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Abstract: Fifth-generation (5G) wireless networks introduce unprecedented data rates, massive device connectivity, and diverse service 

requirements (e.g. enhanced mobile broadband, ultra-reliable low-latency communications). These advances come with significant 

resource allocation challenges – dynamic traffic loads, stringent Quality of Service (QoS) demands, and limited spectral resources must 

be managed efficiently. In this paper, we investigate predictive network resource management in 5G using supervised machine learning 

models implemented in MATLAB. We formulate resource allocation as a supervised learning problem, where algorithms learn to predict 

resource needs or performance metrics (such as required bandwidth or congestion level) from real-time network parameters. A range of 

models – including decision trees, support vector machines (SVMs), neural networks, random forests, and gradient boosting ensembles – 

are developed and compared on 5G simulation data. Key 5G metrics (e.g. user signal-to-noise ratio, throughput demand, latency 

requirement, and bandwidth utilization) are used as input features for prediction. Our MATLAB-based simulation generates training data 

reflecting a 5G cell scenario, and we evaluate each model’s accuracy in forecasting resource allocation needs. The results show that 

ensemble tree-based models and deep neural networks achieve the highest prediction accuracy. In particular, a gradient boosting model 

achieves the best performance for continuous resource demand prediction, while a boosted decision tree classifier achieves over 94% 

accuracy in predicting network congestion states. These models outperform classical approaches such as linear regression or SVM, 

especially in capturing the complex non-linear relationships inherent in 5G traffic patterns. We present comparative results including 

performance metrics (accuracy, mean squared error, R2) and discuss the trade-offs (e.g. complexity vs. accuracy) of each approach. The 

study concludes that ensemble learning (particularly gradient-boosted trees) and deep neural networks are the most effective supervised 

learning strategies for predictive 5G resource management, enabling proactive and adaptive resource allocation. We also highlight 

avenues for future work, including integration of reinforcement learning for real-time autonomous optimization and the use of 

explainable AI to interpret model decisions in live 5G networks. 

Keywords: 5G communications, Predictive network management, Resource allocation, Machine learning, Supervised learning, MATLAB 

simulation, Gradient boosting 

 

1. Introduction 

The emergence of 5G networks has brought about a paradigm 

shift in wireless communications, enabling innovative 

applications like autonomous vehicles, smart cities, and the 

Internet of Things. Compared to prior generations, 5G promises 

unprecedented throughput, ultra-low latency, and massive device 

connectivity, but realizing these benefits hinges on efficient 

resource allocation. Radio resources (such as spectrum 

bandwidth, time slots, and transmit power) in 5G are limited and 

must be dynamically shared among many users and services. The 

huge volume of data in extremely dense 5G deployments can 

quickly lead to network congestion if resources are not optimally 

orchestrated. Diverse traffic types with distinct QoS requirements 

(e.g. high-bandwidth video vs. low-latency control signals) 

further complicate resource management. Efficient resource 

allocation is thus crucial for maximizing system throughput and 

ensuring a smooth user experience in 5G. 

Traditional 5G resource allocation methods (e.g. heuristic 

schedulers or optimization algorithms) face challenges in 

adapting to the dynamic and complex 5G environment. Rapid 

fluctuations in user traffic demand and channel conditions can 

render static or rule-based allocation suboptimal. This has 

motivated the exploration of machine learning (ML) techniques 

for intelligent, data-driven network management. ML algorithms 

can learn patterns from vast amounts of network data and make 

fast predictions or decisions to proactively allocate resources and 

prevent performance degradation. By analyzing real-time and 

historical network metrics, ML models enable predictive resource 

management – for example, forecasting future traffic load or 

impending congestion and adjusting allocations accordingly. 
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Such predictive strategies are expected to enhance network 

performance (throughput, latency) and resource utilization 

efficiency beyond what reactive approaches achieve. 

