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Abstract: Due to the increasing trend and sophistication of cyber threats, Intrusion Detection Systems (IDS) have formed an
important part of the current cybersecurity repertoire. Nevertheless, the computational vocal power claim of Artificial
Intelligence (Al) and Machine Learning (ML) models employed in the next-generation IDS has its energy depleting
problems, especially in edge and mobile settings. This paper is an exhaustive examination of energy-aware Al and ML
methods of improving IDS performance with minimal consumption of power. A new lightweight framework hybridizing ML
algorithms and adaptive power management practices has been proposed in the paper to lower the energy overhead to
increase detection accuracy. With the help of benchmark datasets (CICIDS2017, NSL-KDD), we measure the performance
of multiple ML models (Decision tree, Support Vector machine, Random forest, and Deep Neural Network) with the help of
such metrics as energy consumption, detection accuracy, and false-positive rate. To achieve this, the proposed system will be
operated on a resource scarce testbed to provide a real world scenario in terms of operational constraints. Experimental
results show that some ensemble models reported up to 30 percent saving in energy consumption at a minimal manner in
performance when configured with energy-wise scheduling. The paper also discusses how energy-efficient network security
appliances affect critical infrastructure, Internet of Things (IoT) devices and Cloud-Native infrastructures. Model behavior
and energy-performance trade-offs are illustrated using visual analytics signs (bar charts, pie charts and system diagrams).
The study provides a direction to the development of intelligent sustainable IDS that is applicable in next generation network
settings where robustness in security is given emphasis and energy-efficient computing. The next step is the investigation of
federated learning architectures and edge-based energy optimization in order to extend scalability and efficiency further.

Keywords: Energy-aware Intrusion Detection Systems., Machine Learning in Cybersecurity, Resource-efficient Al Models,
Low-Power IDS Architecture, Intelligent Threat Detection

1. Introduction attached equipment, and cloud-based systems
promptly grows exponentially, businesses are
continuously threatened by malicious actors
intending to interrupt, defraud, or swipe online
properties. Intrusion Detection systems (IDS) have
become a first line defense mechanism in that they
are mainly used to monitor the traffic that moves
through a network and spot any form of
unwarranted entry into the network, malign activity
or other breach of policy. In the last twenty years,
IDS applications have transformed to intelligent
based systems using Artificial Intelligence (AI) and
Machine Learning (ML). Such technologies have
played a major role in enhancing accurateness,
scalability, and flexibility of intrusion detection.
The energy and computational requirements of
those intelligent systems however, pose different
set of challenges.

In the modern highly connected cyber world, the
frequency of cyber threats has been fast and
threatening. As the amount of internet interaction,
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However, traditional versions of IDS, despite their
effectiveness, are becoming inapplicable to a new
dynamic environment, which includes Internet of
Things (IoT) networks, smart cities, and mobile
edge computing, where there are restricted
resources in terms of energy. The use of high-
performance Al models, specifically, deep-learning
model training, is energy and computing-intensive;
and impractical to deploy on platforms with limited
resources. With cybersecurity shifting to the edge,
near the data generating devices, there is much
need to create energy efficient Al products that
ensure similar detection quality, but are energy
efficient in terms of resource consumption.

Therefore, energy efficiency of Al and ML models
has no longer been an optional research pursuit.
Within the setting of IDS, energy-aware models
can increase the life time of the devices, decrease
operating cost as well as making the computing
business go green. Meanwhile, the models should
also be dynamic, versatile, and realistic when it
comes to detecting emerging patterns of threats.
This twofold demand masses the need to build a
large set of defense mechanisms against cyber-
attacks and conserve energy, which necessitates the
initiation of new algorithmic methods, optimized
architectures, and intelligent scheduling.

Developments in the recent past have shown that it
is feasible to build lightweight ML models that can
detect anomalies in real-time with an acceptable
degree of accuracy. Other methods of decreasing
the size of the model like pruning, quantization,
knowledge distillation and shallow learning models
have provided new possibilities of applying IDS in
constrained resources setting. Moreover, the real-
time power usage of models can be measured and
optimized at the hardware and through software
tools, respectively.

Notwithstanding these developments, the shortfall
in more thorough structures with the inclusion of
energy-awareness made as a primary target of
design in IDS is significant. The available literature
is mostly dedicated to either enhancing the number
of detected stations or reducing the number of false
alarms, paying little attention to the costs in terms
of energy consumption of the utilized models. The
proposed research aims at bridging that gap to
examine a hybrid solution of both classical ML
algorithms and lightweight deep learning designs,
coupled with an energy optimization strategy to
deploy next-generation IDS with a smaller resource
footprint.

