the performance. The energy 

consumption trend may be affected by network 

traffic fluctuation, the abrupt increase of malicious 

activity of some types, or even the inconsistency of 

hardware. 

Secondly, the analysis was given mainly to 

supervised ML models. Although good in 

performance, these models need tagged datasets 

that are not always at hand. Future work might be 

interested to explore the use of either unsupervised 

or semi-supervised learning procedures, which 

might be more flexible, especially in the case of 

new or evolving threats. 

Lastly, the energy-conscious optimization 

strategies utilized in this research work were 

premeditated using static profiling. Optimization 

might be improved with adaptive real-time 

optimization, perhaps with reinforcement learning 

or autonomous scheduler, with the tradeoff of 

higher complexity. 

5.5. Future Directions 

The trend of this study brings us logically to 

discuss federated and collaborative learning 

methods in which several edge devices 

collaboratively train an IDS model without 

exchanging raw data. This does not only keep 

information on data privacy but also it spreads the 

load on energy consumption on the network. Such 

approaches may be incorporated with energy-aware 

strategies discussed in this paper to further achieve 

system scalability. 

The other area of future development is associated 

with the development of standardized benchmarks 

where energy metrics should be an element of the 

IDS evaluation. The community of researchers in 

the field of cybersecurity now focuses on the 

performance of detection, which will need to be 

replaced with multi-objective benchmarking as the 

issue of energy becomes central. 

Finally, these models in combination with AI-

enabled power management on the hardware side 

(e.g., dynamic voltage and frequency scaling) 

would support a set of overall solutions across 

software and hardware layers of optimization. 

Conclusion 

The changing nature of cybersecurity requires the 

realization of smarter, intelligent, and non-resource 

consumptive Intrusion Detection Systems (IDS) 

capable of dealing with the twofold problems of 

correctness and energy consumption. This paper 

has given a detailed explanation as to why, in terms 

of energy conservation, energy-awareness-

engineered AI and ML approaches can be applied 

as greatly beneficial in strengthening IDS 

capabilities whilst sustaining operations. By 

investigating lightweight ML algorithms, dynamic 

scheduling and smart feature selection, this study 

shows that it is possible to find a compromise 

between performance and power efficiency in IDS 

implementations, in particular of edge computing 

and IoT. 

The experimental measurements which were 

performed with the benchmark datasets like 

CICIDS2017 and NSL-KDD helped to make the 

conclusion that it is vital to choose the model, 

optimize the training procedure, and make it 

hardware-aware to meet the goal of energy-saving 

threat detection. Models such as Random Forests 

and Support Vector Machines when customized 

with the help of energy saving modus operandi 

achieved stellar results in terms of detection as well 

as minimization of energy footprints. Further, the 

fact that these increases are measurable amounts of 

the overall test case is complemented to include 

visual analysis in terms of pie charts, bar graphs 

and system diagrams. 

Other than algorithmic efficiency, this paper also 

highlights the importance of systems approach in 

the design of future IDS constructs. It should not be 
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viewed as an afterthought that is added to every 

phase of an ML pipeline, instead, energy-

conscientiousness should be one of the 

requirements. It requires even more teamwork 

between IDS professionals, data scientists, and 

even hardware engineers when it comes to building 

next generation IDS. 

Although this research provides encouraging 

findings, it has weaknesses as well as areas of 

future research. Most of the work was restricted to 

centralized and edge-based IDS systems. 

Generalizing this work to include federated 

learning, privacy preserving computation and 

adaptive feedback energy mechanisms in 

distributed settings will allow expanding its scope 

and usefulness to these systems. 

Conclusively, the proposed paper lays down a solid 

ground in the development of energy-aware IDS 

via AI and ML. The findings can prove the 

hypothesis that under thoughtful model design and 

energy management practices, secure, intelligent, 

and sustainable IDS can be developed to meet the 

intricate, digital `eco-systems of the future. 
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