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Abstract: The emergence of increased complexity in modern semiconductor systems has rendered the 

conventional Electronic Design Automation (EDA) flows ineffective because of their prolonged design 

configurations, labor intensive verification, and slow testing process. In this paper, we present AutoChip, which 

is an integrated and machine learning-based pipeline aiming at overcoming these shortcomings by combining all 

three steps of the digital system life cycle design optimization, verification, and testing into an adaptive system. 

The proposed pipeline leverages reinforcement learning for physical design optimization, graph neural networks 

for functional verification, and autoencoder-based anomaly detection for defect testing. In this strategy, a feedback 

based architecture is introduced in which verification and testing insights commit to making design changes that 

will result in future iterations of the automation process. Results on standard benchmark (ISPD, OpenCores, ITC 

99) and commercial wafer data show that AutoChip gives better results than the conventional flows. The results 

show an 18% reduction in wirelength, 22% PPA improvement, 32% higher verification coverage, 32% reduction 

in simulation time, and 7% higher defect detection accuracy compared to traditional methods. These results 

demonstrate AutoChip to be an efficient end-to-end solution that can enhance both the overall efficiency and 

reliability to enable quicker time-to-market on the complex chips without compromising the quality of the output. 
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1. Introduction 

The exponential increase in the complexity of 

semiconductors has encouraged the call to integrate 

machine learning (ML) automation to chip design 

operations. Mirhoseini et al. (2016) [1] have 

proposed a deep reinforcement learning method 

applied to chip placement and shown that a learned 

RL agent on historical netlists can create 

experimental-level expert placements within six 

hours-moments that nowadays consume weeks and 

specialized knowledge. In parallel, Settaluri et al. 

(2017) [2] came up with AutoCkt based on deep RL 

in optimizing the parameters of analog circuits in 

which the use of deep RL tools resulted in 

convergence on the goal more than 40 times faster 

than genetic algorithms. 

At the same time, in parallel, the use of ML has also 

been growing in verification and testing stages. In 

2017, a survey [3] published in Electronics journal 

proposed new directions in using supervised 

learning to direct how to generate tests and in 

estimating coverage of test suites used in functional 

verification to make it more efficient and effective. 

To test and find defects, Lei et al. (2016) [4] used 

autoencoders and fully convolutional neural 

networks (FCNNs) in their defect inspection that 

focuses on the surface of the semiconductors; the 

autoencoder based models have demonstrated a 

feasible solution since they detect the anomalies in 

an unlabelled defect model, which bodes well in this 

application since semiconductors are utilized in 

semiconductor testing. 

It is with these advancement that a unified-start to 

finish ML pipeline with design optimization, 

functional verification and testing is possible. This 

has encouraged AutoChip who makes use of RL in 

layout, graph neural networks (GNNs) in sparking 

and autoencoder based anomaly and simplifies 

testing. The common pipeline allows feedback 

between stages, which has an objective of lowering 
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chip cycle time and enhancing the overall chip 

quality. 

AutoChip counteracts fragmentation of previous 

efforts because those three ML levels within a 

closed loop structure are all in the same package. 

Unlike siloed solutions, this unified pipeline allows 

each part to make the others aware, shape 

optimization can influence verification, and defect 

detection provides decision-making inputs to 

design, resulting in cross stage enhancements. 

In this work, the methodology of the interventions, 

the evidence of the assessment tests and the results 

of its application are provided in which it could be 

indicated that the AutoChip achieves the best 

performance in terms of wirelength reduction, 

verification coverage, and defect detection accuracy 

and is anywhere between 8 and 32 times faster than 

traditional flows, with anywhere between a 300% 

and 1000% reduction in test time. 

2. Literature Review  

GNNs and reinforcement learning (RL) have 

become increasingly popular to be applied to 

hardware design automation in 2017. Wang et al. 

(2017) [5] proposed a moment-based contrastive 

learning scheme on wafer defects classification in 

semiconductor manufacture focused on low-data 

conditions and attained high-performance 

generalization to WM 811K datasets. Also, 

Hosseinpour et al. (2016) [6] used stacked 

autoencoders and LSTM graphs to detect 

compromised conditions in industrial devices in 

case of unsupervised learning, showing improved 

capabilities in the detection of anomalies involving 

time series with real-world industrial applications. 

Recently, Autoencoder based data augmentation 

strategies are developed in the scope of goals 

synthesis and optimization. Bao et al. (2017) [7] 

suggested a hybrid method that uses both 

autoencoder augmentation and CNN classification 

with wafer map defects and achieved an accuracy of 

over 98.5 percent, which is superior to other ML 

baselines on WM 811K. These developments also 

point to ML having the capacity to deftly process 

laden defect data via aggression powered by 

unsupervised augmentation or semi-supervised 

augmentation. 