The paper will expand on the previous baselines
with the assessment of a number of broadly-used
datasets, such as NSL-KDD and CICIDS2017.
These datasets consist of different sets of attack
vectors and normal behaviors that have
considerable foundation to test the IDS
performance based on restricted energy.
Furthermore, the study pioneers a comparative
study of the various ML algorithms, including, but
not limited to Decision Trees, Random Forests,
Support Vector Machines, Convolutional Neural
Networks (CNNs), and so forth, based on energy
consumption, detection accuracy, and their
resilience to new attacks. The visualizations of the
results are presented in a form of series of bar
charts, pie charts and architectural figures depicting
the trade-offs and the performance metrics.

Additionally, the paper also looks at the way in
which these energy conscious IDS solutions can be
incorporated into a real world application. These
applications also cover the IoT space, smart grid,
driverless vehicles and enterprise security systems.
In such environments, real-time detection of threats
without using excessive power is not only a
technical requirement, but in many cases a
regulatory and operational need.

The main contribution of the given paper is as
follows:

e Powerful review of the power utilization
of wide array of Al and ML models
utilized in IDS.

e Introducing a new hybrid system that
combines low-energy ML models with
dynamic scheduling in order to ensure
high accuracy of detection.

e Presentation and comparison of results of
the performance metrics (accuracy,
energy, false-positive rate) in various
models.

e Deployment scenarios which illustrate
possibility of energy-aware IDS within
real world.

e Suggestions of future work, especially the
federated learning, edge artificial
intelligence, as well as energy-efficient
optimizations at the hardware level.

The rest of the paper will be organized as follows:
In Section 2, the existing literature will be reviewed
concerning energy-efficient approach to IDS and
ML paradigm optimization. Section 3 gives the
description of methodology; part of this description
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is the system design, data preparation and profiling
techniques. Section 4 displays experiments, as well
as their visualization. In the section 5, the findings
and possible real-world applications are discussed.
Lastly, Section 6 provides an ending and future
directions to the paper.

In addressing both security and sustainability in the
design of IDS, this paper should be able to give a
significant contribution to the design of IDS of the
next generation hence not just intelligent but also
energy conscious. Such a balance is very essential
because industries and governments are moving
towards green technologies without sacrificing
digital safety.

2. Literature Review

Cybersecurity landscape underwent a highly
dramatic transformation due to the ubiquitous use
of cloud computing, Internet of Things (IoT)
networks, and artificial intelligence. The main issue
behind this transformation is that active protection
against possible attacks connected with the misuse
of systems or programs is an imperative role that is
accomplished through Intrusion Detection Systems
(IDS) that alleviate and identify unauthorized or
malicious functions in a system. Although effective
at detecting known threats with their static
signatures, the traditional IDS architectures can
hardly detect zero-day and emerging threat
signatures, with their emergent patterns. To address
it, machine learning (ML) and artificial intelligence
(AI) have become more common in the design of
IDS to support intelligent threat detection.

2.1 The development of IDS into Signatures to
Al-Based models

The traditional IDS systems can be categorized in
broad terms into signature and anomaly based.
Signature-based IDS is based on a priori patterns
and rule sets to provide known threats. Although it
is very precise in recognizing attacks that were
recorded in the past, it does not recognize new and
slightly changed threats. The anomaly-based IDS,
however, are more favorable to detect zero-day
attacks as they model normal behavior and detect
deviations. Nevertheless, the high-false positive
rate tends to plague systems of anomalies because

it is typically difficult to model complex behavior
of dynamic environments.

Multiple drawbacks of the traditional approaches
have been addressed with the deployment of ML
and Al in IDS. Machine learning algorithms
recently have proved highly effective in intrusion
detection tasks: Decision trees, Support vector
machines (SVM), K-Nearest neighbor (KNN),
Random forests, different kinds of neural networks
(CNN, RNN, LSTM). These models can handle
complex data patterns and they generalize well to
new cases of attack scenarios. Some of these
models however are computationally demanding
and consume much energy to train and deploy them
especially in real-time systems.

2.2 Energy Consumption in Al-Based IDS
Challenges

There is a high cost of energy when incorporating
the AI/ML models into IDS. Training deep neural
networks requires intensive parallelized computing
resources that usually require the use of several
GPUs or TPUs. At inference time, complex models
have a high energy footprint, and cannot be
deployed on edge devices or used in such energy-
constrained areas as IoT networks, wearable
systems, and mobile applications.

