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Abstract: The exponential growth of digital documents across various domains has necessitated the development of
sophisticated automated systems for document organization and categorization. This paper presents a novel hybrid deep
learning framework that combines unsupervised clustering techniques with intelligent label generation mechanisms to address
the challenges of automated document classification. The proposed framework integrates transformer-based embeddings,
hierarchical clustering algorithms, and neural language models to achieve superior performance in both clustering accuracy
and interpretability. Our approach demonstrates significant improvements over traditional methods, achieving a silhouette
score of 0.847 and normalized mutual information of 0.923 across diverse document corpora. The framework's ability to
generate meaningful, human-interpretable labels for discovered clusters represents a substantial advancement in making
automated document organization systems more practical and user-friendly. Experimental results on benchmark datasets
including Reuters-21578, 20 Newsgroups, and custom enterprise document collections validate the effectiveness of our hybrid
approach.
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1. Introduction

The digital transformation of organizations has led
to an unprecedented accumulation of textual
documents across various formats and domains.
Traditional document management systems, while
effective for structured data, struggle to handle the
complexity and volume of unstructured textual
content that characterizes modern information
environments. The challenge of automatically
organizing, categorizing, and labeling large
document collections has become increasingly
critical for enterprises seeking to leverage their
knowledge assets effectively [1].

Document clustering, as an unsupervised learning
task, offers a promising solution to this challenge by
automatically  grouping semantically similar
documents without requiring pre-labeled training
data. However, conventional clustering approaches
face significant limitations when applied to high-
dimensional textual data, particularly in terms of
capturing semantic relationships and generating
interpretable cluster representations. The emergence
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of deep learning techniques, particularly
transformer-based models, has opened new avenues
for addressing these limitations through more
sophisticated document representation learning.
The primary contribution of this research lies in the
development of a hybrid framework that addresses
two critical aspects of automated document
organization: achieving high-quality clustering
performance  and  generating  meaningful,
interpretable labels for discovered clusters.
Traditional approaches typically treat these as
separate problems, leading to suboptimal overall
system performance. Our integrated approach
leverages the complementary strengths of different
deep learning architectures to create a cohesive
solution that excels in both clustering accuracy and
label quality.

The framework incorporates several innovative
components including a multi-stage document
embedding strategy that combines contextual and
positional information, a hierarchical clustering
algorithm  optimized for  high-dimensional
embeddings, and a neural label generation system
that  produces  human-interpretable  cluster
descriptions. The integration of these components
within a unified architecture enables end-to-end
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optimization and superior performance compared to
existing solutions.

2. Related Work
2.1 Traditional
Approaches

Early research in document clustering primarily
focused on vector space models and frequency-
based representations. Salton et al. (1975)
introduced the vector space model, which
represented documents as term frequency vectors,
establishing the foundation for subsequent
clustering algorithms. The TF-IDF weighting
scheme, proposed by Sparck Jones (1972), became
the standard approach for converting textual
documents into numerical representations suitable
for clustering algorithms [2].

K-means clustering, despite its simplicity, remained
a popular choice for document clustering due to its
computational efficiency and interpretability.
However, the spherical cluster assumption inherent
in k-means proved inadequate for capturing the
complex semantic relationships present in textual

Document Clustering

data. Hierarchical clustering methods, including
both agglomerative and divisive approaches, offered
better flexibility in cluster shape but suffered from
computational complexity issues when applied to
large document collections.

Latent Semantic Analysis (LSA), introduced by
Deerwester et al. (1990), represented a significant
advancement by addressing the semantic limitations
of frequency-based representations. LSA employed
singular ~ value  decomposition to  reduce
dimensionality and capture latent semantic
relationships, improving clustering performance on
semantically related documents. However, LSA's
linear assumptions and inability to capture complex
semantic patterns limited its effectiveness on diverse
document collections [3].

2.2 Deep Learning in Document Representation
The introduction of deep learning techniques
revolutionized document representation learning.
Word2Vec embeddings, proposed by Mikolov et al.
(2013), demonstrated the power of neural networks
in capturing semantic relationships between words.
These dense vector representations significantly
outperformed traditional bag-of-words models in
various natural language processing tasks, including
document clustering [4].

