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Abstract:  Predicting defect density of semiconductor wafer is a critical process in the manufacturing of 

semiconductor products since it has direct effect on product yield, cost-effectiveness and effort in process 

optimization. In this research work, we present a data-driven ensemble learning framework to predict defect 

density accurately by combining the process parameters, inline metrology, and environmental explanatory 

obtained through the process. It has a main four-step structure, preprocessing of data, feature engineering, training 

of a model, and evaluation. Each individual lot of wafers at a 300mm semiconductor fabrication facility was 

collected as the set of 150,000 data points that were selected, and advanced data-reduction and exploration 

methods have been used to combat the high dimensionality and complexity of manufacturing data with principal 

component analysis (PCA) and stacking ensembles. According to the experimental results, the stacking ensemble 

model has provided better results as compared with singular learning schemes, such as Random Forest, XGBoost 

and LightGBM, where its R 2 value is 0.92 and an RMSE of 0.038. The feature importance analysis identified 

lithography overlay error, the change of the deposition temperature, and humidity in the environment, as having 

the highest impact on defect density. The study will develop a strong predictive model that will facilitate active 

process variability and minimize defects and ultimately overall semicon moderately processes efficiency. 
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1. Introduction 

The entire process of semiconductor wafers 

fabrication is a very complicated process involving 

many steps, and precise control of hundreds of 

parameters is needed to guarantee high product yield 

and quality. With the shrinking of device geometries 

and increase in production volumetrics, the 

sensitivity of defect density and the total yield that 

are influenced by the minute process variations has 

also expanded (Lee et al., 2020) [1]. Defect density 

is a crucial metric that directly affects the 

performance and cost of a product is the density of 

defects in a unit area of a fabrication wafer, denoted 

as defined by the number of defects per unit area on 

a wafer. Effective forecasting of defect 

concentration may create a considerable effect on 

the manufacturing process as the company would be 

allowed to interfere in the production cycle 

proactively (Kumar et al., 2020) [2]. 

These challenges have been tackled using data-

driven methods within the industry of 

semiconductor manufacturers. Large amounts of 

process tools, inline metrology, and environmental 

monitoring tools generate large amounts of data in 

current fabrication plants. Nevertheless, these 

datasets are highly dimensional, complex, and 

therefore require novel methods that will ensure that 

useful information is gathered and returned to assist 

in action decisions (Huang et al., 2019) [3]. It has 

necessitated the transition to more advanced 

methods of machine learning (ML) and artificial 

intelligence (AI) in process optimization and defect 

analysis, because of these restrictions. 

Machine learning technologies have also 

demonstrated the potential to uncover nonlinear 

throwbacks and multidimensional interrelations 

between the process variables that influence the 

quality of the wafers. Ensemble learning, in 

particular, combines the strengths of multiple 

models to achieve superior prediction performance 
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compared to single models (Zhang et al., 2020) [4]. 

Such methods as bagging, boosting, and stacking 

provide some sound solutions when applied to noisy 

and multivariate data, including defect density 

forecast within the semiconductor manufacturing 

process. 

Even with these steps, aspects of many of the current 

methods are focused either too much on the process 

parameters or the metrology data and do not use the 

synergy of integrating multi-source heterogeneous 

data sources. Moreover, the use of a single machine 

learning algorithm that most of the previous studies 

have used does not always ensure the generalizing 

potential of the model (Gao et al., 2020) [5]. An 

effective way to combine various data sources 

efficiently and deploy sophisticated models of 

ensemble without building barriers in IT 

infrastructure is urgently needed (Misra, Sampa, et 

al., 2019) [6]. 

The presented study can fill these gaps as a novel 

data-driven ensemble learning framework that 

combines process, metrology, and environmental 

data is proposed to predict defect density. This paper 

exemplifies an effective explanation of how 

powerful feature engineering methods and a deep 

learning approach of stacking-based ensemble 

model can improve the accuracy and robustness of 

the prediction with already established data 

substantially, leading to enhanced yield and lowered 

costs of manufacturing a semiconductor wafer. 