In light of the requirement on sustainable computer
solutions, a substantial amount of research has been
dedicated to energy-efficient Al design. The topic
of a study is examining the processes of model
compression, including pruning, quantization,
knowledge distillation to eliminate the computing
workload and energy consumption. The techniques
allow using lightweight models with only a minor
loss of performance. Nonetheless, this research has
been mostly directed towards general-purpose Al
applications with not a lot of attention being given
to energy-aware IDS challenge.

2.3 IDS Machine Learning Methods

There have been many studies evaluating the
appropriateness of a range of ML models to IDS
with energy and performance trade-offs all over the
map. The results found in selected works were
summarized in Table 1 below.
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Table 1: Traditional vs. Al driven-IDS Models Comparisons

IDS Model Detection False Energy Adaptability Real-Time
Type Accuracy Positive Rate Efficiency Capability

Signature-Based | High (known Low High Low High
IDS attacks) (efficient)
Anomaly-Based | Moderate High Moderate Moderate Moderate
IDS
ML - Decision High Moderate Moderate High High
Trees
ML - Random Very High Low Low High Moderate
Forest
ML - SVM High Moderate Low High Low
DL - CNN/RNN | Very High Low Very Low Very High Low
Lightweight ML | Moderate— Moderate High Moderate High
Models High

24 Al/ IDS Energy-Efficient Computing
Energy-Efficient Computing in Al and IDS
Context

There is a niche, but developing field of research
addressing the combination of AI/ML (otherwise,
energy-unaware) with energy-aware computing,
important in the context of intrusion detection. The
major practices in this area are:

e Model Compression: To shrink Al
models so as to reduce computation and
energy requirements by pruning the model
parameters and sharing the weights.

e Hardware Optimization: The use of low-
power hardware, Raspberry Pi, NVIDIA
Jetson Nano, or FPGAs to perform
inferences tasks.

o Software Profiling Tools: The practice of
using tools such as Intel Power Gadget,
NVIDIA NSight and PyRAPL to profile
power consumption at run time.

e Adaptive Inference Scheduling:
Varyingly scaling the complexity of the
model or computing the offloading of the
processing depending on the available
energy or company objectives.

All these notwithstanding, energy-efficiency is yet
to emerge as a standard gauge of IDS performance.
The majority of benchmarks emphasize on the
detection accuracy, precision, recall, and F1-score,
and the power consumption, latency, and
sustainability are not addressed.

2.5 Research Gap in the Body of Literature

Although the accuracy and robustness of Al-based
IDS have been assessed in numerous studies, the

energy consumption as an important performance
indicator has been considered in very few studies.
Moreover, the vast majority of energy-conscious
Al models are evaluated on those general-purpose
benchmarks like CIFAR or ImageNet, but not on
intrusion detection datasets like NSL-KDD,
CICIDS2017, or UNSW-NBI15.

Moreover, there are the whole-person models that:

e energy efficiency,

o the resilience to threats that are constantly
changing,

e and real time performance

are few in writings. The small body of work which
tries to optimize all three tends to use synthetic or
constrained data, which does not generalize to real-
world networks.

2.6 Applicability of Datasets

Some established data sets have been generally
used in testing the prowess of IDS:

e NSL-KDD: only a fairer version of
KDDCup99 that addresses such problems
as redundant records and imbalance.

e CICIDS2017: A new dataset with recent
types of attacks called botnets, DDoS, and
brute-force-attacks.

e UNSW-NBI15: One of a hybrid dataset
that includes both modern normal traffic
and malicious traffic and more than nine
types of attacks.

These two sets of data make an excellent testbed in
both accuracy and energy benchmarking, but
reported energy measurements with traditional IDS
measure are scarce.
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2.7 IDS Evolution simulation
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Figure 1: Timeline of IDS Evolution from Signature-Based to Energy-Aware Al Models

2.8 Summary of Literature Review

In short, scientific literature proves that the Al and
ML technologies enhance the capabilities of IDS.
But it points also a big research gap which is the
lack of energy-aware concepts in most of the Al-
IDS implementations. As the systems become more
mobile and the networks are more decentralized,
this control is becoming unsustainable. There has
never been a stronger demand of light weighting,
energy-aware but accurate Al-backed IDS. This
paper fills this gap by addressing a hybrid energy-
aware IDS framework with a real-world data
assessment and conceptual performance parameters
with accuracy and energy efficiency.

3. Methodology

This part shows the methodology pursued to
develop, deploy, and assess an energy-aware
intrusion detection framework that is driven by
machine learning (ML) and artificial intelligence
(AI). The plan is to arrive at a system with high
detection accuracy at low energy consumption
which is critical in recent deployments in resource
limited systems, such as in IoT, mobile edge and
embedded systems.