The development of sequence-to-sequence models
and attention mechanisms further enhanced the
capability of neural networks to process textual data.

The transformer architecture, introduced by
Vaswani et al. (2017), marked a paradigm shift in
natural language processing by enabling parallel
processing of sequences and capturing long-range
dependencies more effectively than recurrent neural
networks [5].

BERT (Bidirectional Encoder Representations from
Transformers), proposed by Devlin et al. (2018),
demonstrated the effectiveness of pre-trained
transformer models for various downstream tasks.
The contextual embeddings generated by BERT
showed superior performance in document
classification and clustering tasks compared to static
word embeddings. Subsequent developments,
including RoBERTa, ELECTRA, and DeBERTa,
further improved the quality of contextual
representations [6].

2.3 Neural Clustering Approaches

The integration of deep learning with clustering
algorithms has emerged as an active research area.
Deep clustering methods, such as Deep Embedded
Clustering (DEC) proposed by Xie et al. (2016),
jointly optimize representation learning and
clustering objectives. These approaches
demonstrate improved performance by learning
task-specific representations rather than relying on
generic pre-trained embeddings [7].

Variational Deep Embedding (VaDe), introduced by
Jiang et al. (2017), incorporated variational
inference principles into deep clustering, providing
probabilistic cluster assignments and better handling
of uncertainty. The integration of adversarial
training in clustering, exemplified by ClusterGAN,
further enhanced the robustness of learned
representations [8].

Recent advances in contrastive learning have shown
promise in improving document clustering
performance. SimCLR and its variants have
demonstrated that learning representations through
contrastive objectives can capture semantic
similarities more effectively than traditional
approaches. The application of contrastive learning
to textual data, through methods like SimCSE, has
shown particular promise for document clustering
tasks.

2.4 Automated Label Generation

The problem of generating interpretable labels for
automatically discovered clusters has received
increasing attention in recent years. Traditional
approaches relied on statistical methods such as
extracting the most frequent terms or using TF-IDF
scores to identify representative keywords.
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However, these methods often produced fragmented
or uninformative labels that failed to capture the
semantic essence of clusters.

Neural language models have opened new
possibilities for generating coherent, contextually
appropriate cluster labels. GPT-based models, with
their strong text generation capabilities, have been
adapted for automatic summarization and label
generation tasks. The integration of attention
mechanisms allows these models to focus on the
most relevant content when generating cluster
descriptions.

Recent work by Liu et al. (2021) explored the use of
pre-trained language models for generating cluster
labels in scientific document collections. Their

approach demonstrated improved label quality
compared to traditional keyword-based methods,
though challenges remained in ensuring consistency
and avoiding generic descriptions [9].

3. Methodology

3.1 Framework Architecture

The proposed hybrid deep learning framework
consists of four main components: document
preprocessing and embedding generation, multi-
scale feature extraction, adaptive clustering, and
intelligent label generation. The architecture is
designed to process documents end-to-end, from
raw text input to meaningful cluster labels, while
maintaining high performance and interpretability.

y
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Raw Text Documents
-
i ' (
Preprocessing Multi-level Embedding Feature Extraction
Tokenization & Normalization RoBERTa + Sentence-BERT Contextual Representations
\
- ( ™
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Density-based Initial Clusters Agglomerative Merging Parameter Auto-tuning
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o S

Figure 1: System Architecture Overview

The document preprocessing module handles
various text formats and applies standardization
techniques including tokenization, normalization,
and noise removal. The embedding generation
component utilizes pre-trained transformer models
to create dense vector representations that capture
both local and global semantic information. The
multi-scale feature extraction module combines
embeddings at different granularities to enhance
clustering performance.

The adaptive clustering component employs a
hybrid approach that combines density-based and
hierarchical clustering algorithms, automatically
determining optimal cluster numbers and structures.
The intelligent label generation module leverages
fine-tuned language models to produce coherent,
informative labels that accurately represent cluster
contents.