In this paper, we focus on supervised learning approaches for 

predictive resource allocation in 5G, using MATLAB as the 

implementation platform. We consider a scenario in which a base 

station (gNodeB) collects various network parameters and must 

predict either a resource need (e.g. how much bandwidth or how 

many resource blocks will be required in the next scheduling 

interval) or a performance outcome (e.g. whether the cell will 

enter a congested state). By formulating this as a supervised 

learning problem, we leverage labeled data – past observations of 

network conditions and the corresponding optimal resource 

allocations or performance metrics – to train ML models that can 

generalize to new conditions. The goal is to determine which ML 

models are most effective at capturing the complex relationships 

between 5G network features and resource demands. We evaluate 

a spectrum of models ranging from interpretable algorithms 

(decision trees, linear models) to more complex learners 

(ensemble methods and deep neural networks).  

2. Background 

2.1 5G resource allocation: challenges and baselines 

The transition to 5G brings with it unprecedented device density, 

traffic dynamics, and heterogeneity of services 

(eMBB/URLLC/mMTC), compelling schedulers to jointly 

allocate over spectrum, time–frequency resources, and power 

under stringent latency and reliability requirements. Traditional 

methods—proportional-fair scheduling, convex power control, 

and slice-aware admission—are still cornerstones but tend to 

depend on simplifying stationarity/interference assumptions that 

break down in dense deployments and sudden context changes. 

Current surveys in networking and communications highlight that 

data-oriented controllers are more capable of monitoring 

nonstationary worlds and complicated cross-layer couplings than 

model-based, fixed designs, particularly if tight control loops are 

needed [18]. Meanwhile, edge-approaching control through 

MEC/fog increases the attack surface and operation complexity—

security and privacy issues need to be co-engineered with 

resource policies [9]. 

2.2 Supervised machine learning for prediction-driven 

allocation 

A pragmatic pattern is to forecast short-horizon congestion or 

load and subsequently assign resources ahead of time. Tree 

ensembles (Random Forest, Gradient Boosting) learn nonlinear 

interactions and offer helpful feature attributions with low 

inference latency, so they are good baselines for detection of 

congestion, interference avoidance, and spectrum/power choices. 

Kernel SVMs have robust margins for state classification (e.g., 

congestion/MCS selection), although training can be memory-

consuming at very large sizes. These supervised techniques work 

well where labeled traces or simulator outputs correspond to 

"conditions → good allocations," and their deployment properties 

(fast inference, simple calibration) match RAN timing budgets 

emphasized in networking ML surveys [18]. 

2.3  Deep learning under strict timing constraints 

Deep neural networks—MLPs/CNNs for spatial organization and 

RNNs/LSTMs for temporal evolution—are trained on complex 

patterns in mobility, interference, and slice demand, and have 

been shown to advance user association, scheduling, and delay 

optimization over shallow models. The catch is compute/latency 

overhead; sub-ms turnaround usually necessitates model 

compression, distillation, or edge offloading. A general 

integration of deep (reinforcement) learning for communications 

highlights these accuracy–latency trade-offs and the importance 

of judicious engineering to achieve 5G control-loop timeliness 

[18]. 

2.4 Reinforcement learning (RL): sequential decisions vs. 

deployment friction 

RL is particularly suited to sequential resource choices (e.g., joint 

RB/power scheduling, slice orchestration): agents learn policies 

that maximize long-term throughput/reliability/energy goals in 

nonstationary environments. Many networking studies enumerate 

RL's promise and challenges—exploration risk, stability under 

distribution change, and incorporation with legacy RAN 

timing/standards [18]. In reality, most rollouts begin with 

supervised prediction-then-act loops and add RL after safe 

baselines and guardrails are established [18]. 

2.5 Security, trust, and auditability: insights from 

neighboring areas 

Multi-tenant 5G slices and edge deployments inherit 

security/trust issues observed in vehicular and IoT systems. The 

VANET/IoV literature reports trust management, authentication, 

and Sybil-attack defenses in highly dynamic, latency-constrained 

networks—design pointers for slice admission and inter-domain 

collaboration [1], [3], [4], [15], [28], [29], [31], with system-wide 

considerations in connected-vehicle overviews [2], [25] and 

target applications such as parking coordination [19]. 