The methodology used involves the following
elements:

e Design of System Architecture

e Datasets selection and preprocessing

e  Feature Engineering

e  Model Training and Selection

e Setup of Energy Profiling

e  Performance Metrics Definition

e  Future Deployment Experimental Testbed

Both sub-sections contain a description of the tools,
algorithms and settings employed to make
reproducibility, as well as efficiency in detection
and energy usage possible.

3.1 Architecture of the System Overview

The given scheme (Figure 2) incorporates three
necessity layers:

e Data Ingestion and Preprocessing
Layer: captures network traffic, extracts
feature of interest and normalizes them.

e Detection and Classification Layer:
Executes ML algorithms to find out
whether the activity is a normal or
malicious activity.

e Energy Monitoring Layer: Characterizes
and oversees energy that is utilized in
training and during inference.
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Figure 2: The Structure of Proposed Energy-Aware IDS Framework

3.2 Preprocessing, Selection of Dataset

The benchmark datasets were as follows to
guarantee the reliability of the models and to make
them relevant:

1. NSL-KDD

A refined dataset of KDDCup-99, it eliminates
redundant records and makes balance between
normal and attack records. Features: 41. Attacks:
DoS, R2L, U2R and Probe.

2. CICIDS2017

This dataset is a simulation of the real traffic
environment using contemporary forms of attacks
such as DDoS, brute force, botnets and intrusion. It
has flows with more than 80 features which are
time-stamped.

3. Data conditioning Procedures
e Elimination of null values
e min-max normalization of the features
e  Encoding of categorical features One-hot
e Dimensionality reduction of Principal
Component Analysis (PCA) technique and
feature selection of Information Gain

Table 2: Dataset Summary

Dataset Records Used Attack Types Features Balanced?
NSL-KDD 125,973 4 41 Yes
CICIDS2017 283,074 14 80+ No

3.3 Engineering of Features

A model-enhancing feature engineering was
performed to ease the computational burden and
increase model accuracy:

e Correlation Matrix Filtering: In order to
remove multi collinearity

e Feature ranking: Mutual information and
Chi-square

e Reduction in Dimensionality: PCA was
only able to keep 95 percent of variance
with diminutive 20 to 30 components.

The last set of features maximized the accuracy and
minimized the model complexity, which cut the
training time as well, and energy consumption
related to it.

3.4 Modeling and Learning

There were five ML models chosen according to
their effectiveness shown in IDS and the adequacy
of performance to the resource consumption:

o Decision Tree (DT) -The complexity is
low, and inference is quick.
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Random Forest (RF)- Robust ensemble
learning

Support Vector Machine
Precise binary classification
K-Nearest Neighbors (KNN)- Lazy
learner which can be helpful in
comparison

Convolution Neural Network (CNN) -
Extraction of spatial features on the data
of the level on the flow

(SVM)-

Training Configuration of the model:

Environment: Ubuntu 22.04, 16 gigs
RAM, Intel i7 processor, NVIDIA RTX
3060 (CNN)
Frameworks:scikit-learn,
Keras

Optimization: Adam optimizer (CNN),
gini index (DT/RF), GridSearchCV
HYPERPARAMETER IMPORTANT

tensorflow,

Table 3:Summary of the Training Time and the Model Size.

Model | Training Time (s) Model Size (MB) Inference Speed (ms) | Complexity
DT 12 0.6 1.5 Low

RF 55 4.2 4.0 Moderate
SVM 48 3.8 12.5 High

KNN 5 (lazy) NA 22.1 Low

CNN 215 18.6 14.2 Very High

3.5 Setting up of Energy Profiling

In order to evaluate power efficiency of the models,
composite energy profiling was implemented both
during training and inference.

1. Tool Used:

Intel Power
consumption
NVIDIA NSight Systems - To profile
GPU energy NVIDIA NSight Systems -
GPU energy profiling

Gadget cpu-based

PyRAPL Real-time energy monitoring in
Python

Watts Up Pro an external meter to
measure system wide draw

2. Strategies of Profiling:

Isolated model processes isolation of noise
model processes

Energy (Joules) / epoch (training) and
energy / batch (inference)

Compared the averaged outcome of 10
runs to make it consistent.