 

2. Literature Review 

The utilization of machine learning in the 

semiconductor production has been soaring in 

relation to the constantly moving application of 

dual-model solutions to hybrid and ensemble 

implementations. Wang et al. (2019) [7] explored 

the applications of gradient boosting algorithms in 

detecting defects, showing that it performs better 

than classical regression models yet limitations were 

admitted to be related to the minimal capacity of 

generalizing to a highly dynamic fabrication setting. 

These results show the possible advantages of 

practicing a combined approach of learning 

paradigm through the use of hybrid ensemble 

methods. 

Li and Chen (2020) [8] concentrated more on the 

improvement of wafer defect pattern classification 

through deep learning networks and came up with 

the notion that although some approaches to deep 

learning produced good classification rates 

depending on the mass of a labeled set, in most 

cases, there is ever a lack of properly labeled data in 

the industrial settings. Their contribution establishes 

the benefit of ensemble strategies which have the 

potential to scale down to small data relying on a 

combination of models as opposed to being trained 

on a single set of features. 

In a subsequent study, Zhao et al. (2019) [9] 

recommended a combined forecaster of wafer yield 

based on LightGBM. This work showed that the 

boosting-based models are able to work effectively 

with imbalanced datasets and give interpretable 

ranking of feature importance. Nonetheless, the 

study did not use metrology and environmental 

information, and this presents an area in which 

comparison can go further. 

Gupta et al. (2020) [10] has broadened the 

application of predictive analytics to include multi-

modal data fusion to predict the defects in 

semiconductors. They integrated process data with 

inline inspection images and got an improved rate of 

accuracy as compared to models which used only 

one source of data. This is an indication of the 

significance of ensuring that heterogeneous datasets 

are combined, which is the part of the framework of 

the current research. 

Recent research by Park et al. (2020) [11] researched 

stacking ensemble approaches to preventive 

handling in production of semiconductors. As per 

the results of the study, stacking models always 

showed better results as compared to bagging and 

boosting separately. This finding concurs with the 

existing research hypothesis that stacking ensembles 

have the capability of providing better predictive 

accuracy in terms of defect density prediction due to 

usage of model diversity. 

Singh and Das (2019) [12] investigated how 

environmental parameters, e.g., cleanroom humidity 

and temperature, can be incorporated into predictive 

models. They observed that the defect formation 

could vary greatly depending on environmental 

conditions, which are factors which are usually 

ignored when building a standard structure of defect 

density. This knowledge proves the necessity to 

introduce environmental parameters into the 

suggested framework. 

Additionally, Huang et al. (2018) [13] focused on 

the application of explainable machine learning in 

semiconductor production, proposing that people 

(process engineers) need to trust and take action on 

predictions, at which interpretation becomes a key 

determinant and requirement. Their subsequent 

method of the feature attribution analysis evidenced 
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the fact that explainable ensemble models could 

facilitate the decision-making process and control 

the processes. 

Finally, Tan et al. (2019) [14] showed how key 

features of the processes could be used to improve 

accuracy of models in a domain by combining 

feature engineering with machine learning. Their 

results are also consistent with the hybrid feature-

engineering approach used in this study that 

involves both statistical (such as PCA) and expert-

intensive feature design. 

 

3. Proposed Framework  

Figure 1 shows the block diagram of proposed 

methodology for data-driven framework for 

predicting defect density in semiconductor wafer 

fabrication using ensemble learning. It consists of 

various modules such as Data Preprocessing 

module, Feature Engineering module, Modeling 

module, Evaluation module etc. 