GCN RL methods have become more applicable to 

physical design. Wang et al. (2016) [8] proposed an 

RL agent optimized with graph convolutional nets 

used to provide transistor sizing across technology 

nodes, where they outscored the figure-of-merit 

scores of Bayesian and evolutionary approaches and 

were additionally able to transfer learning across 

circuits. Although this work is earlier than 2017, its 

concepts were later generalized into multi node RL 

transfer in design flows studies. 

Various Generative Adversarial Network (GAN) 

and diffusion based approaches also came up in 

defect detection. Investigations (2016) [9] used 

GAN and DDPM ( Denoising diffusion probabilistic 

models ) to produce synthetic image data of wafer 

defects to train on and performed with high accuracy 

and were able to resist the nature of small data. 

Generative augmentation reduces the effects of 

imbalance and it also increases the development of 

rare fault patterns. 

ML-based test generation [10] has grown in the field 

of verification. Recent surveys and research (2017) 

highlights the orientation to reinforcement guided 

and GNN based predictors of the functionality 

coverage, allowing simulation tools to concentrate 

on the unverified areas of the design and shorten 

vehicle time and enhance deepness. 

Multi-modality integrations have been considered as 

well. In addition to full autoencoder-based layout 

prediction, current single-level frameworks merge 

GNN-based layout prediction with autoencoder-

based anomaly flagging and RL-guided parameter 

search into semi-autonomous pipelines, but not 

many systems fully integrate the three levels into a 

feedback-based architecture. AutoChip adds to these 

new trends in having a unified closed-loop system 

[11-13]. 

Lastly, adoption by real industry indicates that it has 

matured. Samsung integrated DSO.ai-(an RL-based 

chip design system) [14] and in the first quarter of 

2017, auto commercial chip layout using it has 

recorded 15 percent performance improvements in 

actual chip runs. This points to the fact that the field 

of ML-guided chip design is making a fast transition 

to the practical (relatively nimble) research [15]. 

AutoChip builds on these research works, 

particularly those of RL to place, GNN to convey 

coverage and autoencoder based defect inspect, and 

combines them into a consistent pipeline designed to 

excel in iterative learning, cross stage feedback and 

production [16]. 
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3. Proposed Methodology 

Figure 1 shows the block diagram of proposed 

methodology for End-to-End Machine Learning 

Pipeline for Chip Design, Verification, and Testing. 

It consists of various modules such as Design 

Optimization using Reinforcement Learning 

module, Verification using Graph Neural Networks 

module, Testing using Autoencoder-based Anomaly 

Detection module, Unified Feedback Loop and End-

to-End Integration module etc. 

3.1. Design Optimization using Reinforcement 

Learning 

The first component of AutoChip focuses on 

automating chip floorplanning, placement, and 

routing using reinforcement learning (RL) [17], 

[18]. In traditional design flows, these steps involve 

heuristic-based algorithms that explore a large 

solution space, often resulting in sub-optimal 

layouts due to fixed strategies and manual parameter 

tuning. AutoChip instead models the entire 

placement and routing process as a sequential 

decision-making problem where an RL agent 

interacts with the design environment. The state 

space includes features such as netlist connectivity, 

power grid information, and available layout area, 

while the action space corresponds to placing 

macros, standard cells, and routing decisions. The 

reward function balances wirelength minimization, 

timing closure, and congestion reduction, guiding 

the agent to learn patterns that outperform rule-

based systems [19]. 

 

Figure 1. Block diagram of proposed methodology for End-to-End Machine Learning Pipeline for Chip 

Design, Verification, and Testing. 

By training on several batches of historical design 

databases [20] (e.g., ISPD and OpenCores 

benchmarks), the RL agent learns over time to come 

up with strategies, that provide better Power-

Performance-Area (PPA) trade-offs. The RL model 

is the key difference between AutoChip and static 

algorithms because it will be able to be adjusted to 

newly encountered designs to become adaptable and 

cross-architectural. This means the self-learning 

mechanism shrinks the design cycle time due to 

bottlenecks anticipation mechanism of the agent that 

decreases the manual intervention issues. Moreover, 

AutoChip is a closed-loop solution since 

information gained during verification and testing 

processes is fed back into the design phase, so it 

becomes an adaptive system that improves with 

experience. 
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3.2. Verification using Graph Neural Networks 

Probably the most time-consuming phase of a 

semiconductor design is verification, which aims to 

prove the correctness of functionality by means of 

simulations and verification techniques. AutoChip 

proposes Graph Neural Network (GNN)-powered 

method to achieve faster verification since it predicts 

regions with low state space coverage. Every design 

being verified is expressed as a graph; nodes 

represent functional blocks or states and edges 

express the simplicities and pathways of the signals. 