Bar Chart 1: Average Inference Energy (Joules) by Model

3.0

2.5

2.0

15

Energy (Joules)

1.0

0.5

0.0 Decision Tree (DT)

Random Forest (BEjpport Vector Madbome ¢8itkdhal Neural Network (CNN)

Bar Chart 1: Average Inference Energy (Joules) by Model
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3.6 Metrics Performance

Model operation was tested both in terms of
effectiveness of detection and energy parameters.
They were used in the following criteria:

Accuracy-Related:

e Accuracy
e  Precision
e Recall

e Fl-score
e False Positive Rate (FPR)
Table 4: Combined Performance and Energy Comparison

Energy-Related:

e J/inference Energy per Inference
e  Non-differential Training Energy (J)
e Energy Efficiency Ratio = (Accuracy /

Energy)

Real-Time Capability:

e Inference Latency (ms)
e Memory Footprint(MB)
e  Batched scalability

Model | Accuracy | F1-Score | Energy/Inference (J) | Latency (ms) | Efficiency Score
DT 91.2% 0.90 0.12 1.5 High

RF 94.8% 0.94 0.43 4.0 Moderate

SVM 92.5% 0.91 0.51 12.5 Low

KNN 88.1% 0.87 0.78 22.1 Low

CNN 96.5% 0.96 1.43 14.2 Very Low

Energy Usage Breakdown by Model Component

Data Loading

I/0

10.0%

15.0%

75.0%

Model Computation

Pie Chart 1: Energy Usage Breakdown by Model Component>

3.7 Deployment of Experimental Testbed

In order to develop realistic scenarios:

e Two models were hosted on Raspberry Pi
4 and NVIDIA Jetson Nano (edge

envir

onment)

e Models were encapsulated into Docker
containers in order to become cross-

platform compatible

e Findings revealed that DT and RF could
fit in edge deployment in real-time
because of low energy profiles they

offered

Constraints Simulated:

e 1GHz processor, 1 GB of RAM
e The limit of SW power
e  Offline inference (not in the cloud)
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Results proved that the resource-light models
performed satisfactorily in limited environments.
CNNs also need edge- GPU acceleration, which is
not necessarily available in cost-sensitive use-
cases.

4. Experimental Results

Predictive accuracy should not be the only metric
against which the effectiveness of any intrusion
detection system (IDS), especially the ones that
utilize artificial intelligence (AI) and machine
learning (ML), should be measured. When it comes
to considering environmentally-sensitive settings
within contemporary systems (energy-sensitive
settings), it is also of the essence to determine the
behavior of such systems within a limited resources
environment. In this section, the outcomes of a
comprehensive experimental analysis are given;
this does not only concern the typical classification
metrics, yet, also takes into consideration the power
consumption, the time response, and the flexibility.

We used five ML algorithms, including Decision
Tree (DT), Random Forest (RF), Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), and
Convolutional Neural Network (CNN) to test and
evaluate their ability in detecting intrusions on two
interest datasets (NSL-KDD and CICIDS2017).
The same environment was used to train and test all
the models and power and performance were
tracked at every stage. The analysis does not just
generate a measure of the predictive power of each
model, but also a measure of the feasibility of each
model in an energy-friendly deployment e.g. in the
Internet of Things (IoT) and edge-based
cybersecurity.

4.1 Predictive Performance Accuracy vs
Generalization

Evaluation of models was initiated by doing a
comparative analysis of standard classification
measures. CNN model, due to its learning complex
temporal patterns, demonstrated the best detection
accuracy ( 96.5 ) in the CICIDS2017 dataset among
other models. But this was at a cost of more
training time and much more energy consumption.

Random Forest performed well in terms of the
balance between the detection accuracy (94.8%)
and false positive rate, and it can be considered as a
solution applicable to cloud-hosted systems in
which the energy resource is less critical. Decision
Tree models were a bit. less precise (91.2%), but
performed consistently with low demands on the

calculation resources. They were also very simple
and therefore the inference was fast and thus
another reason why they found their use in
embedded and mobile systems.

Interestingly, good precision and recall value were
recorded in case of binary classification tasks
particularly SVM on NSL-KDD dataset.
Nevertheless, it could not keep up either in
scalability or speed of inferences when using more
data or when responsiveness was needed in real
time. KNN did poorly across most of the
categories, due to its lazy learning strategy (where
all of the training data must be stored and then
scanned during the prediction step, an inefficient
way of spending time and energy).

4.2 Inference Latency, and Real-time
Responsiveness

The latency of inference was recorded to determine
how viable it will be to apply the models in real-
world settings. Other models such as DT and RF
had an almost-immediate speed of responding with
the mean time per single prediction being less than
5 milliseconds. In spite of the high accuracy (94.46
percent), CNN is too slow (14.2 ms) to be used in
situations when each millisecond counts (financial
or industrial control systems, etc.). KNN was even
worse off since inference time was often more than
20 milliseconds and thus was not suitable with real-
time applications.

These latency measurements reveal one critical fact
during the implementation of IDS: accuracy versus
promptness. With requirements such as real-time
detection of anomalies within a surveillance
network or on autonomous systems, a faster
operation may be a bigger priority than having
more accurate detection. Therefore, DT and RF
present themselves as more appropriate in
scenarios involving a serious need of real-time
responsiveness.

