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Abstract: Back-to-back Mechanically Stabilized Earth (MSE) walls are commonly used for bridge approach embankments.  Artificial 
Neural Network (ANN) analysis conducted in this study was applied for the first time in literature to estimate the seismic-induced 
permanent displacements of retaining walls under dynamic loads. For this purpose, a parametric study of seismic response analysis of 
reinforced soil retaining structures was performed to train the ANN using finite element analysis. The variables used to define wall 
geometry were reinforcement length, reinforcement spacing, wall height and facing type. The harmonic motion had three different levels 
of peak ground accelerations, namely 0.2g, 0.4g and 0.6g and had a duration of 6 sec with a frequency of 3 Hz.  Although developing an 
analytical or empirical model is feasible in some simplified situations, most data manufacturing processes are complex and, therefore, 
models that are less general, more practical and less expensive than the analytical models are of interest. The agreement of the neural 
network predicted displacements and deformation classification with Finite Element Analyses results were encouraging by the means of 
correlation since the coefficient values of R=0.99 for ANN regression analysis were achieved. 
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1. Introduction 
According to their economic advantages and superior engineering 
properties, construction of back to back mechanically stabilized 
earth (MSE) walls for bridge abutments are becoming more 
common throughout the world. Displacement based seismic 
performance studies of these structures have a vital role for the 
continuity of urban transportation after earthquakes. Although it is 
known that the seismic performance is related to wall geometry 
and earthquake characteristics, to gain better insight into 
mechanisms affecting the behaviour of these structures under 
dynamic loading conditions several engineering approaches are 
still being enhanced. The performance of MSE walls under seismic 
loading can be performed not only with physical testing methods 
(shaking table, centrifuge, full scale model) but also with analytical 
and numerical approaches which can be divided into pseudo-static 
(Monobe-Okabe) methods, displacement (Newmark) methods and 
finite element methods (FEM). 
Finite element analysis is a preferred method because of its time 
and cost efficiency and holds much promise for simulating the 
behaviour of reinforced soil retaining structures under dynamic 
loading conditions. Especially for parametric studies that require 
large numbers of analysis, the validated FEM technique is 
preferred instead of time consuming and expensive physical tests. 
In this study Plaxis v.11.0, a popular FEM software program was 
used in the analysis of seismic response of reinforced soil walls. 
Geotechnical applications require advanced constitutive models 
for the simulation of the nonlinear and time dependent behaviour 
of soils. The modelling of the soil itself is an important issue; many 
geotechnical engineering projects involve the modelling of the 
structures and the interaction between the structures and the soil.  
Although developing an analytical or empirical model is feasible, 

most numerical analysis data manufacturing processes are 
complex and, therefore, models that are less general, more 
practical and less expensive than the analytical models are of 
interest. An important advantage of using Artificial Neural 
Network (ANN) over regression in process modelling is its 
capacity in dealing with multiple inputs or responses while each 
regression model is able to deal with only one response. Another 
major advantage for developing ANN process models is that they 
do not depend on simplified assumptions such as linear behaviour 
or production heuristics. Neural networks possess a number of 
attractive properties for modelling a complex mechanical 
behaviour or a system: universal function approximation 
capability, resistance to noisy or missing data, accommodation of 
multiple nonlinear variables for unknown interactions, and good 
generalization capability. ANNs can efficiently be used as a tool 
for performing tasks such as function approximation (regression) 
and classification. 
In the literature starting from 1990s, ANNs have been used 
productively for solving major particular problems in geotechnical 
engineering. Classical constitutive modelling is unable to imitate 
the situation of geomaterials because of formulation complexity, 
and undue empirical options. According to this, many researchers 
[2-21-22]; claimed that constitutive modelling is based on the 
elasticity and plasticity theoretician, and suggest neural networks 
as a dependable and practical disjunctive to modelling the 
constitutive monotonic and hysteretic behaviour of geomaterials. 
To prevent damage caused by failure of soils as in liquefaction, 
there are different types of ANNs which take into account many 
applications in geotechnical engineering which include retaining 
walls ([6-12], dams [10], blasting [14], geo-environmental 
engineering [15], and tunnels and underground openings [4-18]. 
Ural and Saka [17]; Young-Su and Byung-Tak [19] also carried 
out studies to investigate the applicability of ANNs for predicting 
liquefaction. _______________________________________________________________________________________________________________________________________________________________ 
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Goh et al. [6] developed a neural network model to provide initial 
estimates of maximum wall deflections for braced excavations in 
soft clay. The neural network was used to synthesize data derived 
from finite element studies on braced excavations in clay. The 
input parameters used in the model were the excavation width, soil 
thickness/excavation width ratio, wall stiffness, height of 
excavation, soil undrained shear strength, undrained soil 
modulus/shear strength ratio and soil unit weight. The maximum 
wall deflection was the only output. 