To strengthen policy enforcement and auditing, numerous works 

investigate blockchain/smart contracts for decentralized trust, 

tamper-evident logging, and access control across organizational 

boundaries, extending from automotive to IoT to smart grid to 

infrastructure scenarios [5]–[8], [11], [12], [14], [17], [20], [21], 

[23], [26]. Such systems are based on cryptocurrency/security 

foundations (e.g., Bitcoin; proof-of-work/pricing through 

processing) that demonstrate how cost mechanisms and append-

only ledgers prevent abuse and enable verifiability [7], [10], [27]. 

Complementary viewpoints of MEC/fog security [9], physical-

layer security [22], and legal/policy frameworks for IoT data 

governance [24] emphasize that resource controllers need to be 

not only high performance but also privacy-preserving, auditable, 

and resilient. 

3. Proposed Methodology 

Suggest a real-world, timing-safe 5G NR resource-managing 

approach that converts raw KPIs into forward-looking actions 

through a dual learning head and lean controller. For every 

interval, the system constructs a leakage-safe feature vector out of 

context (hour/day, band, slice, sector, user speed), radio quality 

(e.g., SINR), current load (PRB utilization, active UEs), short 

lags/EMA, and optional neighbor summaries—based solely on 

information as of the end of the current interval. Two supervised 

models are learned: a classifier to predict next-interval congestion 
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likelihood and a regressor to predict next-interval PRB demand. 

Regularized decision trees, random forests, gradient boosting 

(LogitBoost/LSBoost), SVM/SVR with RBF kernel (with 

posterior calibration for probabilities), kNN (distance-weighted 

for regression), compact MLPs, and an imbalance-aware 

RUSBoost classifier are trained on a 70/15/15 stratified split with 

z-score normalization, hyperparameters tuned on the validation 

set. The top classifier (on validation F1) and top regressor (on 

validation RMSE) are "locked" and applied online. At inference, 

the controller combines the congestion probability calibrated with 

the normalized estimate of demand into one risk score (weight 

α=0.5 by default) and uses hysteresis (enter/exit at 0.70/0.60) to 

prevent flapping; when high risk it initiates tunable, low-

overhead actions—admission pacing for eMBB, inter-cell load 

balancing, carrier/band steering, and temporary adjustments of 

slice-reservation adjustments—then logs predictions, scores, and 

actions for audit. The pipeline comprises data QA, PSI-based 

drift monitoring, and rolling F1/RMSE watchdog with safe 

fallbacks and periodic retraining; thresholds are operator-tunable 

(e.g., congestion label at utilization >0.90). Computationally, tree 

ensemble, tiny MLP, and kNN with tiny k satisfy sub-millisecond 

to few-millisecond budgets on CPU, thus making the approach 

deployable at the gNB/edge while maintaining an open path to 

layer reinforcement learning later if needed. 

Figure:1 Proposed Flow 

4. Simulation Result 

The congestion-classification task is uninstructive: all classifiers 

(Decision Tree, Random Forest, Gradient Boosting, SVM-RBF, 

kNN-5, ANN-MLP, RUSBoost) give Acc=1.00 but F1=0 and 

AUC=NaN both on validation and test. This behavior suggests 

that validation/test splits had only the negative class ("not 

congested"), thus all models trivially predicted the majority class 

and achieved perfect accuracy but zero recall. These findings 

ought not be taken as proof of flawless performance; the 

description pipeline requires adjustment (e.g., stratified split with 

positive guarantees, a bit lower congestion threshold, or bigger 

test sets) before F1/AUC can usefully be compared. 