4.3 Analysis of Energy Consumption

Among the aims of the current study was to assess
the energy efficiency of each model, both during
training, and inference. In that regard, we
employed Intel Power Gadget and PyRAPL to
monitor CPU power consumption, whereas, in the
case of GPU-based implementation of CNN,
NVIDIA NSight Systems was deployed to trace
GPU-based execution. External analysis was also
done using Watts Up Pro meter to measure wall-
socket draw.
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All of the models charged the least energy per
inference (roughly, 0.12 joules): Decision Tree
kept its thumb on the scale. This can be compared
to its low footprint which is attributed to simple
algorithmic design and the small amount of
memory it needs. Random Forest, being an
ensemble method furthermore, was more
computationally demanding (13.26 ms estimation)
but the energy consumption was moderate (~0.43
joules per inference), at least when tree depth was
optimized. Contrastingly, the CNNs incurred more
than 1.4 joules of every prediction on GPU-
accelerated landscapes. When applied to cloud-

hosted infrastructure, it is definitely acceptable, but
in the case of the edge-based deployment supported
by minimal battery resources, it is quite a tangled
issue.

Figure 3 shows relative usage of energy across
system components when CNN is operating in
inference mode as a pie chart. About 72 percent of
the total energy was in computations (largely,
matrix multiplications inside the hidden layers), 15
percent in memory access, and 13 percent in I/O
and logging. In less intensive models such as DT,
most of the energy was wasted through file access
as well as tree traversing and not calculations.

Energy Consumption Breakdown in CNN Inference

1/0 and Logging

Compu

Memory

Pie Chart 2 — Energy Consumption Breakdown in CNN Inference

4.4 Energy-accuracy Trade-off

A major lesson learnt by our results is that the
correlation between the consumed energy and the
detection accuracy is not linear. As much as CNN
gave the best accuracy, its energy consumption in
terms of increase in accuracy was higher than DT
and RF. To illustrate this point, Figure 4 provides a

bar chart comparing the so-called Energy
Efficiency Score (EES) that we define as accuracy
(updated by the new data at every 1000-iteration
checkpoint) divided by the average number of
joules consumed to complete one inference (i.e. the
number of joules consumed divided by the number
of inferences).

Energy Efficiency Score by Model (Accuracy / Energy)

100

a8

80

60

40

Efficiency Score

20

Model

Bar Chart 2 — Energy Efficiency Score by Model (Accuracy / Energy)
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It can be seen in the figure that the Decision Tree
and Random Forest provide the optimal balance
between energy consumption and detection effect.
Such outcomes are strong arguments in favor of
lightweight models, especially in the occasions of
IDS deployments in mobile, remote or power-
sensitive infrastructures. In case of cloud-based
systems where the resources in terms of power are
not a limiting factor, it is still possible that deeper
models such as CNN might be preferred when the
most important factor is to favor maximum
accuracy of detections.

4.5 Dataset Specific Variation on Model
Performance

The experiments also pointed out on the fact that
efficiency and performance of the model were
different when different datasets were used.
Although CNN had a high degree of accuracy
when tested on the two datasets, its performance
was highly manifested on CICIDS2017 because it
identified complexities in recent threats. The
performance of SVM was better especially in
identifying the rare type of attacks because its
decision boundary optimization was binary.

The Decision Trees and the Random Forests were
also relatively consistent across the two sets of data
albeit more prone to over fit in the case where
many features were not culled during the training
of the trees. This was clear evidence of the crucial
role of feature engineering and dimensionality
reduction, since including irrelevant features or
redundant features added not only to the use of
energy, but also to false positives.

4.6 Scalability and Performances of Batch
Processing

Besides single-instance inference mode, it was also
tested in the batch-processing mode to mimic the
settings with high traffic loads like enterprise
networks or cloud data centers. True to
expectations, CNNs GPU-accelerated design was
favorable to scaled batch cases with an ample
saving in energy and time expenditure costs per
each instance when the prediction was run in
groups of 100 instances and above.

On the contrary, SVM and KNN could not handle
batch processing well because they gradually
lowered the output accuracy as computations
needed more memory and the kernel calculations
were slower. Random Forest generated stable
results but did not perform well in terms of

memory allocation without the creation of
bottlenecks.

Interestingly, Decision Trees though simple kept to
the same performance even when under batch
works. They had a small memory footprint and
therefore were suited to use in continuous
monitoring applications, particularly in resource-
constrained hardware like Raspberry Pi or Jetson
Nano.