3.2 Document Embedding Strategy

The document embedding strategy forms the
foundation of our clustering framework. Rather than
relying on a single embedding approach, we
implement a multi-level strategy that captures
different aspects of document semantics. The
primary embedding layer utilizes RoBERTa-large,
fine-tuned on domain-specific data, to generate
contextual representations for document segments.
For documents exceeding the maximum token
length of transformer models, we implement a
hierarchical segmentation approach. Documents are
divided into overlapping segments of 512 tokens
with a 128-token overlap to maintain context
continuity. Each segment is independently
embedded, and segment-level representations are
aggregated using attention-weighted pooling to
create document-level embeddings.
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Figure 2: Multi-level Embedding Strategy

To enhance semantic richness, we incorporate
sentence-level embeddings using Sentence-BERT,
which provides complementary information about
document structure and coherence. The combination
of token-level contextual embeddings and sentence-
level semantic embeddings creates a comprehensive
representation that captures both fine-grained and
high-level document characteristics.

3.3 Adaptive Clustering Algorithm

The clustering component implements a novel
adaptive algorithm that combines the strengths of
different clustering paradigms. The approach begins
with density-based clustering using HDBSCAN to
identify core clusters and outliers. HDBSCAN's

ability to discover clusters of varying densities and
shapes makes it particularly suitable for document
data, where cluster characteristics can vary
significantly across topics and domains.

The hierarchical component builds upon the initial
clustering results by applying agglomerative
clustering to refine cluster boundaries and merge
semantically related clusters that may have been
separated due to density variations. The merging
process is guided by semantic similarity metrics
computed using the learned document embeddings,
ensuring that only truly related clusters are
combined.
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Figure 3: Adaptive Clustering Process

A key innovation in our approach is the adaptive
cluster number determination mechanism. Rather

than requiring manual specification of cluster
numbers, the algorithm dynamically determines
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optimal clustering parameters based on silhouette
analysis, Davies-Bouldin index optimization, and
semantic coherence measures. This automated
approach significantly reduces the manual effort
required for deployment across different document
collections.

3.4 Intelligent Label Generation

The label generation component represents a
significant advancement over traditional keyword-
based approaches. The system employs a fine-tuned
GPT-3.5-turbo model that has been specifically
adapted for generating concise, informative cluster
labels. The model receives as input a representative

sample of documents from each cluster along with
statistical information about term frequencies and
semantic themes [10].

The label generation process operates in multiple
stages. First, the system identifies key themes and
concepts within each cluster using extractive
summarization techniques. These themes serve as
input to the neural language model, which generates
candidate labels of varying lengths and styles. The
system then applies a ranking mechanism based on
informativeness, specificity, and human preference
scores derived from user studies.

0.891

Human Rating Semantic Similarity

8.7/10 ’ ’

94.3%

Uniqueness Score Quality Pass Rate

0.867 ’ ‘

Figure 4: Intelligent Label Generation Pipeline

To ensure label consistency and quality, we
implement a post-processing pipeline that validates
generated labels against predefined
including uniqueness, relevance, and readability.
Labels that fail to meet quality thresholds are

criteria

regenerated using alternative prompting strategies or
fall back to enhanced keyword-based approaches.
3.5 Training and Optimization

The framework employs a multi-stage training
strategy that optimizes different
independently before joint

components
fine-tuning. The
embedding models are first pre-trained on large-
scale domain-specific corpora to adapt their
representations to the target domain. This domain
adaptation significantly improves the quality of
generated embeddings compared to using generic
pre-trained models [11].

The clustering component undergoes optimization
through hyperparameter tuning using Bayesian
optimization techniques. Key parameters including
minimum cluster size, distance metrics, and linkage
criteria are automatically optimized for each dataset
based on clustering quality metrics. This automated
optimization ensures robust performance across
different document types and domains.

The label generation model is fine-tuned using a
carefully curated dataset of human-annotated cluster
labels. The training process incorporates
reinforcement learning techniques to optimize for
human preference scores, ensuring that generated
labels align with human expectations for clarity and
informativeness.

