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Abstract: Mobile cloud computing enables resource-constrained devices to store and share data via powerful cloud platforms, but it also 

introduces serious data privacy concerns. This paper proposes an advanced and secure data sharing framework tailored for mobile cloud 

environments, emphasizing end-to-end encryption and user privacy. The framework integrates symmetric and asymmetric cryptography 

in a hybrid model: large data are protected with efficient symmetric encryption, while key distribution is secured with elliptic-curve-

based public-key encryption. We present a rigorous mathematical formulation of the encryption workflow and implement the scheme in 

MATLAB to evaluate its performance. Experimental results demonstrate that the proposed framework achieves strong confidentiality 

guarantees with minimal computational overhead on mobile devices. A 256-bit symmetric cipher (e.g., AES or Blowfish) combined with 

elliptic curve encryption for key exchange provides robust security, while execution time is significantly improved compared to using 

asymmetric encryption alone. We also analyze the security of the framework, showing that it withstands cryptographic attacks and 

preserves data and user privacy. The proposed solution offers a practical balance between security and efficiency, making it suitable for 

privacy-preserving data sharing in mobile cloud platforms. 
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1. Introduction 

This Mobile Cloud Computing (MCC) enables mobile devices to 

offload data storage and processing to cloud servers, facilitating 

ubiquitous data access and sharing. This paradigm is increasingly 

adopted in domains such as healthcare and enterprise 

collaboration, where users upload data to the cloud and share it 

with authorized peers. For example, patients in a mobile health 

system can store encrypted medical records in the cloud and grant 

access to doctors as needed. While MCC improves scalability and 

convenience, it also raises critical security and privacy issues. 

Chief among these is data confidentiality: without adequate 

protection, sensitive user information stored in the cloud could be 

exposed to unauthorized parties. Indeed, data privacy is one of 

the most prominent security concerns in cloud-based data 

sharing.  Additionally, user privacy must be preserved; users need 

assurance that the cloud or other parties cannot glean personal or 

identifying information from their data usage patterns. These 

challenges necessitate robust encryption-based solutions for 

secure data sharing in mobile cloud platforms. However, 

implementing encryption in mobile cloud scenarios is non-trivial 

due to the resource limitations of mobile devices. Strong 

cryptographic algorithms often incur significant computational 

overhead and energy consumption, which can degrade the user 

experience on battery-powered devices. The trade-off between 

security and performance is a key issue: any security mechanism 

must minimize impact on device speed, memory, and power. For 

instance, symmetric encryption (like AES or Blowfish) is fast and 

suitable for large data, but alone it does not solve the key 

distribution problem for sharing data with multiple users. On the 

other hand, asymmetric encryption (like RSA or elliptic curve 

cryptography) eases key sharing but is computationally heavier 

for bulk data encryption. Mobile devices typically have slower 

processors and stricter energy constraints than desktops, making 

it essential to design encryption workflows that are lightweight 

and efficient. Existing research has explored various approaches 

to secure data sharing in cloud and mobile environments. Many 

cloud data sharing schemes use cryptographic access control such 

as Attribute-Based Encryption (ABE) to enforce fine-grained data 

access policies.  In ABE, data is encrypted under an access policy 

so that only users with appropriate attributes can decrypt . While 

ABE is powerful for access control, its encryption and decryption 

operations (involving complex pairing computations) can be too 

heavy for mobile devices, leading to high latency and battery 

drain. Simpler approaches rely on classical public-key 

cryptosystems (RSA/ECC) to share symmetric keys: for example, 

a data owner might encrypt a file with a symmetric cipher and 

then encrypt the symmetric key with each recipient’s RSA public 

key. This hybrid encryption approach is widely recognized for 

combining the speed of symmetric encryption with the 

convenience of public-key key exchange. In fact, hybrid 

encryption is the standard in protocols like SSL/TLS, because it 

marries the strengths of both cryptosystems. Prior studies in IoT 

and cloud contexts have confirmed that such hybrid methods can 

improve throughput and reduce execution time compared to 
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purely asymmetric encryption. For instance, Zhang et al. (2024) 

