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Abstract: Cloud computing offers scalable, elastic, and on-demand services but faces major challenges in 

ensuring user authentication, secure access, and optimal resource distribution. Service Level Agreement 

(SLA) violations and malicious intrusions represent persistent threats that degrade reliability and trust in 

cloud ecosystems. Traditional validation methods often struggle to adapt to dynamic workloads and evolving 

attack vectors. In this paper, we present an AI-driven validation and resource allocation framework that 

integrates neural classification for authentication, machine-learning-based SLA prediction, and 

reinforcement learning (RL)-driven resource provisioning. The system demonstrates improved detection 

accuracy of unauthorized users and reduced SLA violations under variable workloads. Expanded simulations 

highlight that incorporating AI improves not only security but also fairness, energy efficiency, and cost 

optimization. This paper contributes a holistic methodology that addresses the dual challenges of security 

and performance in multi-tenant cloud infrastructures. 

Keywords: Cloud computing, AI-driven validation, resource allocation, SLA prediction, reinforcement 

learning, neural networks, security. 

I. Introduction 

Cloud computing has revolutionized IT by 

providing enterprises and individuals with 

scalable, elastic, and pay-as-you-go resources. 

Despite these advantages, maintaining Quality of 

Service (QoS) while ensuring strong user 

validation and data security remains a challenging 

problem. SLA violations lead to customer 

dissatisfaction, monetary penalties, and reduced 

trust between cloud providers and clients. 

Simultaneously, weak authentication exposes 

cloud infrastructures to security breaches. 

Traditional validation approaches rely on static 

credentials or rule-based checks that cannot 

adequately capture behavioral anomalies. 

Similarly, resource allocation strategies such as 

First-Come-First-Serve (FCFS) or round-robin 

fail to adapt to workload surges, resulting in 

inefficient utilization and higher SLA breach 

rates. 

 

AI-driven methods present a compelling 

alternative. Machine learning (ML) models learn 

from user behavior and workload traces to 

provide proactive validation and allocation. 

Neural networks can classify valid versus 

malicious users, while RL can dynamically assign 

resources based on real-time conditions. The 

motivation for this work is to develop a unified 

framework where security-aware validation and 

intelligent allocation co-exist, ensuring that both 

security and performance objectives are met. 

II. Related Work 

Research into AI for cloud computing spans 

security, performance, and energy optimization. 

Wang et al. (2021) introduced an RL-based 

scheduler for dynamic workloads, showing 
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improved throughput. Chen et al. (2020) explored 

adaptive anomaly detection, which identifies 

zero-day intrusions more effectively than static 

methods. Trust models proposed by Singh et al. 

(2019) and Takabi et al. (2016) underscore the 

necessity of robust authentication. However, they 

often neglect integration with provisioning 

systems. 

 

SLA-aware scheduling has been studied 

extensively. Garg et al. (2018) and Calheiros et al. 

(2011) proposed machine-learning-driven 

methods for resource provisioning. Yet, these 

approaches seldom include user trust validation. 

Neural-network-based approaches by Gupta et al. 

(2019) improve resource prediction accuracy but 

focus primarily on performance metrics. Recent 

work by Patel et al. (2021) has shown AI-driven 

methods for cloud security, but their scalability 

under multi-tenant conditions remains 

underexplored. 

 

Our contribution lies in bridging these strands of 

research—combining AI-based validation, SLA 

prediction, and RL allocation into a single unified 

framework capable of enhancing both security 

and performance in real-world cloud systems. 

III. Proposed Framework 

The proposed framework consists of three tightly 

integrated modules: 

1) AI-Driven User Validation: Using a 

Backpropagation Neural Network (BPNN), the 

framework analyzes login metadata, geolocation, 

device fingerprinting, and behavioral patterns. 

Suspicious deviations, such as rapid IP switching, 

are flagged. 

2) SLA Violation Prediction: Historical workload 

traces and SLA logs are input to a supervised 

learning model (Random Forest). The model 

outputs the probability of SLA breaches given 

current load and allocation policies. 

3) Secure Resource Allocation: An RL agent 

dynamically provisions CPU and memory 

resources by minimizing a reward function that 

balances latency, cost, and predicted SLA 

violation risk. 

Mathematically, the optimization objective can be 

expressed as: 

R = -(α * Latency + β * Cost + γ * SLA_Risk), 

where α, β, and γ are weights assigned to provider 

objectives. 

IV. System Architecture 

The architecture comprises four layers: 

Authentication, Validation, Prediction, and 

Allocation. The authentication layer ensures basic 

identity checks. The validation layer uses AI 

classifiers to identify malicious patterns. The 

prediction module estimates SLA risk under 

varying loads, while the RL allocator executes 

placement and scaling actions. Telemetry 

feedback loops allow continuous model 

retraining. This architecture ensures resilience 

against insider attacks, scalability under bursty 

traffic, and adaptability to multi-cloud 

environments. 

V. Results and Discussion 

Experiments were simulated using CloudSim 

with 50 hosts and 500 virtual machines. Metrics 

included validation accuracy, SLA violation 

probability, and average response time. The AI-

driven validation module achieved 94% accuracy 

in distinguishing malicious users. Compared to 

baseline heuristic allocation, SLA violation rates 

decreased by 21%. The RL-based allocator 

improved CPU utilization by 15% and reduced 

energy consumption by 10%. 

 

A comparative analysis (Table 1) shows that the 

proposed model outperforms traditional round-

robin and FCFS allocation in all metrics. 

Additionally, the integration of validation 

prevents unauthorized access, a feature absent in 

existing SLA-only approaches. 

 

Table 1: Comparison of Allocation Methods 

 

Method | SLA Violation Rate | Avg Latency | 

Energy Utilization 

Round Robin | 32% | 180ms | High 

FCFS | 28% | 165ms | Medium 

Proposed AI Framework | 11% | 140ms | Low 
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VI. Conclusion 

This paper presented a comprehensive AI-driven 

framework for cloud user validation and secure 

resource allocation. By unifying neural-network-

based validation, SLA prediction, and RL-driven 

allocation, the framework enhances both security 

and performance. Experiments confirmed 

reduced SLA violations and improved efficiency. 

Future directions include deploying the model in 

hybrid cloud testbeds, incorporating blockchain 

for tamper-proof audits, and extending AI 

methods to multi-cloud federation scenarios. 

Figures 

 

Figure 1: AI-Driven Cloud User Validation 

Workflow 

 

Figure 2: System Architecture of AI-Driven 

Validation and Allocation 
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