4. Experimental Setup
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4.1 Datasets

The experimental evaluation was conducted on three
diverse datasets to assess the framework's
generalizability across different domains and
document characteristics. The Reuters-21578
dataset serves as a standard benchmark for
document clustering, containing 21,578 news
articles across 135 categories. For our experiments,
we utilized the ModApte split, focusing on the 90
most frequent categories to ensure statistical
significance.

The 20 Newsgroups dataset provides a challenging
testbed with 20,000 documents distributed across 20
discussion groups covering diverse topics from
computer graphics to religious discussions. This
dataset is particularly valuable for evaluating
clustering performance on conversational and
informal text, which differs significantly from the
structured news articles in Reuters-21578 [12].

To evaluate real-world applicability, we assembled
a custom enterprise document collection from three
multinational corporations, containing 50,000
internal documents including emails, reports,
presentations, and technical documentation. This
dataset represents the heterogeneous nature of
enterprise document management challenges and
provides insights into the framework's practical
deployment considerations.

4.2 Evaluation Metrics

The evaluation strategy encompasses both clustering
quality and label generation performance. For
clustering assessment, we employ established
metrics including Normalized Mutual Information
(NMI), Adjusted Rand Index (ARI), and silhouette
score. These metrics provide complementary
perspectives on clustering quality, measuring
information preservation, partition similarity, and
cluster cohesion respectively.

Label quality evaluation presents unique challenges
due to the subjective nature of label appropriateness.
We developed a comprehensive evaluation protocol
that combines automated metrics with human
evaluation. Automated metrics include semantic
similarity between generated labels and cluster

contents, measured using sentence embeddings, and
uniqueness scores that assess label distinctiveness
across clusters.

Human evaluation involved 15 domain experts who
rated generated labels on four criteria: relevance,
specificity, clarity, and overall usefulness. Inter-
annotator agreement was measured using
Krippendorff's alpha, achieving satisfactory
reliability scores above 0.75 for all evaluation
criteria [13].

4.3 Baseline Comparisons

To establish the effectiveness of our hybrid
approach, we compared against several baseline
methods representing different paradigms in
document clustering. Traditional approaches
included k-means clustering with TF-IDF
representations and hierarchical clustering with
various linkage criteria. These baselines provide
insight into the improvements achieved through
deep learning representations.

Deep learning baselines included document
clustering using static word embeddings
(Word2Vec and GloVe), contextual embeddings
from BERT and its variants, and state-of-the-art
neural clustering methods including DEC and VaDe.
The comparison with these sophisticated baselines
demonstrates the specific contributions of our
hybrid approach.

For label generation, baseline methods included
frequency-based keyword extraction, TF-IDF-based
term selection, and existing neural approaches for
cluster labeling. The comprehensive comparison
across multiple dimensions ensures a thorough
assessment of our framework's contributions.

5. Results and Analysis

5.1 Clustering Performance

The experimental results demonstrate significant
improvements in clustering quality across all
evaluated datasets. Table-1 presents detailed
performance comparisons showing that our hybrid
framework consistently outperforms baseline
methods across multiple evaluation metrics.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3642-3652 | 3647



Table 1: Clustering Performance Comparison Across Different Methods and Datasets

Method Reuters- | Reuters- | 20 20 Enterprise | Enterprise | Average
21578 21578 Newsgroups | Newsgroups | NMI ARI Silhouette
NMI ARI NMI ARI

K-means + | 0.634 0.421 0.587 0.398 0.512 0.334 0.524

TF-IDF

Hierarchical | 0.672 0.456 0.623 0.445 0.578 0.389 0.567

+

Word2Vec

BERT + K- | 0.758 0.598 0.721 0.576 0.689 0.523 0.698

means

DEC 0.784 0.623 0.745 0.601 0.712 0.567 0.723

VaDe 0.792 0.641 0.756 0.618 0.728 0.589 0.741

Proposed 0.923 0.812 0.889 0.765 0.856 0.734 0.847

Framework

The superior performance of our framework can be
attributed to several key factors. The multi-level
embedding strategy effectively captures both local
semantic patterns and global document themes,
providing richer representations for clustering
algorithms. The adaptive clustering approach
successfully identifies optimal cluster structures
without requiring manual parameter tuning, leading
to more natural and coherent groupings.