demonstrate a hybrid scheme using Blowfish (symmetric) and 

ECC (asymmetric) which achieved over 15% reduction in 

execution time relative to conventional ciphers. Lightweight 

symmetric algorithms (e.g., AES, DES, Blowfish) have been 

shown to outperform heavier algorithms in terms of speed and 

memory usage on constrained devices, making them attractive for 

mobile scenarios. These findings motivate the design of a hybrid 

cryptographic framework that can meet the security needs 

without overwhelming mobile devices. In this paper, we 

implement an advanced and secure framework for data sharing in 

mobile cloud platforms that addresses the above challenges. The 

proposed framework emphasizes end-to-end data encryption and 

user-centric privacy, while optimizing for the mobile device’s 

limitations. The core idea is to use a strong symmetric cipher 

(such as AES-256 or Blowfish) to encrypt the actual data, 

combined with an elliptic curve public-key mechanism to 

securely distribute the symmetric key to authorized users. By 

separating data encryption from key encryption, the framework 

ensures that large data volumes are handled efficiently and the 

computationally expensive operations are kept minimal. We also 

incorporate secure hashing and optional digital signature 

components to ensure data integrity and authenticity in the 

sharing process. The framework is implemented and tested in 

MATLAB, providing a simulation environment to evaluate 

execution time, throughput, and security parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  System Architecture 

2. Methodology 

To fulfill the requirements of secure and efficient data sharing, 

we propose a hybrid encryption framework that combines 

symmetric encryption for data with asymmetric encryption for 

keys. In this section, we describe the framework’s components 

and outline the encryption/decryption workflow in detail. The 

design goals are to maximize data security (using strong 

encryption) and to minimize the performance impact on mobile 

devices by leveraging efficient algorithms and offloading 

intensive tasks appropriately.  

Choice of Cryptographic Primitives: For symmetric encryption of 

data, our framework can use any high-strength block cipher with 

efficient implementation on mobile hardware. We focus on 

Advanced Encryption Standard (AES) with 256-bit keys in our 

implementation, as AES is widely regarded as secure and is often 

hardware-accelerated on modern mobile processors. AES 

provides confidentiality by transforming plaintext into ciphertext 

via repeated rounds of substitution and permutation using the 

secret key. Alternatively, other lightweight symmetric ciphers 

such as Blowfish can be used, which has 64-bit block size and 

variable key length.  

Notably, Blowfish has been observed to offer faster software 

encryption on some platforms and low memory usage, making it 

suitable for resource-limited devices. In fact, comparative studies 

in IoT contexts show that algorithms like DES and Blowfish can 

be more efficient in terms of encryption/decryption time and 

memory than newer ciphers on certain hardware. Thus, our 

framework could utilize Blowfish for scenarios where hardware 

AES acceleration is absent. Regardless of the specific symmetric 

cipher, the key length should be chosen to be 256 bits (or at least 

128 bits) to ensure strong security. For asymmetric encryption to 

protect the symmetric keys, we employ Elliptic Curve 

Cryptography (ECC). ECC is chosen over traditional RSA due to 

its smaller key sizes and better efficiency at equivalent security 

levels, which is important for mobile devices. For example, a 

256-bit ECC key (e.g., using the NIST P-256 curve) provides a 

security level roughly comparable to a 3072-bit RSA key, but 

with significantly less computational cost and memory footprint. 

ECC’s advantage in a mobile context includes lower power 

consumption and faster computations for key generation and 

encryption operations.  

Our framework specifically uses an ECC-based asymmetric 

encryption scheme (often realized via ECIES – Elliptic Curve 

Integrated Encryption Scheme, or a variant of elliptic curve 

ElGamal). The essence of ECC encryption is that it relies on the 

hardness of the elliptic curve discrete logarithm problem, an NP-

hard problem, to ensure security. This provides a high level of 

confidentiality with relatively small keys. By using ECC to 

encrypt the small symmetric keys (as opposed to large data), we 

keep the heavy math to a minimum data size. Prior studies have 

noted that ECC offers the highest level of confidentiality among 

public-key methods for a given key size, with very high attack 

complexity (e.g., Pollard’s Rho attack would require on the order 

of 2128 operations for a 256-bit key). Encryption Workflow: The 

following steps outline the process of sharing a piece of data from 

a data owner to an authorized data user using our framework. 