In contrast, the regression problem (next-interval PRB demand) 

provides consistent, discriminative performance. The best model 

is ANN-MLP with RMSE=0.84, MAE=0.51, R²=0.991 on the 

test set, followed very closely by Gradient Boosting 

(RMSE=0.97, R²=0.988). The simpler baselines trail behind 

(Decision Tree RMSE=1.29, Random Forest 1.46, SVR-RBF 

2.31, kNN-5 2.55). The validation and test errors for the best 

models are identical (ANN-MLP RMSE 0.83→0.84), which 

shows good generalization. In practice, the regressor is now 

available for deployment to guide proactive resource action, 

whereas the classifier must be re-assessed following rebalancing 

evaluation splits. Figure 2 show plot contrasts the downlink SINR 

distribution over the three operating bands (700 MHz, 3.5 GHz, 

28 GHz). Lower bands (say, 700 MHz) have higher median SINR 

and reduced spread owing to improved penetration/coverage, 

while higher bands (say, 28 GHz) have larger variance and lower 

medians due to path loss and sensitivity to blockages. The 

distance between medians communicates the link-budget benefit 

of low bands; the wider tails at 28 GHz indicate why scheduling 

and band steering need to be risk-conscious (users on mmWave 
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enjoy high capacity but are more sensitive to mobility and 

blockage). 

 

Figure :2 SINR By Band 

This figure 3 plots average PRB utilization against the time of 

day, normally demonstrating diurnal load: low utilization in early 

morning, increasing through business hours, and spiking in the 

evening. The curve supports the predict-then-act architecture: 

short-horizon predictions can predict the evening ramp, enabling 

the controller to pre-reserve slice capacity, bias handovers, or 

direct users to under-loaded cells before congestion develops. If 

the graph is per-band traces, then the band offset indicates how 

capacity layers soak up demand differently over time.  

 

Figure :3 5G KPI: Utilization Vs Hour 

 

Figure :4 5G Network RMSE  

In figure 4 shows  plot compares next-interval PRB demand 

RMSE among models. In our case, ANN-MLP has the lowest test 

RMSE (~0.84), followed by Gradient Boosting (~0.97), while 

single trees, random forests, SVR-RBF, and kNN follow with 

larger errors. Lower RMSE translates to more precise short-

horizon demand estimation, which contributes directly to the risk 

score and minimizes unwarranted interventions. The small gap 

between validation and test restricts the top models' opportunities 

for exceptional generalization and stable deployment behavior. 

Figure 5 shows plots MAE for the same regressors. The ordering 

duplicates RMSE: ANN-MLP has the smallest MAE (~0.51), 

next is Gradient Boosting (~0.55), and others have larger absolute 

errors. MAE's resistance (linear penalty) pairs well with RMSE 

(quadratic penalty): collectively they establish that the proposed 

method systematically minimizes standard per-interval prediction 

error, which is essential for accurate admission pacing and slice 

reservation. 

 

Figure :5 5G Network Different Method MAE 

 

Figure :6 5G Network Different Method RMSE  

Figure 6 bar chart once more depicts RMSE by method (usually 

plotted for comparison with MAE). In line with Figure 4, the 

ANN-MLP retains the superior error profile, affirming that a 

small neural predictor is a robust, deployable option for real-time 

next-interval resource prediction. 

5. Conclusion 

This paper introduced a real-world, timing-safe platform for 



 

International Journal of Intelligent Systems and Applications in Engineering                                                 IJISAE, 2024, 12(19s), 936–941 |  940 

predictive network control in 5G NR that combines supervised 

learning with a lightweight, auditable control policy. We 

implemented a leakage-safe data pipeline, trained a portfolio of 

models for a dual task—(i) congestion risk classification and (ii) 

next-interval PRB-demand regression—and combined their 

outputs in a risk score with hysteresis to initiate low-overhead 

RRM actions (admission pacing, load balancing, band steering, 

and temporary slice reservations). The strategy is intentionally 

deployable at the gNB/edge: the models are lightweight, 

inference is efficient, and monitoring hooks (drift/performance) 

enable safe operation and retraining. 

Empirically, the regression head provided robust and consistent 

accuracy. The ANN-MLP obtained RMSE = 0.84, MAE = 0.51, 

and R² = 0.991 on the test set, beating tree baselines and SVR; 

gradient boosting came close (RMSE ≈ 0.97, R² ≈ 0.988). Such 

outcomes suggest that PRB demand for near terms is very 

predictable, allowing for proactive rather than reactive resource 

allocation through throttling. This is not a model failure but rather 

a label/splitting problem; once validation/test encompass positive 

congestion instances. 
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