overlapping topics. The hierarchical component
effectively manages the trade-off between cluster
granularity and coherence, producing clusters that
align well with human intuitive categorizations [14].
5.2 Label Generation Quality

The label generation component demonstrates
substantial ~ improvements traditional
approaches in both automated metrics and human
evaluation scores. Table-2 presents comprehensive

over

Analysis of cluster quality reveals that our results across different evaluation criteria,
framework excels particularly in handling highlighting the effectiveness of our neural
documents with complex semantic relationships and approach.
Table 2: Label Generation Quality Assessment Across Different Methods

Method Semantic Uniqueness Human Human Human Overall

Similarity Score Relevance Specificity Clarity Rating
TF-IDF 0.623 0.734 6.2 5.8 7.1 6.4
Keywords
Topic Modeling | 0.687 0.678 6.8 6.3 6.9 6.7
(LDA)
BERT 0.745 0.821 7.4 7.1 7.8 7.4
Summarization
GPT-3 0.823 0.756 8.1 7.6 83 8.0
Generation
Proposed 0.891 0.867 8.7 8.4 8.9 8.7
Framework

indicate that labels
generated by our framework are perceived as
significantly more relevant, specific, and clear
compared to baseline approaches. The high semantic
similarity scores demonstrate that generated labels
accurately reflect cluster contents, while the
uniqueness scores confirm that labels effectively
differentiate between different clusters [15].

Human evaluation results

Qualitative analysis of generated labels reveals
several interesting patterns. The framework tends to
generate labels that capture both the topic and the
perspective or context of documents within clusters.
For example, in the 20 Newsgroups dataset, our
framework generated labels such as "Graphics
Hardware Performance Discussions" rather than
simply "Graphics," providing users with more
informative descriptions of cluster contents.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3642-3652 | 3648



5.3 Computational Efficiency

Despite its sophisticated architecture, the framework
maintains reasonable computational efficiency
through careful optimization and parallelization

strategies. Table-3 provides detailed analysis of
computational requirements across different dataset
sizes and hardware configurations.

Table 3: Computational Performance Analysis Across Different Dataset Sizes

Dataset Embedding Time | Clustering Time | Label Total Memory

Size (GPU) (CPU) Generation Processing Usage (GB)
Time Time

1,000 2.3 min 0.8 min 1.2 min 4.3 min 32

docs

10,000 18.7 min 4.2 min 8.9 min 31.8 min 12.6

docs

50,000 89.4 min 23.1 min 34.7 min 147.2 min 48.3

docs

100,000 184.2 min 52.8 min 71.5 min 308.5 min 89.7

docs

The computational analysis reveals that embedding
generation constitutes the most time-intensive
component, accounting for approximately 60% of
total processing time. However, the use of pre-
trained models significantly reduces training time
compared to learning embeddings from scratch. The
clustering and label generation components
demonstrate near-linear scaling with dataset size,
indicating good scalability for large-scale
applications [16].

Memory usage remains manageable even for large
datasets, with optimization techniques including
gradient checkpointing and dynamic batching
helping to reduce memory requirements. The
framework can process 100,000 documents using
less than 90 GB of memory, making it feasible for
deployment on standard enterprise hardware
configurations.

5.4 Ablation Study

To understand the contribution of individual
components, we conducted comprehensive ablation
studies by systematically removing or modifying
key elements of the framework. The results confirm
that each component contributes meaningfully to
overall performance, with the multi-level
embedding strategy providing the largest individual
improvement.

Removing the hierarchical clustering component
resulted in a 12% decrease in clustering quality
metrics, demonstrating the importance of the two-
stage clustering approach. The adaptive parameter
selection mechanism contributed approximately 8%
to overall performance, highlighting the value of
automated optimization over manual parameter
tuning [17].

The label generation component's contribution was
evaluated by replacing neural labels with traditional
keyword-based approaches. This substitution
resulted in a 35% decrease in human evaluation
scores, confirming the substantial value provided by
neural label generation.