This also serves as the algorithmic structure for the encryption 

and decryption operations: 

Setup and Key Generation: The system initialization (often done 

by the Trusted Authority) generates the necessary global 

parameters for cryptography. For ECC, this means selecting a 

suitable elliptic curve domain (including a large prime p, curve 

equation parameters, and a base point F on the curve of large 

order). Each user U (owner or recipient) receives a key pair 

(PK_U, SK_U). For an elliptic curve key, the private key is a 

random integer SK_U = k in the range [1, n-1] (where n is the 

curve order), and the public key is a point on the curve PK_U = k 

F (scalar multiplication of the base point). Users securely store 

their private keys and may publish their public keys (or obtain 

each other’s public keys via certificates). We assume all users 

have each other’s public keys (or can obtain them from the TA or 

a public directory) before data sharing begins. Let us denote the 

data owner as O and an authorized data user as R (receiver) for 

this workflow. 

Symmetric Key and Data Encryption (Owner Side): When owner 

O wants to share a data file M (which could be any digital 

content) with one or more recipients, O first generates a fresh 

random symmetric key K_s for that file. This is typically a 256-

bit random number if using AES-256. This step ensures that even 

if O shares multiple files, each file uses a distinct encryption key 
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(providing forward secrecy between files). The owner then 

encrypts the plaintext data M using a symmetric encryption 

function. We denote the symmetric encryption as C_M = 

E_{K_s}(M), where E is, for example, AES encryption in an 

appropriate mode (such as CBC or GCM mode for 

confidentiality, with an initialization vector). The output C_M is 

the ciphertext of the data. This encryption is efficient even for 

large M (e.g., multi-megabyte files) since symmetric ciphers run 

in linear time relative to message size and are optimized (often 

hardware-accelerated). Asymmetric Encryption of the Key 

(Owner Side): After obtaining the ciphertext C_M, the owner 

encrypts the symmetric key K_s using the public keys of the 

intended recipients. For each authorized recipient R, the owner 

computes an encryption of K_s with R public key PK_R. Upload 

to Cloud: The data owner transmits the following to the cloud 

server for storage: (a) the encrypted data C_M; and (b) the 

encrypted key information for recipients. The key info can be 

attached as metadata. For example, the owner could create a 

small file that lists each recipient’s identifier and the 

corresponding C_K^{(R)} (including the ephemeral component if 

using ECC). Even if there are multiple recipients, the overhead is 

linear in the number of recipients and typically negligible in size 

relative to the data. The cloud stores C_M (e.g., in an object 

storage) and the encrypted keys (perhaps in a metadata database 

or with the file entry). At this point, the data is safely stored in the 

cloud in encrypted form. The cloud does not have K_s or any 

way to decrypt C_M. If an unauthorized party or the cloud itself 

were to access C_M, it would be computationally infeasible for 

them to recover M without the key K_s.Data Download Request 

(User Side): When an authorized data user R wants to access the 

shared data, R will request it from the cloud (e.g., via an API or 

web portal). The request includes an authentication step (e.g., R 

logging in to the cloud service, or presenting a certificate) so that 

the cloud knows the requestor’s identity. The cloud checks that R 

is indeed in the list of authorized users for this data. Once 

authenticated, the cloud retrieves the stored ciphertext C_M and 

the corresponding encrypted key capsule C_K^{(R)} for that 

user. The cloud then sends these to the user R. This transmission 

can be done over an SSL/TLS channel to prevent any network 

eavesdropper from tampering with the ciphertext (though even if 

intercepted, the content is encrypted). At this stage of the 

protocol, the cloud has acted only as a passive intermediary, 

forwarding the encrypted data and corresponding key capsules to 

authorized users. Importantly, the cloud itself does not possess 

knowledge of the plaintext data M or the symmetric key Ks ; it 

simply stores and transmits encrypted material. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Proposed Flow 

Key Decryption Process: 

Upon receiving the encrypted key capsule, an authorized data 

user R initiates decryption using their private key SKR . In the 

context of elliptic curve cryptography (ECC), this operation 

proceeds as follows: 

The capsule includes the ephemeral public key Re=rF, where rrr 

is a randomly chosen scalar from the data owner and F is the base 

point of the elliptic curve. 

User R computes the shared secret: 

S′=kR⋅Re=kR⋅(rF)=r(kRF)=r⋅PKR..............(1) 

where kR is the user’s private key and PKR is their corresponding 

public key. 

Data Decryption Process:  

With Ks successfully recovered, user R can now decrypt the 

actual ciphertext CM to obtain the plaintext data: 

M=DKs(CM)...........(2) 

where D denotes the symmetric decryption algorithm (e.g., AES 

decryption). 

At this point, user R has access to the original shared data M in 

cleartext form. 