Table 1. Comparison of neural network prediction and field 
measurements [6] 

 

2. Theory and Methodology 
2.1. Artificial Neural Networks 

Zurada [23] and Fausett [5] explained that ANNs consist of a 
number of artificial neurons known as 'processing elements' (PEs), 
'nodes' or 'units'. For multilayer perceptrons (MLPs), which are the 
most commonly used ANNs in Geotechnical engineering, 
processing elements are situated as an input layer, an output layer 
and one or more intermediate layers called hidden layers (Fig. 1). 
The dissemination of data in MLPs begins at the input layer where 
the input data are submitted. During the process each input is 
weighted, summed and elapsed through a transfer function to make 
the nodal output. If the network cannot find a set of weights that 
perform the input-output mapping, it will be still regulating its 
weights on presentation of a set of training. This process is called 
‘learning’ or 'training'.  
Since the training set of a model has been finished effectively it 
must be validated. The aim of validation is to check the capacity 
of the model to generalize the limits set by the training data. If this 
type of procedure is appropriate, the model is considered robust 
enough to be generalized. 
The coefficient of correlation, r, the root mean squared error, 
RMSE, and the mean absolute error, MAE, are the main criteria 
that are often used to evaluate the prediction performance of ANN 
models. The coefficient of correlation, a value defined between 0.0 
and 1.0, is a measure that is used to determine the relative 
correlation and the goodness-of-fit between the predicted and 
observed data.  
The objective of the linear regression model is to find the unknown 
function f, which relates the input variable x to the output variable 
y. The function f can be obtained by changing the slope tanφ and 
intercept β of the straight line in Fig. 2.a, so that the error between 
the actual outputs and outputs of the straight line is minimized. The 

same principle is also used in ANN models. ANNs can form the 
simple linear regression model by having one input, one output, no 
hidden layer nodes and a linear transfer function (Fig. 2.b). The 
connection weight w in the ANN model is equivalent to the slope 
tanφ and the threshold θ is equivalent to the intercept β, in the ANN 
linear regression model.  

 

 
Fig. 2. Linear regression versus ANN models [5]. 

It is known from previous studies [7] that the peak ground 
acceleration and the wall displacements are not linearly related. 
When there are non-linear problems, ANNs can deal with these by 
changing the transfer function or network structure, and the type 
of non-linearity can be replaced by changing the number of hidden 
layers and the number of nodes in each layer. 

2.2. Strong Ground Motion and Intensity Measures 

In estimating strong-motion characteristics for seismic design, 
there is a need to define the parameters that reflect the destructive 
potential of the motion. Providing quantitative estimates of 
expected levels of seismic ground-motion requires characterizing 
the complex nature of strong-motion accelerograms by using 
simple parameters and the development of predictive relationships 
for these parameters.  
The main elements of earthquake engineering field and structural 
dynamics are ground motion time history records of acceleration, 
velocity and displacement. Among the information included in 
time history record, amplitude, frequency content and duration 
characteristics of the strong ground motion are the most crucial 
ones for engineering purposes [11]. Several ground motion 
parameters have been defined in the literature and are listed as 
follows; peak ground acceleration (PGA), peak ground velocity 
(PGV), effective peak acceleration (EPA), arias intensity (AI), 
cumulative absolute velocity (CAV), acceleration spectrum 

Fig. 1. Typical structure and operation of ANNs [23]. 
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intensity (ASI), and velocity spectrum intensity (VSI). 
In this study SeismoSignal, software used to process strong motion 
data, was utilized to determine all these IM’s from acceleration 
time history for three different harmonic motions that are varied 
with respect to PGA values. This software comprises an efficient 
and simple way to process strong-motion data, featuring a user-
friendly visual interface and the capability of deriving a number of 
strong-motion parameters.  
Uang and Bertero [16] examined the adequacy of the parameters 
that have been used to identify the damage potential of an 
earthquake and reported that the destructiveness of a ground 
motion record at the foundation of a structure relies on the 
intensity, frequency content, duration and the dynamic 
characteristics of the structure. They reached the conclusion that 
the most dependable parameter for measuring the damage potential 
is earthquake energy input. 