6. Discussion

6.1 Framework Advantages

The proposed hybrid framework offers several
significant advantages over existing approaches.
The integration of multiple embedding strategies
provides robust representations that capture diverse
aspects of document semantics, leading to improved
clustering performance across different document
types and domains. The adaptive clustering
algorithm eliminates the need for manual parameter
tuning, making the framework more practical for
real-world deployment [18].

The intelligent label generation component
addresses a critical limitation of existing clustering
systems by producing human-interpretable
descriptions that facilitate user understanding and
system adoption. The quality of generated labels
significantly exceeds traditional approaches,
providing users with meaningful insights into cluster
contents without requiring manual inspection of
individual documents [19].

The framework's modular architecture enables
flexible deployment configurations, allowing
organizations to adapt the system to their specific
requirements and computational constraints.
Components can be independently updated or
replaced as new techniques become available,
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ensuring long-term viability and continuous
improvement.

6.2 Limitations and Challenges

Despite its strong performance, the framework faces
several limitations that warrant discussion. The
computational requirements, while reasonable for
enterprise applications, may limit adoption in
resource-constrained environments. The
dependence on large pre-trained models also
introduces dependencies on external resources and
potential licensing considerations.

The label generation component, while generally
effective, occasionally produces overly generic or
verbose descriptions, particularly for clusters
containing highly diverse documents. Future work
should focus on developing more sophisticated
techniques for handling heterogeneous clusters and
generating appropriately concise labels [20].

The framework's performance on extremely short
documents or documents with limited textual
content requires further investigation. While the
multi-level embedding strategy helps address this
challenge, very brief documents may not provide
sufficient semantic information for accurate
clustering and meaningful label generation.

6.3 Practical Implications

The successful deployment of automated document
clustering systems can provide substantial benefits
for organizations managing large document
collections. The framework's ability to discover
hidden semantic relationships and provide
interpretable cluster descriptions can enhance
knowledge discovery and facilitate more effective
information retrieval [21].

The integration of intelligent labeling capabilities
makes the framework particularly suitable for
applications where human users need to understand
and interact with clustering results. This includes
use cases such as digital library organization, legal

document analysis, customer feedback
categorization, and research literature management
[23].

The framework's modular design and automated
optimization capabilities reduce the technical
expertise required for deployment, making
advanced document -clustering accessible to a
broader range of organizations and applications
[24].

7. Future Work
Several promising directions for future research
emerge from this work. The integration of

multimodal information, including images and
metadata, could enhance clustering performance for
documents containing diverse content types. The
development of incremental learning capabilities
would enable the framework to adapt to new
documents without requiring complete reprocessing
of existing collections [25].

Advanced techniques for handling extremely large
document  collections, including distributed
processing and approximation methods, represent
important areas for continued development. The
exploration of few-shot learning approaches for
rapid adaptation to new domains could further
improve the framework's versatility and deployment
flexibility [26].

The integration of user feedback mechanisms to
continuously improve clustering and labeling
quality presents an interesting avenue for creating
adaptive systems that learn from user interactions.
Such systems could provide personalized clustering
results that align with individual user preferences
and organizational requirements [27].

8. Conclusion

This paper presents a comprehensive hybrid deep
learning framework for automated document
clustering and intelligent label generation that
addresses key limitations of existing approaches.
The integration of multi-level embeddings, adaptive
clustering algorithms, and neural label generation
produces superior performance across diverse
evaluation criteria and datasets [28].

The experimental results demonstrate significant
improvements in clustering quality, with normalized
mutual information scores exceeding 0.9 on
benchmark datasets and consistent performance
gains across different document types. The
intelligent label generation component produces
human-interpretable descriptions that substantially
improve system usability and adoption potential
[29].

The framework's practical implications extend
beyond  academic contributions, offering
organizations a robust solution for managing large-
scale document collections. The automated
optimization capabilities and modular architecture
facilitate deployment across different domains and
applications, making advanced document clustering
accessible to a broader user base [30].

Future developments in multimodal processing,
incremental learning, and user adaptation will
further enhance the framework's capabilities and
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expand its applicability to emerging challenges in
document management and knowledge discovery.
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