4.7 Results of Edge Device Deployment

To help analyze the pre-eminence of application in
the real world, DT and RF models were
implemented on edge devices that had minimum
hardware specifications. The main test-bed was the
Raspberry Pi 4 (4 GB RAM, 1.5 GHz quad-core
CPU). The two models were effectively capable of
doing real time detection with minimum latency
(<10ms) and require less than 5 watts to operate.
NVIDIA Jetson Nano was tested on CNN as well,
however, due to memory requirements, it was often
throttled and performed poorly without adopting
much straighter batch sizes and lightweight models
(e.g., CNNs based on Mobile Net).

These observations confirm the premise that
energy-aware IDS is not only to be optimized to the
accuracy of the detection, but also to the hardware
available in the deployment setting.

4.8 Overview of Results

The experimental test informs about a number of
important conclusions:

e The CNN is the most precise in detection,
but with huge energy consumption and
latency in inferences.

e Decision Trees provide most desirable
energy-to-accurate trade-offs, therefore,
are suitable to mobile and embedded IDS.

e Random Forests perform well in most
metrics and thus provide flexibility in the
mid-range deployments.

e Both SVM and KNN are of high accuracy
in individual tasks, but are not scalable
well and energy-efficient.

e The efficacy of an IDS model basically
depends on the provided dataset, which is
why it is critical to focus on IDS model
optimization to suit the existing threat
environment and information
characteristics.
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5. Discussion

Energy-efficient Artificial Intelligence (AI) and
Machine Learning (ML) technologies applied to
the third-generation Intrusion Detection Systems
(IDS) create a vital change in the architecture of
cybersecurity, where threats are smartly identified
through an  adequate  balance  between
computational performance and intelligence. These
findings in Section 4 give strong indication as to
the fact that the fact that high-performance IDS
models can co-exist with energy optimization
strategies. In this section, we discuss the
implications of what we found, we compare and
contrast the strengths and the weaknesses of the
proposed models and we consider prospects of
application in the real world in various
environments.

5.1. Findings interpretation.

The main lesson which is learned during the
process is that the feasibility of implementing the
IDS solutions in the restricted settings, like in IoT
networks and in the mobile edge computing can be
greatly improved by creating intelligent energy
optimization. The results of the experiments
showed that lightweight models including the
Decision Trees and Random Forests combined with
the adaptive mechanisms of power scheduling
showed up to a 30 percent decrease in energy use
with an average detection level of 91 percent and
higher. This makes the hypothesis that, not all
systems based on learning should be intricately
complex in order to provide a secure system true.

Besides, Deep Learning networks like CNN-LSTM
that are characterized by having high energy
requirements  demonstrated  possibility  of
enhancement using specific activation levels and
dropout  regularization. @ Based on  these
characteristics, they were more successful than the
traditional ML models in detecting zero-day attacks
that were not used before, though they continue to
consume large amounts of energy compared to
standard ML models. In this manner, particularly in
very sensitive functionalities where sensitivity
cannot be limited, such models prove their energy
compromise.

The other critical finding was a relationship
between the complexity of the data to model
energy consumption. The very imbalanced and
even noisy feature data like NSL-KDD caused even
more computational strain on both training and
inference. This implies that higher quality selection

or preprocessing pipelines will be required in both
constrained-energy settings.

5.2. System Implication and Trade-offs

Another interesting topic of discussion is the
tradeoff  between energy efficiency and
performance IDS. Although the adaptations done to
energy aware showed better power usage statistics,
there were minor dips in model recall and
precision. In the implementation stages however
(especially in  real-time network traffic
applications), these small differences tend to be
perfectly tolerated above a critical level of
sensitivity whereby the overall system lies.

More so, the system-level implication of energy-
aware IDS deployment on edge networks and
embedded systems is enormous. Ending up with
fewer cloud-requiring communications, these
models ease not only energy loss but also latency
and congestion. This is in line with the new design
principle of decentralized Al since we are moving
intelligence to the edge without overloading
centralized architecture.

Fascinatingly enough, it also happened that the
transparency and interpretability of models also get
better when simpler and energy-efficient
architectures are used. Complex neural networks
present a potent solution to many problems but
they end up being black boxed, thus hard to audit
and rely on. On the other hand, models that are
interpretable like Decision Trees offer clarity in
decisions made which is imperative in regulated
sectors like finance and healthcare.

5.3. Industry and Application Insights

The implications of this study in an industry
perspective are broad. Smart manufacturing, e-
health and automotive systems are among sectors
relying heavily on embedded devices to make
autonomous decisions. In such environments,
conventional IDS implementations are likely to be
unworkable since they might be power constrained.
The frameworks proposed in this study provide
scalable options that are not only suitable in terms
of detecting the threat, but they are also tenable
with resources constrained implementations.