3. CALCULATIONS 
3.1. Numerical Model with FEM 

In this study, Plaxis, an extensively used finite element program 
was utilized for the numerical analysis. Two dimensional (2-D) 
plane strain analysis was performed during the study.  
As can be seen from Fig. 3, the boundary conditions were 
identified as fixities; at the bottom boundary total fixity was 
identified which means both horizontal (ux) and vertical (uy) are 
zero. Below the wall level at the right and left boundaries of the 
basement only horizontal fixities were assigned.  

 
Fig. 3. The geometry of the back to back wall model 

The absorbent boundaries were used in dynamic calculations to 
account for the fact that in reality soil is semi-infinite medium. 
Although these boundaries also affect the wall displacements, 
without these boundaries the waves would be reflected from the 
model boundaries, returning into the model and disturbing the 
results. To avoid these spurious results reflection absorbent 
boundaries were specified at the bottom right and left side 
boundary. In order to minimize absorbent boundary effects on wall 
displacements, the back to back retaining wall was used as the most 
adaptable and realistic design. The geometry of these FEM models 
was defined as in all models the width (B) was fixed at 30 m. and 
the height of the wall (H) got values between 5m and 10m. Below 
the ground level one concrete panel or one modular block was 
embedded as a foundation. 
The linear elastic perfectly-plastic Mohr-Coulomb Model (MCM) 
model was used to define the backfill soil. The model involves five 
input parameters, E and υ for soil elasticity; φ and c for soil 
plasticity and ψ as an angle of dilatancy and the values were 
assigned as stated in Table 2. 

Table 2. Material properties of soil 

 
The reinforcing elements used to define geotextiles could only 
sustain tensile forces and have no bending stiffness. For modelling 
elastoplastic behaviour, the maximum tension force in any 
direction is bound by Np. For geotextile reinforcements EA=4,000 
kN/m was chosen for elastic axial stiffness and NP=400 kN/m for 
10% strain condition. 
In our parametric analysis, modular block facing and precast 
concrete panel were used as facing elements. The modular block 
facing elements were modelled as 0.5 m in width and 0.25 m in 
height and linear elastic material model was selected to define the 
material with properties; unit weight (dry) was 21 kN/m3, elastic 
modulus (E) was 4.4x106 kN/m2 and Poisson ratio (ν) was 0.17.  
Precast facing panels were modelled using plates of 0.60 m of 
width and height and 0.20 m of thickness. The material properties 
were defined as 23.5 kN/m3 for unit weight, 25x106 kN/m2 for 
elastic modulus, 0.20 for Poisson ratio and 28 MPa for 28-day 
compressive strength. Based on these properties, the axial stiffness 
EA was calculated as 5,000,000 kN/m. Bending stiffness EI was 
found as 16,660 kNm2/m and finally, for one meter height, the 
weight of the panels was found to be equal to 4.7 kN/m/m. 
The connection between facing panels is modelled by some 
researchers by simple hinges and the compressibility that develops 
between them due to the presence of pads is neglected. Since 
deformations are the main outcome of this study, instead of hinges 
rubber bearing pads were modeled using the same type of elements 
that were used for the facing panels. 

 
Fig. 4. Modeling of discrete bearing pads in plane strain analysis. 

Taking into account the cross sectional area of the rubber pad, 
which is 0.0085 m2, the axial stiffness is equal to 400 kN/m. 
However, this refers to one pad with dimensions 100 mm * 85 mm 
* 60 mm. In plane strain analysis illustrated in Fig. 4, the pad was 
replaced by a plate whose equivalent axial stiffness was calculated 
as 533.3 kN/m. Knowing the thickness of the pads (d = 0.085 m), 
the bending stiffness per linear meter was found equal to 0.321 
kNm2/m. Note that pads are assumed to be weightless and to have 
a very high Poisson's ratio of 0.495. 
In the present finite element model, elements were placed between 
the precast concrete panel and the backfill soil interface. The 
interfaces were also placed between all modular block elements. 
The strength reduction factor value was chosen as 0.7 between 
backfill soil and precast concrete panel and between modular 
blocks. 
The Finite Element Model was subjected to a base excitation, 
which is a variable amplitude harmonic motion. The prescribed 
displacement feature of the program at the base of the wall was 
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employed to assign the constant frequency cyclic load. The cyclic 
load was applied at equal time intervals of 0.05 s and its variation 
with time is shown in Fig. 5. This accelerogram has been accepted 
as a good representation of commonly encountered accelerograms 
[3]. The peak amplitude of the input acceleration was selected as 
0.2, 0.4 and 0.6 g. A frequency of 3 Hz was selected to represent a 
typical predominant frequency of medium to high frequency 
content earthquake. 