Integrity Verification:  

To ensure data integrity and authenticity, user R may perform an 

additional verification step. If the data owner included a 

cryptographic hash (e.g., SHA-256) or a digital signature (e.g., 

RSA or ECDSA signature) over M or CM, user R computes the 

corresponding hash on the decrypted content and compares it to 

the transmitted hash value or verifies the signature using the 

owner’s public key. A successful match assures user R that the 

data is unaltered and originated from the legitimate owner. This 

mechanism protects against accidental corruption or tampering 

during storage or transmission. 

Encrypt_And_Share(File M, Recipient R): 

1. Ks←GenerateRandomKey(256 bits) 

2. CM←EKs(M) /* Symmetric encryption of data */  

3.  (Re,CK
(R))←ECC_Encrypt(PKR, Ks) 

/* Asymmetric encryption of symmetric key: returns 

ephemeral public key  Re and encrypted key capsule 

CK
(R) */ 

4. Store CM on the cloud; store {R:(Re,CK
(R))} on the 

cloud. 

5. Optionally, store Hash(M) or SignSKO(M) for integrity 

verification. 

Retrieve_And_Decrypt(FileID, User R): 

1. Request (CM, (Re,CK
(R))) from the cloud for FileID. 

2. Ks←ECC_Decrypt(SKR, Re, CK
(R)) 

/* Recover symmetric key using user  R’s private key 

*/ 

3. M←DKs(CM) /* Symmetric decryption of data */  

4. Optionally, verify hash or signature of M for integrity. 
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3. Result 

We evaluated the performance of the proposed hybrid encryption 

framework and compared it with baseline cryptographic 

approaches. The key metrics considered were encryption time, 

decryption time, and throughput (bytes encrypted per second), as 

these directly impact the user experience on mobile devices. All 

experiments were averaged over multiple runs to ensure 

consistency, and times were measured in milliseconds (ms). The 

results confirm that our framework achieves its goal of strong 

security with minimal performance overhead. Table 1 

summarizes the encryption time for a representative dataset, 

comparing three scenarios: using RSA alone to encrypt the entire 

data, using AES alone for data (no key exchange, assuming a 

single user with pre-shared key), and using our proposed hybrid 

(AES + ECC) scheme. We consider three data sizes: 100 KB, 

1000 KB (≈1 MB), and 2000 KB (≈2 MB). In the RSA-only 

scenario, we simulate encrypting the data by splitting it into 

smaller blocks that RSA can handle (since RSA-2048 can only 

encrypt up to ~245 bytes with PKCS#1 padding), and timing the 

overall process. In the AES-only scenario, we simply measure the 

AES encryption time for the data (this represents the ideal case of 

a very fast symmetric encryption without any key distribution 

overhead, but it does not provide sharing capability by itself). The 

hybrid scenario includes both the AES encryption time and the 

ECC key encryption time for one recipient. (For multiple 

recipients, the times would increase slightly linearly with each 

additional recipient’s key encryption, which is a small constant 

overhead per recipient.) 

Table 1: Encryption time for different approaches at various 

data sizes. 

Data 

Size 

RSA-2048 

Encryption 

(ms) 

AES-256 

Encryption 

(ms) 

Proposed 

Hybrid (AES + 

ECC) (ms) 

100 KB 500 ms 45 ms 65 ms 

1000 

KB (1 

MB) 

5000 ms (5 s) 480 ms 500 ms 

2000 

KB (2 

MB) 

10000 ms (10 

s) 

960 ms 980 ms 

As seen in Table 1, symmetric encryption (AES) is extremely fast 

compared to pure RSA for the same data size. RSA is not 

designed for bulk data encryption, and its poor performance is 

evident – encrypting 1 MB of data using RSA-2048 took on the 

order of several seconds in our test (thousands of milliseconds), 

whereas AES could encrypt the same amount in under 0.5 

seconds. The proposed hybrid approach incurs only a slight 

overhead on top of the AES time. For a 1 MB file, AES alone 

was ~480 ms, and the hybrid (AES + ECC) was ~500 ms, an 

overhead of only ~20 ms (which was the time to perform an ECC 

encryption of the 256-bit key and related operations). This 

overhead (around 4%) is barely noticeable at the user level and 

demonstrates the efficiency of using ECC for key encapsulation. 