3.1. Data Preprocessing 

The primary and most important part of the 

proposed framework is data preprocessing where the 

raw data gathered in the semiconductor fabs tend to 

comprise missing values, noise, and inconsistencies 

potentially caused by the failure of the sensors, 

delays in data logging, or human errors. In the given 

work, the model included missing values, and the 

imputation method employed was a hybrid one that 

used K-nearest neighbors (KNN) and mode 

imputation approaches in the case of numeric and 

categorical parameters, respectively (Sun, Lifei, et 

al., 2020) [15]. Outlier detection was performed 

using the interquartile range (IQR) method to 

remove extreme values that could distort model 

learning. Furthermore, the dataset was subjected to 

normalization using Z-score transformation so that 

all features contributed equally during model 

training. This normalization helped mitigate bias 

from parameters that naturally have large 

magnitudes (e.g., temperature in °C vs. overlay error 

in nm). 

 
Figure 1. Block diagram of proposed methodology for data-driven framework for predicting defect 

density in semiconductor wafer fabrication using ensemble learning. 

The importance of preprocessing lies in ensuring 

that the learning algorithms receive clean, well-

structured, and representative data, as poor-quality 

inputs would reduce predictive power. The wafer 

manufacturing dataset contained time-series 

measurements, but for modeling, they were 

aggregated into meaningful lot-level summaries 

such as mean, standard deviation, and trend slopes 

of parameters. This aggregation reduced data 

dimensionality while preserving the critical 

variation associated with defect generation. The 

preprocessing pipeline was automated to be scalable 

for large production datasets and to prepare 

consistent inputs for subsequent feature engineering 

and modeling steps (Cheng, et al., 2019) [16]. 

3.2. Feature Engineering 

Subsequently, feature engineering was carried out to 

determine and build the most predictive input 
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variables among more than 440 original parameters 

after cleaning. First of all, a correlation test with 

Pearson and Spearman coefficients was conducted 

to drop the over-represented variables due to a 

correlation coefficient above 0.9. Then the principal 

component analysis (PCA) (Nuhu, Abubakar 

Abdussalam, et al., 2020) [17] was used to 

incorporate the inherent structure of the data and 

minimize the multi-collinearity consequences. The 

contribution of the PCA transformation was in 

compressing the feature space by preserving more 

than 95 percent of the data variance which is very 

crucial to ensure the model learns effectively 

without getting overloaded with noise. 

Besides dimensionality reduction, domain expertise 

was added to provide the derived features as 

exemplified by the formula to produce a parameter 

such as the process stability index defined as the 

ratio between within-lot variation and across-lot 

variation of a specific parameter. On the same note, 

transient were incorporated through introducing 

environmental stability factors (e.g., the rate of 

temperature fluctuation). This automated feature 

selection together with human-level feature 

construction ability enabled it to target the 

parameters that were most important to defect 

generation and it also elevated the degree of 

explanation of the model since it showed its 

emphasis on factors that resulted in high defect 

density (Kim, Tongwha, et al., 2019) [18]. 

During the feature engineering process, Principal 

Component Analysis (PCA) has been used in data 

preparation whereby redundant and highly 

correlated features were eliminated in the high-

dimensional manufacturing dataset. PCA finds new 

orthogonal axes (principal components) that 

maximize the variance in the data. Each row of Z 

represents a wafer lot described by transformed 

features (principal components) that capture the 

most significant patterns. By retaining only the top 

components explaining 95% of the variance, the 

model becomes computationally efficient and less 

prone to overfitting while preserving essential 

information about process variations. 

Z= XW 

Where: 

● X is the standardized data matrix of shape 

n×p (n samples, p features). 

● W is the matrix of eigenvectors of the 

covariance matrix of X. 

● Z represents the transformed data in a 

reduced feature space. 

3.3. Modeling 

The modeling step in the framework uses a three-tier 

ensemble approach to ensure robust defect density 

predictions. First, bagging models, such as Random 

Forest, were used to reduce variance and capture 

non-linear patterns in the data. These models 

generated a number of decision trees by using 

bootstrapped (random) subsets of the data and 

averaged the results. Second, XGBoost and 

LightGBM boosting methods were feasible to 

iteratively rectify the mistakes made by weak 

learners hence targeting the harder examples and 

increasing precision. These algorithms have the 

capability of processing complex interactions 

among the parameters very well and are robust 

against missing patterns. 