 
Fig. 5. Base harmonic acceleration history used as cyclic load in the 

analysis (apeak=0.2g). 

3.2. Validation Analysis of Numerical Model 

In order to validate the finite element modeling technique under 
earthquake loading conditions, the results of a shaking table test 
reported by Ling et al. [13] were used and the results were 
compared and reported by Guler et al. [7].  
To check the accuracy of the Finite Element Model (FEM) used in 
this study, results of a 1-g shaking test reported by Anastasopoulos 
et al. [1] were modeled using the same Finite Element modeling 
technique.  
Anastasopoulos et al. [1] performed tests on back to back retaining 
walls. The configuration details of model setup are shown in Fig. 
6. Two different steel wire meshes were used in order to simulate 
flexible and stiff reinforcements. Plane strain idealization of 
discrete reinforcement elements was used in order to transform 3-
D conditions of physical test to a 2-D finite element model 
according to the study of Zevgolis [20]. After this adjustment, the 
elastic axial stiffness parameters which were required for 
numerical analysis were calculated as EA = 400 kN/m for stiff and 
40 kN/m for flexible reinforcement.  
The facing panels were made of t=2 mm Plexiglas strips (E = 3 
GPa), and were connected to each other through a customized 
connection using a ''shear key'' configuration to block relative 
horizontal displacements between consecutive panels but allowing 
differential rotation (as in reality). Based on these properties, the 
axial stiffness EA was calculated as 6,000 kN/m. Bending stiffness 
EI was found as 2x10-3 kNm2/m. Poisson’s ratio and unit weight of 
Plexiglas strip facing were assigned as 0.37 and 0.0234 kN/m/m 
respectively for numerical analysis. 
The backfill consisted of dry “longstone” sand, a very fine and 
uniform quartz sand industrially produced with adequate quality 
control. Test model was constructed with Dr = 44% to represent 
the loose state (Table 3). 
 

 
Fig. 6. Shaking table model setup showing geometry and instrumentation. 

[1] 

Table 3. Longstone sand index properties of validation model. [1]  

 
The model was subjected to an ''extreme seismic shaking 60-cycle 
cos sweep'' of dominant period To=0.5 s and PGA= 1.0 g (Fig. 7). 

 
Fig. 7. 60-cycle ''extreme shaking'' synthetic excitation [1]. 

Although not realistic (both in terms of retained soil density and 
shaking intensity), this test was conducted to derive deeper insights 
on the ultimate capacity of reinforced soil walls. 

 
Fig.8. Shaking table test results after harmonic motion. (60-cycle ''cos 

sweep'' of dominant period To=0.5 s and PGA= 1.0 g) [1]. 
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Fig. 8 shows the final position of the wall after 60-cycle ''cos 
sweep'' seismic excitation which has a period T0=0.5 s and PGA= 
1g. Fig. 9. shows the Plaxis models final deformation position. 
The order of shaking events started with smaller intensity records, 
followed by the larger ones, and completed with multi-cycle 
artificial motions: the two 30-cycle so-called ''cos sweeps'' of 
PGA=0.5 g and To=0.4 or 0.8 s.  

 
Fig. 10. Multi-cycle accelerograms used as seismic excitations [1]. 

The results of the numerical analyses are summarized in Fig. 11 
and Fig. 12. The results of FEM model are compared directly with 
shaking table test results to serve as validation of the numerical 
analysis and of the Mohr Coulomb model. 
As depicted in Fig. 11 and Fig. 12 the numerical prediction 
(analysis of shaking table model) compares well with the results of 
the shaking table tests for the two artificial 30-cycle cos-sweeps. 
The numerical analysis underestimates the cyclic component of the 
horizontal (lateral) wall displacement, but the examined herein 
(reinforcement stiffness and dominant period of residual 
displacement. 