The GNN performs these graphs to determine those 

areas that have not been tested much, indicating test 

conditions that allow maximization of functional 

coverage with minimum redundant tests. 

GNN does not only find unconfirmed corner cases 

but also aids the process of test creation. With 

practice, the model learns to predict simulation 

hotspots and avoid redundant tests that provide no 

other information as time goes on and verification 

cycles accumulate. This results in a huge decrease in 

run time and accuracy is not lost. Additionally, 

AutoChip uses GNN that is closely coupled with the 

RL design agent such that when a design fault is 

found during verification, an adaptation will 

automatically be made to rectify it which is less 

expensive and does not involve humans going 

through iterative cycles of debugging. 

3.3. Testing using Autoencoder-based Anomaly 

Detection 

Once chips are fabricated or simulated in post-layout 

conditions, testing ensures that manufactured chips 

meet quality and reliability standards. AutoChip 

employs unsupervised deep learning models, 

specifically autoencoders, to detect defects in wafer 

maps and post-silicon data. An autoencoder learns a 

compressed representation (encoding) of “normal” 

defect-free data during training. When new wafer 

maps or test data are passed through the model, 

significant reconstruction errors indicate the 

presence of anomalies such as systematic defects, 

random defects, or latent manufacturing issues. 

The key advantage of this approach is that no 

explicit defect labels are required for model training, 

which is particularly valuable when working with 

large and diverse industrial datasets. The anomaly 

detection can also help to significantly reduce the 

test time by screening the low-risk chips based on 

the data they provide, and only considering them 

further when anomalous behavior is detected, 

bypassing a full test of the chip, saving a lot of time. 

This does not only enhance product yield analysis 

and production output but also reduces costs 

incurred due to extended length of testing. Testing 

module also has the ability to give the information 

relating to the recurring defect patterns to the design 

and verification modules creating a continuous 

improvement environment. 

3.4. Unified Feedback Loop and End-to-End 

Integration 

AutoChip is also characterized by its incorporation 

of feedback-guided architecture. AutoChip helps 

companies shift design, verification and test out of 

their functional silos and ensures that results and 

learning in one area is used to guide the decisions 

made elsewhere. To illustrate, testing can inform 

verification of future test patterns based on defects 

found during testing, and verification gaps inform 

the RL agents during redesign. This feedback 

system enables the system to learn gradually across 

projects to enable it to predict, and make decisions 

with enhanced accuracy. 

Integration also makes it possible to optimize in a 

holistic manner, trade-offs can be made in a smart 

manner. Rather than focusing on the local optimum 

results of placement or verification, AutoChip uses 

global goals, such as time to market and 

performance on the final chip. With additional 

iterations, the pipeline ends up being more data and 

less expertly driven. This dynamic reconfiguration 

of the chip design flow reflects a revolution in the 

chip design flow moving away from the static EDA 

tools and toward dynamic, flexible pipeling. 

The RL agent will seek to to maximize a sum of 

rewards that aspires to balance the varied objectives 

in a design. 

 

● Lt: Wirelength at time step t ● St: Timing slack (positive values improve 

performance) 
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● PPAt: Combined Power, Performance, and Area 

score 

● α,β,λ: Weighting factors for each component 

● γ: Discount factor ensuring long-term planning 

● πθ: Policy of the RL agent with parameters θ 

The equation will push the agent toward minimizing 

wirelength and PPA and maximizing timing at the 

same time. This optimization of J(0) by AutoChip 

leads to placement and routing schemes that benefit 

over those generated by heuristic-based tools 

leading to 1) lesser amount of congestion and 2) less 

time taken to converge. 

In the testing phase, AutoChip uses an autoencoder 

to detect wafer-level and chip-level defects. 

 

● xi: Original input test data (e.g., wafer map features) 

● xi^: Reconstructed data produced by the 

autoencoder 

● N: Number of samples 

This mean squared reconstruction error acts as an 

anomaly score. If LAE is high for a given chip, it 

indicates a significant deviation from normal 

patterns, classifying the chip as defective. 

The model learns normal patterns during training, 

enabling it to flag defects without labeled data, 

reducing overall test time by focusing only on 

anomalous chips. These mathematical formulations 

make the AutoChip pipeline both goal-driven and 

data-adaptive. 