The last modeling was the modeling stage and 

stacking was deployed in this context; the bagging 

and boosting models were used as predictive model 

inputs to train a meta-learner (Ridge regression) that 

decides on the optimal combination of predictions of 

the individual models. This layered set contains the 

benefits of both the bagging and boosting models 

and reduces their disadvantages making the model 

predictive and highly much better. The stacked 

model was stipulated since psyche manufacturing 

data is non-linear, sparse and noisy in nature and 

thus cannot be generalized effectively using a single 

algorithm regardless of the operating conditions. 

The ensemble modeling step is used to aggregate the 

findings of base learners. The bagging method tries 

to trap the variance by averaging outcome across 

several models whereas boosting aims at 

minimizing bias through repeatedly minimizing the 

errors. There outputs act as inputs to a meta-learner 

that learns the best weights to average such models. 

Such a hierarchical composition causes better 

generalization and resilience. The very last output y^ 

is able to predict the defect density of never seen 

wafer lots very well. 

 
Where: 

● 𝑓 is the predicted defect density. 

● fbagging(X) denotes the predictions from the 

bagging model (Random Forest). 

● fboost1(X), fboost2(X) denote predictions from 

boosting models (XGBoost, LightGBM). 

● fmeta is the meta-learner (Ridge regression) 

that combines base model predictions. 
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3.4. Evaluation 

Evaluation was to provide an assessment of the 

quality of proposed models in terms of reliability 

and their capacity to be generalized. It had been split 

into training (80%) and testing (20%) sets, where the 

former was 10-fold cross-validated. Such an 

approach enabled the training and validation of the 

models on different subsets of the data to prevent 

overfitting and to conduct of the predictive 

capability with accuracy. The selection of metrics 

like Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), and the Coefficient of 

Determination (R2) was done due to the ability to 

determine the precision and accuracy of the 

predictions collectively, and the sensitivity of 

RMSE to large errors (Taha, Kamal 2020) [19]. 

In an attempt to attain robustness, each of the models 

was hyper-parameterized and honed through 

Bayesian optimization, which is a probabilistic 

method that searches through the hyperspace 

effectively (Yuan-Fu, Yang 2019) [20]. Also, 

residual diagnostics and error distribution analysis 

were used to confirm that no systematic bias was left 

on predicting levels. This multifactor assessment 

model brought robust assurance that the ensemble 

models have a good chance to perform properly 

even on new wafer keep, and thus it would be able 

to be deployed in a live production scenario where it 

is essential to predict the defect density in a wafer 

lot to determine beforehand whether the wafers have 

defects or not. 

 

4. Experimental Setup  

The experiments for this research were conducted on 

a real-world dataset collected from a 300mm 

semiconductor fabrication facility over 12 months. 

This data set had records of around 150, 000 wafer 

lots, which included three primary groups of data 

and i.e. process parameters, in-line metrology 

measures, as well as environmental states. All these 

inputs provided a complete dataset of 440+ features 

per lot. The dataset was split into 80% for model 

training and 20% for testing, having it that the 

evaluation was done on unseen data in simulation of 

production conditions. 

This is with the purpose of being able to effectively 

compare models and reproduce them, a consistent 

preprocessing pipeline was applied across all 

experiments. Missing values were imputed, outliers 

were removed, and Z-score normalization was 

applied to ensure that all parameters were on 

comparable scales. Feature engineering included 

correlation analysis and PCA to reduce 

dimensionality while retaining 95% of the data 

variance. This ensured that the model could handle 

high-dimensional and multicollinear data 

efficiently. The prepared dataset was then fed into 

the modeling phase. 