 
Fig. 11. Wall displacement time histories for the multi-cycle seismic 

excitation of T=0.4 s  

 
Fig.12. Wall displacement time histories for the multicycle seismic 

excitation of T=0.8s 

3.3. ANN Analysis 

In this study, twelve input and one output parameters were used in 
order to predict the permanent displacement of back to back 
retaining walls. Five of them were about wall geometry illustrated 
in Fig. 13 as; wall height (H) varied between 5m and 10m, 
reinforcement length (L), length over height ratio (L) changed 
between 0.5 and 2, vertical spacing of reinforcement (Sv) varied 
between 0.2m and 0.8m, facing type (modular block and precast 
concrete panel). 

 
Fig. 13. Back to back retaining wall geometry. 

The other seven parameters were about intensity measures of 
dynamic loading as PGA (m/s2), PGV (m/s), EPA (m/s2), AI 
(m/s), CAV (m/s), ASI (m/s), VSI (m). The program Seismosignal 
was used to obtain the intensity measure results for a given 
acceleration time history. Table 4. gives the results of three 
harmonic ground motion analyses. 

Table 4. Seismosignal results of harmonic motion. 

 
ANN was initially trained using a set of experimental data obtained 
from the computer simulations of FE models of the back to back 
wall and this set of data was called  training data. Design of ANN 

Fig. 9. Plaxis output after harmonic motion. (60-cycle ''cos sweep'' of 
dominant period To=0.5 s and PGA= 1.0 g). 
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architecture consists of determining the number of layers, the 
number of neurons in each layer, activation functions of the 
neurons and the learning algorithm for the network. The most 
common ANN architecture is a multi-layer feed-forward structure 
also known as a multilayer perceptron (MLP) trained by Back-
Propagation (BP) algorithm [9]. There are three different types of 
layers in a MLP: an input layer representing the input design 
variables, an output layer representing the response, and a number 
of hidden layers that perform the mapping of the input data before 
they enter the output layer. (Fig. 14) 

 
Fig. 14. Multi-layer perceptron (MLP) with three layers. 

Other than the training data, validation data were used during the 
learning process. The learning halts when the error of the 
validation data falls below a threshold value or when a maximum 
number of iterations (epochs) is reached. Finally, the performance 
of the network was estimated using independent test data that had 
not been used in the learning process. The mean square error 
(MSE) is generally used for calculating the error. For this study, 
the Levenberg-Marquardt (LM) algorithm was adopted for its 
efficiency in training MLP. The details of the back propagation 
(BP) algorithm can be found in the literature [8].  

4. RESULTS 
4.1. Finite Element Analysis Results 

Fig. 15 shows deformed models lateral displacement |𝑢𝑢𝑥𝑥| after 
seismic loading by the means of shadings. Color scale on the right 
side of deformed model shows the displacement distributions of all 
systems. 
Walls with modular block facing and precast concrete panel facing 
have different displacement increments behaviour as can be seen 
from Fig. 16 and Fig. 17. Also it was obtained from figures that in 
both facing types the permanent displacements increased 
nonlinearly with increasing PGA values. It was observed that this 

increase was more obvious at higher walls for example for a 9 
meter wall the permanent displacements were 17, 28 and 32 cm for 
0.2, 0.4 and 0.6 g PGAs respectively. As an example, for a 5 meter 
wall the permanent displacement values did not vary so much with 
increasing PGA. This on the other hand shows that the relation 
between permanent displacements and wall height is also non-
linear. 

 
Fig. 16. Permanent displacement according to wall height (L/H= 0.7, Sv 

=40cm, modular block facing). 

 
Fig.17. Permanent displacement according to wall height (L/H= 0.7, Sv 

=40cm, precast concrete panel facing). 

Relative displacement δr is the ratio of maximum displacement to 
wall height. Fig.18 shows the variation of δr values for L/H ratios 
for a wall model example where Sv=0.4m and H=7m obtained 
from FEM analysis. It can be observed that the relative 
displacements increased nonlinearly with increasing PGA and the 
differentiation was more obvious between L/H ratios of 0,7 and 1. 
Especially for a PGA of 0.2g it is also clearly seen that the 

Fig. 15. Deformed mesh after seismic loading (PGA= 0.2g).  
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relationship between relative displacement and L/H ratio is also 
non-linear. 