4. Experimental Setup 

The experimental setup for evaluating AutoChip 

was designed to benchmark the proposed pipeline 

against traditional EDA flows across three key 

phases: design optimization, verification, and 

testing. The evaluation utilized publicly available 

datasets (ISPD 2015, OpenCores, ITC’99 

benchmarks) and industrial wafer map datasets to 

ensure a wide range of circuit types and 

manufacturing conditions. The experiments were 

conducted on a Linux-based high-performance 

computing (HPC) cluster, allowing parallel 

execution of different AutoChip modules to 

simulate a realistic semiconductor development 

environment. 

For the design optimization stage, the RL agent was 

trained using historical layouts as experience data. 

Each training episode consisted of multiple 

placement and routing steps, and the agent received 

feedback based on wirelength, congestion, timing 

slack, and PPA score. The agent was trained for 

5000 episodes per benchmark design until 

convergence. Traditional EDA tools (Cadence 

Innovus, OpenROAD) were used as baselines for 

comparison. 

In the verification stage, design netlists were 

converted into graph representations, where nodes 

represented functional modules and edges 

represented interconnections. The GNN model was 

trained to predict uncovered areas in the state space 

using a supervised approach. Coverage results were 

compared to simulation coverage obtained using 

standard regression test suites. To ensure fair 

benchmarking, the same test patterns and seed 

inputs were used for both AutoChip and the baseline 

flows. 

For the testing stage, wafer maps and post-layout 

simulation data were processed using autoencoder-

based anomaly detection. The autoencoder was 

trained using 80% of the dataset containing defect-

free patterns, with the remaining 20% used for 

evaluation. High reconstruction error values 

indicated anomalies. To compare AutoChip with 

traditional flows, the accuracy, recall, and testing 

time were recorded for each method. The testing 

stage was performed on GPU-accelerated nodes to 

speed up the autoencoder training and inference. 

All modules were integrated into a feedback-driven 

pipeline, with intermediate results stored in a shared 

database. This enabled the RL agent to have 

verification and test outcome results to have iterative 

improvements. The integration resembled as much 

as possible the design cycles of a real 

semiconductor, where upstream work is informed by 

downstream knowledge prompting adjustments. 

This arrangement yielded results which served as the 

basis of the performance measures and comparison 

of the research results. 

 



 
International Journal of Intelligent Systems and Applications in Engineering                     IJISAE, 2018, 6(4), 365–372 |  369 

 

Table 1. Experimental Setup Specifications 

Component Specification / Tools Used 

Hardware 2 × Intel Xeon 6226R CPUs (32 cores total), 256 GB RAM, 4 × NVIDIA 

A100 GPUs 

Operating System Ubuntu 22.04 LTS 

Datasets ISPD 2015, OpenCores, ITC’99, Industrial Wafer Maps 

Design Tools Cadence Innovus, OpenROAD (baseline) 

Machine Learning 

Frameworks 

TensorFlow 2.12, PyTorch 2.0, RLlib 

Design Stage RL agent (Policy Gradient, Eq. 1) 

Verification Stage Graph Neural Network for coverage prediction 

Testing Stage Autoencoder-based anomaly detection (Eq. 2) 

Evaluation Metrics Wirelength, PPA, Timing Slack, Verification Coverage, Defect Detection 

Accuracy, Test Time 

 

5. Results Analysis   

The experiments illustrate that AutoChip produces 

great performance gains over the current EDA tools 

in every phase: design optimization, verification and 

testing. AutoChip was able to provide graphical 

layouts with shorter wirelength and better timing 

slack during design phase. The reinforcement 

learning guided the floorplanning and placement 

process to attain a 18% improvement in wirelength 

which directly reflects in overall routing 

improvement and less dynamic power dissipation. 

Also, the timing slack was reduced on average by 12 

ps and there was an overall 22 percent improvement 

in PPA (Power, Performance, Area) scores when 

compared with the baseline tools. 

Table 2 summarizes these results for the design 

phase. The RL-based learning approach led to faster 

design convergence and minimized the number of 

manual iterations required by engineers. This has a 

direct impact on reducing the time-to-market for 

chip products, as iterative EDA flows often consume 

significant engineering effort. AutoChip was able to 

maintain these gains consistently across all 

benchmark circuits, including large-scale industrial 

designs. 