The modeling phase was implemented using Python 

3.11 with machine learning libraries such as scikit-

learn, XGBoost, and LightGBM. A Bayesian 

optimization was used to automatically search the 

optimal learning rate, number of estimators and 

depth of models to run training and hyperparameter 

optimization. The last stacked collection was an 

ensemble of the predictions of Random Forest, 

XGBoost, and LightGBM through a Ridge 

regression meta-learner. This was to become an 

optimal setup that was to be highly precise but not-

overfitting. 

The hardware environment consisted of a high-

performance computing server equipped with dual 

32-core CPUs, 256 GB of RAM, and an NVIDIA 

A100 GPU to accelerate computation. Even though 

tree-based models (RF, XGBoost, LightGBM) 

primarily use CPUs, the GPU acceleration was 

useful for speeding up large matrix computations 

during PCA and Bayesian hyperparameter tuning. 

10-fold cross-validation was used for evaluation, 

and model performance was assessed using RMSE, 

MAE, and R² metrics. 

All experiments were conducted in an isolated 

computing environment to ensure data security and 

reproducibility. Version control of code and 

dependencies was maintained using Git and Conda, 

ensuring that all configurations could be replicated. 

This intense experimental design lent a very 

concrete strength to the study of effectiveness of 

proposed data driven ensemble learning framework 

in defect density prediction. 

Table 1. Experimental Setup Specifications  

Component Specification / Tool Used 

Dataset 150,000 wafer lots (12 months of production) 

Features 440+ features (process, metrology, environmental) 

Data Split 80% Training, 20% Testing 

Preprocessing Imputation, Z-score normalization, Outlier removal 

Feature Engineering Correlation Analysis, PCA (95% variance retained) 
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Models Random Forest, XGBoost, LightGBM, Stacking Ensemble 

Hyperparameter Tuning Bayesian Optimization 

Evaluation 10-fold Cross-validation, RMSE, MAE, R² metrics 

Programming Environment Python 3.11, scikit-learn, XGBoost, LightGBM 

Hardware Dual 32-core CPUs, 256GB RAM, NVIDIA A100 GPU 

Version Control Git, Conda 

5. Results Analysis 

Findings of this study prove the effectiveness of 

ensemble learning techniques in the prediction of the 

defect density in semiconductor wafer 

manufacturing. The base models trained and tested 

on 10-fold cross-validation indicated that the 

stacking ensemble vastly outweighed single 

machine learning models in all the metrics. Each of 

the three algorithms, Random Forest, XGBoost, and 

LightGBM performed comparably well, but 

combining two or all three of them using meta-

learning in a stacking arrangement created a much 

more accurate model because it was able to take 

advantage of each algorithm at its strengths, whilst 

addressing the weaknesses. 

Table 2 shows the comparative performance of all 

models in terms of RMSE, MAE, and R² on the 

unseen test dataset. The Random Forest model 

achieved an R² of 0.85 with an RMSE of 0.064, 

while boosting techniques like XGBoost and 

LightGBM showed improved performance with R² 

values of 0.88 and 0.89 respectively. However, the 

stacking ensemble clearly outperformed these, 

achieving an R² of 0.92, indicating that 92% of the 

variance in defect density could be explained by the 

model. Furthermore, the RMSE and MAE values 

were substantially reduced to 0.038 and 0.030, 

respectively, demonstrating better accuracy and 

robustness. 

Table 2: Model Performance Comparison 

Model RMSE MAE R² 

Random Forest 0.064 0.052 0.85 

XGBoost 0.051 0.041 0.88 

LightGBM 0.048 0.040 0.89 

Stacking Ensemble 0.038 0.030 0.92 

The analysis of prediction errors (residuals) revealed 

that the stacking model not only minimized large 

prediction deviations but also maintained a stable 

error distribution across different defect density 

ranges. In contrast, single models like Random 

Forest exhibited more spread in residuals, 

particularly for high-density defect regions, 

indicating their limitations in capturing complex 

interactions between process and environmental 

parameters. The stacking model’s residual plots 

were tightly clustered around zero, demonstrating its 

ability to generalize well across the dataset. 