 
Fig.18. Relative displacement factors according to L/H. (Sv=40 cm, 

H=7m) 

As can be seen in Fig.19 displacement values normalized by height 
are increased with increasing vertical spacing between 
reinforcements. 

 
Fig. 19. Displacement / Height according to vertical spacing Sv. (L/H=0.7 

H=7 m). 

4.2. ANN Regression Analysis Result 

Squared Error (MSE) is performance metric adopted to determine 
the network performance, while regressions; R is used to measure 
the correlation between outputs and targets. The fitting curve 
between targets with inputs is shown in Fig.20 and the best 
validation performance is approached at epoch 10. 

 

 
Fig. 20. Validation performance. 

 
Fig. 21. Fitting curve between targets with inputs. 

The neural network is trained and validated using the first batch of 
110 learning points and the performance is evaluated using 83 test 
points. The performance of the ANN regression model for the first 
83 learning points using 10 neurons in the hidden layer can be seen 
in Fig. 21. Even for a relatively low number of learning points, 
ANN regression performs well on the test data. Totally 276 data 
are distributed between training, validating and testing in different 
percentages. Despite distribution of the data in various proportions, 
no significant change about R has been seen in Table 5. 

Table 5. Results for MSE and regression for Different data distribution. 

 
The same geometric input with each intensity measures gives high 
coefficients of correlation for testing data as seen in Table 6. It is 
assumed that this result was obtained because a harmonic motion 
was used in this study. 

Table 6. Search for each IM input features. 

 
The agreement of the neural network predicted displacements and 
FEA results were encouraging, as shown in Table 7. 

Table 7. Comparison of neural network predictions and FEA results. 
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5. CONCLUSION 
In the numerical analysis part of the study permanent 
displacements of back to back reinforced segmental retaining walls 
under earthquake loading condition were calculated with the finite 
elements program Plaxis. Three harmonic motions which have 
PGA values 0.2g, 0.4g and 0.6g respectively with a frequency of 3 
Hz were performed. 
The investigated parameters such as height of the wall, type of 
facing (modular block and concrete panel), reinforcement length 
and spacing of reinforcement led to the following results. The 
permanent displacement increased with the height of the wall. 
Permanent displacements of modular block facing walls were more 
than precast concrete panel facing. Increasing reinforcement length 
decreased the permanent displacements of wall facing and 
maximum tensile stress on reinforcement. Decreased 
reinforcement vertical spacing (Sv) caused a reduction on the 
permanent displacements of wall facing. The peak ground 
acceleration had strong influence on the dynamic response of the 
walls. As an example, when the peak ground acceleration was 0.2g, 
0.4g, and 0.6g permanent displacements for a wall with 9m height 
were 17cm, 28cm, and 32cm, respectively. It can be seen that peak 
ground acceleration and permanent displacements were correlated 
nonlinearly. Also the permanent displacement and L/H ratio 
correlation was nonlinear. 
The study intended to use the ANN model in order to make reliable 
predictions for geosynthetic reinforced wall design and to check 
whether the results of finite element analysis results fall between 
reasonable limits.  
The ANN was used to synthesize data derived from finite element 
studies on back to back geosynthetic reinforced retaining walls 
under seismic excitation. The input parameters used in the model 
were H, L, L/H, Sv, Ftype, PGA, PGV, EPA, AI, CAV, ASI, and 
VSI. The permanent displacement of the wall was chosen the only 
output. 
The important point of the seismic evaluation of the seismic 
response of the back to back MSE retaining wall is the selection of 
ground motion intensity measure IM for different earthquakes. In 
this study due to constant frequency (3 Hz) value of harmonic 
motions with different PGAs (0.2g, 0.4g and 0.6g), intensity 
measures; PGV, EPA, CAV, ASI, and VSI are linearly correlated 
with PGA values but AI is not. Therefore any of these IMs is 
enough to approach high coefficients of correlated ANN model. 
Using ANN regression analysis, the scatter of the predicted ANN 
displacements relative to the displacements obtained using the 
finite element method were assessed. The results produced high 
coefficients of correlation for training and testing data of 0.997 and 
0.989, respectively. So, the agreement of the neural network 
predicted displacements and deformation classification with Finite 
Element Analyses results were encouraging by the means of 
correlation since the coefficient values of R=0.99 for ANN 
regression analysis were achieved. 
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