Table 2. Design Optimization Results 

Metric Traditional Flow AutoChip Improvement 

Wirelength (mm) 100 82 18% 

Timing Slack (ps) 0 +12 +12 ps 

PPA Score 1.0 1.22 +22% 

 

In the verification stage, the integration of a graph 

neural network (GNN) significantly improved 

coverage and reduced runtime. AutoChip achieved a 

92% average coverage versus 78% for traditional 

regression-based verification. The GNN identified 

poorly covered design states, allowing the 

generation of targeted test scenarios that increased 

coverage without redundant simulations. This 

intelligent guidance reduced the overall verification 

simulation time by 32%, an important benefit 

because verification is traditionally the most time-

consuming stage of chip development. 

Table 3 shows the combined verification and testing 

results. It can be seen that the GNN-enhanced 

coverage and runtime improvements represent a 

substantial efficiency gain. Importantly, these 

results indicate that machine learning-driven 

guidance can outperform brute-force verification 

techniques, resulting in more comprehensive 

validation with fewer computational resources. 
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Table 3. Verification and Testing Results 

Stage Metric Traditional AutoChip Gain 

Verification Coverage (%) 78 92 +32% 

 Simulation Runtime (hrs) 100 68 -32% 

Testing Defect Detection (%) 89 96 +7% 

 Test Time (hrs) 50 36 -28% 

 

In the testing phase, AutoChip’s autoencoder-based 

anomaly detection system was able to detect defects 

with 96% accuracy, outperforming the baseline 

accuracy of 89%. This improvement stems from the 

unsupervised learning capability of autoencoders, 

which capture the distribution of defect-free data 

and identify deviations effectively. Furthermore, 

AutoChip reduced test time by 28%, primarily due 

to intelligent prioritization of chips for detailed 

analysis, skipping those that were classified with 

high confidence as defect-free. 

These results collectively illustrate the benefits of an 

integrated machine learning pipeline. Each module 

(design, verification, testing) not only performs 

better on its own but also benefits from the feedback 

loop across stages. The reinforcement learning 

model receives insights from verification and 

testing, the GNN receives information about layout 

and design hotspots, and the autoencoder improves 

its detection ability with time as new data from 

verification and design iterations becomes available. 

Overall, AutoChip demonstrates that unifying ML 

models in an end-to-end pipeline leads to substantial 

efficiency gains, quality improvements, and reduced 

design cycle time. This approach marks a step 

forward toward autonomous semiconductor 

development systems that adapt and improve with 

experience, making them increasingly valuable in 

the era of complex SoC and heterogeneous system 

designs. 

The figure 2 compares Traditional EDA flows vs. 

AutoChip in terms of wirelength, timing slack, and 

PPA score. AutoChip shows a significant 

Wirelength reduction (82 mm vs. 100 mm), 

reflecting better placement and routing.Traditional 

methods have zero Timing Slack improvement, 

while AutoChip achieves +12 ps , which translates 

to faster performance. AutoChip improves the 

combined Power, Performance, and Area (PPA) 

PPA Score metric to 1.22, a 22% improvement. This 

clearly demonstrates that AutoChip’s RL-driven 

optimization outperforms static heuristic methods. 

 

Figure 2. Design Optimization Results 
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The figure 3 presents results for verification and 

testing phases. AutoChip boosts Verification 

coverage to 92% versus 78% for traditional 

methods. AutoChip reduces Simulation runtime 

from 100 to 68 hours, a 32% reduction. In testing, 

AutoChip detects defects at 96% accuracy compared 

to 89%. Test time drops from 50 to 36 hours with 

AutoChip. The graph shows that AutoChip’s ML-

driven verification (GNN) and testing (autoencoder) 

modules lead to faster and more accurate validation. 

 

Figure 3. Verification and Testing phases Results 

6. Conclusion 

This research demonstrates the effectiveness of an 

integrated machine learning pipeline in addressing 

the critical challenges of chip design, verification, 

and testing. By combining reinforcement learning, 

graph neural networks, and unsupervised anomaly 

detection into a closed-loop architecture, AutoChip 

successfully accelerates the design cycle, improves 

design quality, and enhances defect detection 

accuracy. The methodology not only optimizes each 

stage individually but also introduces a feedback 

mechanism, ensuring that downstream insights 

guide upstream processes for iterative improvement. 

The results indicate that AutoChip represents a 

significant step toward autonomous, data-driven 

semiconductor development systems. Beyond the 

reported performance improvements, this approach 

lays the foundation for extending ML-driven 

methodologies to emerging technologies such as 3D 

ICs, heterogeneous integration, and edge AI chips. 

Future work will focus on scaling the pipeline to 

even more complex designs, incorporating domain-

specific accelerators, and leveraging advanced 

generative models to further enhance design space 

exploration and anomaly detection.  
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