Another important aspect of the analysis involved 

identifying the most influential features contributing 

to defect density. Feature importance values were 

computed using SHAP (SHapley Additive 

exPlanations) for the ensemble model. As shown in 

Table 3, lithography overlay error emerged as the 

most critical factor, contributing 22.4% to the 

model’s predictions. Deposition temperature 

variations, environmental humidity, etching 

chamber pressure, and surface roughness were also 

found to be highly impactful. This ranking 

highlights the multi-domain nature of defect 

formation, where process control and fab 

environmental stability both play significant roles. 

Table 3: Influential Features Based on SHAP Importance 

Rank Feature Importance (%) 

1 Lithography overlay error 22.4 

2 Deposition temperature variation 18.1 

3 Environmental humidity 15.7 
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4 Etching chamber pressure 13.9 

5 Surface roughness 12.8 

Additionally, cross-validation stability analysis 

indicated that the variance of RMSE across the 10 

folds was less than 2%, confirming the model’s 

robustness. This kind of consistency is essential in 

application to the real fabric whereby one is less 

likely to major performance declines on exposing 

the model to new lots that has never seen. 

Altogether, the results testify to the power of the 

ensemble learning and stacking in particular as the 

predictive tool to manage the defect density in the 

course of semiconductor production. This outcome 

justifies the proposed framework that is effective in 

integrating the process, inline metrology, and 

environmental. The resulting predictibility can be 

used to give fabs the power to make proactive 

optimizations of processes parameters dynamically, 

thereby giving them an opportunity to gain yield and 

saving a lot of cost of manufacturing. 

In the figure 2, we can find RMSE (Root Mean 

Square Error) of the four models, Random Forest, 

XGBoost, LightGBM and Stacking Ensemble. One 

can see that the Stacking Ensemble model has the 

lowest RMSE (0.038) and indeed is much better than 

any other single model (Random Forest 0.064, 

XGBoost 0.051). The cliff that exists between the 

ensemble and the others indicates that combination 

of models decreases the error of prediction 

significantly. 

 
Figure 2. Model Comparison based on RMSE 

The scatter plot in figure 3 shows the correlation 

between real defect density and predicted defect 

density based on the stacking ensemble model. The 

blue points lie strongly close to the red dashed 

diagonal (ideal predictions), and so it says that the 

model predictions are extremely precise. 

 
Figure 3. Actual vs Predicted Defect Density 

There is a tendency that most points are near the 

diagonal, i.e. that the stacking ensemble generalizes 

well, and makes consistent predictions with very 

little bias at all levels of defect density. 
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6. Conclusion   

This research introduces a comprehensive data-

driven approach for defect density prediction in 

semiconductor wafer fabrication, illustrating how 

ensemble learning algorithms can be effective when 

treating complex, high dimensional, and 

multivariate fab data. The combination of bagging, 

boosting, and stacking models made the framework 

gain an enormous boost in the level of prediction 

accuracy and stability compared to the conventional 

methods. The results prove that ensemble models 

and especially stacking can be used to capture the 

complexity of the relationship between parameter 

values of the process, metrology signals, and 

environmental parameters that contribute to the 

occurrence of defects. 

The successful validation of this framework on a 

large, real-world dataset highlights its practical 

applicability for modern semiconductor fabs. With 

early fault detection of defect density variables, fabs 

can undertake necessary precautionary measures, 

enhance partitioned performances and reduce cost of 

manufacture. Future research will aim to expand the 

framework to provide temporal deep learning 

models to allow real-time monitoring and predictive 

control thereby bringing semiconductor 

manufacturing even closer to the prospect of 

autonomous, AI-driven smart factories. 
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