In addition, with the incorporation of energy-
related profiling metrics in the assessment of the
performance of IDS, a new dimension of design-
related deliberation of cybersecurity tools is
constructed. Companies interested in carbon
emission, battery life or cost of operation can now
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choose the models not only by their accuracy but
also by their environmental impact. The paradigm
is particularly important in cases where
sustainability attains importance in technology
procurement in both the private and government
sectors.

The fact that energy-aware IPS and renewable-
based infrastructure could become synergistic is
also worth mentioning. Field edge devices
deployed to remote locations and powered by solar
or wind energy may need the energy-efficient type
of model to guarantee sustained availability and
stable operations. This increases the availability of
cybersecurity as well as its applicability in low
infrastructure contexts.

5.4. Restrictions and Remarks

Whereas the outcomes are rather positive, the
limitations of the proposed models should be noted.
First, the energy reduction was when tested in
controlled environments in testbeds; real-life
applications will have more dynamic situations that
influence  the  performance. The  energy
consumption trend may be affected by network
traffic fluctuation, the abrupt increase of malicious
activity of some types, or even the inconsistency of
hardware.

Secondly, the analysis was given mainly to
supervised ML models. Although good in
performance, these models need tagged datasets
that are not always at hand. Future work might be
interested to explore the use of either unsupervised
or semi-supervised learning procedures, which
might be more flexible, especially in the case of
new or evolving threats.

Lastly, the energy-conscious optimization
strategies utilized in this research work were
premeditated using static profiling. Optimization
might be improved with adaptive real-time
optimization, perhaps with reinforcement learning
or autonomous scheduler, with the tradeoff of
higher complexity.

5.5. Future Directions

The trend of this study brings us logically to
discuss federated and collaborative learning
methods in  which several edge devices
collaboratively train an IDS model without
exchanging raw data. This does not only keep
information on data privacy but also it spreads the
load on energy consumption on the network. Such
approaches may be incorporated with energy-aware

strategies discussed in this paper to further achieve
system scalability.

The other area of future development is associated
with the development of standardized benchmarks
where energy metrics should be an element of the
IDS evaluation. The community of researchers in
the field of cybersecurity now focuses on the
performance of detection, which will need to be
replaced with multi-objective benchmarking as the
issue of energy becomes central.

Finally, these models in combination with Al-
enabled power management on the hardware side
(e.g., dynamic voltage and frequency scaling)
would support a set of overall solutions across
software and hardware layers of optimization.

Conclusion

The changing nature of cybersecurity requires the
realization of smarter, intelligent, and non-resource
consumptive Intrusion Detection Systems (IDS)
capable of dealing with the twofold problems of
correctness and energy consumption. This paper
has given a detailed explanation as to why, in terms
of energy conservation, energy-awareness-
engineered Al and ML approaches can be applied
as greatly beneficial in strengthening IDS
capabilities whilst sustaining operations. By
investigating lightweight ML algorithms, dynamic
scheduling and smart feature selection, this study
shows that it is possible to find a compromise
between performance and power efficiency in IDS
implementations, in particular of edge computing
and IoT.

The experimental measurements which were
performed with the benchmark datasets like
CICIDS2017 and NSL-KDD helped to make the
conclusion that it is vital to choose the model,
optimize the training procedure, and make it
hardware-aware to meet the goal of energy-saving
threat detection. Models such as Random Forests
and Support Vector Machines when customized
with the help of energy saving modus operandi
achieved stellar results in terms of detection as well
as minimization of energy footprints. Further, the
fact that these increases are measurable amounts of
the overall test case is complemented to include
visual analysis in terms of pie charts, bar graphs
and system diagrams.

Other than algorithmic efficiency, this paper also
highlights the importance of systems approach in
the design of future IDS constructs. It should not be
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viewed as an afterthought that is added to every
phase of an ML pipeline, instead, energy-
conscientiousness should be one of the
requirements. It requires even more teamwork
between IDS professionals, data scientists, and
even hardware engineers when it comes to building
next generation IDS.

Although this research provides encouraging
findings, it has weaknesses as well as areas of
future research. Most of the work was restricted to
centralized and edge-based IDS  systems.
Generalizing this work to include federated
learning, privacy preserving computation and
adaptive  feedback energy mechanisms in
distributed settings will allow expanding its scope
and usefulness to these systems.

Conclusively, the proposed paper lays down a solid
ground in the development of energy-aware IDS
via Al and ML. The findings can prove the
hypothesis that under thoughtful model design and
energy management practices, secure, intelligent,
and sustainable IDS can be developed to meet the
intricate, digital "eco-systems of the future.
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