Even for a small file like 100 KB, the hybrid encryption finished 

in ~65 ms vs 45 ms for AES alone, meaning the ECC step added 

about 20 ms – a larger percentage overhead for small data, but 

still absolutely small (0.065 seconds). For a larger 2 MB file, the 

difference between AES (960 ms) and hybrid (980 ms) remained 

~20 ms. These results highlight that the proposed framework 

scales well with data size: the time is dominated by the 

symmetric encryption (which grows linearly with data size), 

while the asymmetric part is a constant-time cost (~tens of 

milliseconds) that does not increase with the file size. 

Consequently, as file size grows, the percentage overhead of the 

hybrid scheme diminishes. We also note that our measurements 

align with findings from other studies – for example, an IoT 

security study found that combining Blowfish and ECC did not 

significantly degrade performance compared to using Blowfish 

alone, thanks to the separation of key encryption from data 

encryption . 

 
Figure 3: Proposed Best: Speedup vs Local AES / Local 

Hybrid 

 

 

  
Figure 4: Throughput: Local Baselines vs Proposed Best 

 

  
Figure 5: Advanced & Secure Data Sharing in Mobile Cloud 

Platforms 
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Local vs Cloud (AES / Hybrid) and Proposed Best 

 

Figures 3-5. Our proposed framework couples Hybrid 

cryptography (ECDH+AES) with an adaptive offloading policy 

that decides, per payload, whether to execute on the mobile 

device or in the cloud by comparing end-to-end latency (local 

compute) vs (uplink + RTT/overhead + server compute + 

downlink). Under the evaluated link/compute settings (uplink 20 

Mbps, downlink 50 Mbps, RTT 30 ms plus 10 ms protocol 

overhead; server crypto time = 0.6x local AES and = 0.5x local 

Hybrid), the policy consistently selects local Hybrid for 100 KB, 

1 MB, and 2 MB inputs. 

 Consequently, in Figure 3 the "Proposed Best speedup over 

Local Hybrid is -1x (it is the same path), while speedup vs Local 

AES is slightly below 1x because Hybrid adds a fixed ECC 

handshake that AES- only does not. That penalty is modest and 

shrinks with size-about 0.69x at 100 KB (handshake dominates) 

and =0.96-0.98x at 1-2 MB as the handshake cost is amortized-

providing forward secrecy and mutual authentication at minimal 

latency overhead.  

Figure 4 shows throughput trends: local execution dominates 

because network transfer and RTT overshadow any cloud 

compute gains. The Proposed-Best throughput curve coincides 

with Local-Hybrid and sits just below Local-AES, reflecting the 

same small handshake overhead; cloud variants trail due to link 

costs.  

Figure 5 (absolute times) makes the bottleneck explicit: for 2 

MB, even with faster server crypto, total cloud time is driven by -

uplink downlink + RTT/overhead on the order of >1.2 s, which 

outweighs the -0.49 s server compute for Hybrid; local Hybrid at 

-0.98 s therefore wins. The decision boundary is clear: cloud 

becomes preferable only when the net (uplink + downlink + 40 

ms) falls below the compute saving (= 0.5x local-Hybrid), which 

for 2 MB in our setup implies substantially higher uplink capacity 

(roughly > 130 Mbps) or lower RTT/overhead. Overall, the 

results show the framework delivers the required security 

properties with predictable, small overhead versus AES-only, 

while the adaptive policy robustly keeps computation on-device 

unless network conditions and server speed clearly justify 

offloading. 

4. Conclusion 

In this paper, we presented a comprehensive solution for 

advanced and secure data sharing in mobile cloud platforms. The 

proposed framework leverages a hybrid cryptographic approach 

that integrates symmetric encryption (for data confidentiality) 

with asymmetric encryption (for secure key sharing), tailored 

specifically to the needs and constraints of mobile cloud 

computing. We focused on robust encryption techniques to 

ensure data privacy and user privacy, while also maintaining high 

performance and low resource consumption on mobile devices. 

We began by identifying the challenges in mobile cloud security 

– notably the tension between strong security and limited 

computational resources. To address this, our framework employs 

AES-256 (or similarly efficient symmetric ciphers) to encrypt 

user data, benefiting from its speed and security, and uses ECC 

(Elliptic Curve Cryptography) to encrypt the symmetric keys for 

distribution to authorized users, capitalizing on ECC’s strength 

and small key sizes that are ideal for mobile environments. This 

design choice was backed by recent research findings and our 

own analysis, showing that hybrid encryption can substantially 

reduce execution time compared to naive approaches.  
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