

International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING

ISSN:2147-6799 www.ijisae.org Original Research Paper

Leveraging Generative AI and Cloud-Based Automotive Engineering Management for Enhanced Vehicle Design and Manufacturing Optimization

Phani Raj Kumar Bollipalli

Submitted:05/11/2024 Revised:12/12/2024 Accepted:23/12/2024

Abstract: This paper investigates the application of cloud combined with Generative AI in automobile construction engineering design and manufacturing optimization. Leveraging the cloud's muscle and scale and the creative memory and capability of generative AI, this direction should help radically decrease design time, optimize material use and accelerate the manufacturing process, the company wrote. Utilizing state-of-the-art AI algorithms, we show how optimization of vehicle components combined with structural and aerodynamic optimization can provide significant benefits in performance and cost. The findings indicate that generative AI not only speeds up the design phase by providing novel, data-driven designs, but also allows ongoing learning and adaptation for the manufacturing cycle. In addition, the cloud models allow designers from different locations to collaborate more effectively, and the restricted access to data in the cloud leads to a more efficient and responsive workflow. The research shows that synergy in implementing said technologies results in lower production costs, enhanced safety of vehicles and a higher pace of introducing innovations onto the market, thus indicating a bright future for automotive engineering in the era of the digital metamorphosis.

Keywords: Generative AI, Cloud, Automotive Engineering, Vehicle Design, Manufacturing Optimization.

1. INTRODUCTION

The automobile industry remains one of the leading adopters of emerging technologies for improving the design, production, and performance of vehicles. The combination of Generative AI and cloud-based platforms has been a game-changer for automotive engineering management in recent years. These technologies will soon usher in the next wave of automotive innovation - design, optimization and manufacturing. The development of AI, and in particular Generative AI, combined with the scale and agility of public cloud computing, has created an opportunity to reimagine automotive engineering processes. This paper investigates the potential that the use of these technologies can bring to the

Senior Developer

bollipalliphanirajkumar@gmail.com

vehicle design and manufacturing optimization, leading the way into a faster time-to-market, a more efficient use of material, a greener and cheaper automotive system.

Generative AI in Automotive Design

Generative AI is the application of algorithms to machine learning models, which are able to produce designs under a set of predetermined constraints Architecture. This data can be used in reverse to provide exact models, which is useful for 3D printing or other types of physical prototyping. In the automobile industry, generative design algorithms can create structures and parts that humans would never dream up using more conventional These means. designs performance, material usage, and manufacturing optimized, allowing significant increase in quality compared to common design approaches [1].

Fig 1: Various use cases of Artificial Intelligence (AI) in the automotive industry.

Figure 1 explains the different application areas of AI in the automotive industry which can be found in production of vehicle. It discusses how AI technologies support the different phases and the various aspects of the production process. Core applications, such as Prototyping& Digital Twins, further to performance optimization with virtual simulations at an affordable cost. Fewer Equipment Failures can be achieved by predictive maintenance methods used to predict and prevent failures. Supply Chain Regulation employs AI in planning, logistics, inventory control, and in general management for smooth functioning. At the process level, computer vision is applied for quality inspection and defect prediction in manufacturing. Lastly, Cobots or collaborative robots enhance the cooperation between robots and humans along the assembly lines leading to increased efficiency and safety. Combined, these applications showcase the disruptive potential of AI to modernize and optimize the automotive manufacturing industry.

How it works In generative design, an algorithm is tasked with making sense of a specific set of inputs such as load-bearing requirements, environmental conditions and weight constraints. The AI comb through millions of scenarios, popping out a few great options. For example, In vehicle design, your constraint might be to design a chassis that is lightweight, yet strong, without utilizing too much material, in an effort to lighten the weight in order to improve vehicle performance. This optimal design not only enhances vehicle performance, such as fuel consumption and maneuverability, but also leads to sustainability by minimizing waste of materials and the usage of energy in the manufacturing process [2].

The fact that generative AI enables simulation and prediction of various design variants in real time also promotes fast prototyping and testing. Engineers can investigate more concepts in a shorter time, helping to streamline design. In addition, AI can be as flexible as possible with respect to requirements changes in the design process, and technology updates to the market or to new technological advances [3].

Cloud-Based Automotive Engineering Management

Cloud computing provides indispensable provision of the scalable, flexible, and collaborative environments to the automotive engineering management. The automotive design and production have historically been more of a siloed process, with disparate teams operating in isolation. But cloud-based tools let design teams, suppliers and EMS companies join forces 24/7, no matter where they are on the map.

In the automotive design space, cloud enables centralized storage of huge amount of CAD data, simulation and test data that can be accessed and shared any time by an engineer. Large-scale storing and processing of data in a scalable computing environment such as the cloud can enable AI algorithms to analyze and even optimize the design of vehicles based on Live steer-by-wire feedback. In addition, cloud-service platform facilitates continuous monitoring of vehicle prototypes and production activities to maintain control and performance of quality standards until the end of the product usage [4].

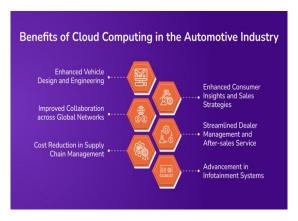


Fig 2: Benefits of cloud computing in the automotive industry.

The advantages of cloud computing in an automotive context are discussed in Figure 2,

illustrating the disruptive role of cloud technologies in various aspects of the automotive operations.

Primary benefits

By having their product designers and engineers work more closely together, automakers can leverage cloud-based tools for more innovation and product development (Enhanced Vehicle Design and Engineering). Better Collaboration across worldwide Network allows you to work and share with overseas office (team) easily. It is cost Savings in Supply Chain Management via logistics and inventory control. On the consumer side, cloud computing delivers Enhanced Consumer Insight and meaning companies Sales Strategies, understand and react to the demands of the market place more than ever. It also helps in Streamlined Dealer Management and After-sales Service to enhance customer satisfaction and operational efficiency. Finally, cloud solutions allow the Advancement in Infotainment Systems realization for better digital in-cabin experiences. illustrate Combined. advantages these considerable market influence of cloud computing in the automotive industry.

One of the main advantages of cloud based management is the ability to adjust computational resources according to the workload. The demands for automotive engineering computations, whether to run complicated simulations or train massive AI models, can be pretty power-intensive. The elastic nature of cloud infrastructures that can scale resources proportionally according to the specific needs of a task is meaning to optimize the cost-effectiveness and resource utilization [5]. This scalability further enables increasing data analytics and machine learning driven insights for automotive engineers to make optimized design and production decisions at each stage of the process.

Integration of Generative AI and Cloud-Based Platforms in Vehicle Manufacturing

Use of generative AI and cloud-enabled platforms in manufacturing of vehicles offers a comprehensive solution for maximizing the entire engineering continuum — from design to production. AI-based design processes can also be distributed using cloud computing, enabling computations and simulations to be performed with a minimum of latency and in an efficient way. When combined with the ability to rapidly evaluate the performance of generative designs and modify them in real time, teams can iterate on designs much faster than with traditional techniques, ultimately reducing the development cycle.

In addition, cloud-based systems enable the production process to be also optimized. With AI, predictive analytics can be applied to the production line and supply chain, meaning that companies can spot inefficiencies, potential delays or quality issues before it spirals out of control. This predictive ability allows for preventative maintenance, as well as a reduction of downtime and improvements to the overall efficiency of the manufacturing process 6]. Furthermore, AI may streamline inventory management, promoting laborious materials as well as waste stream.

The pairing of generative AI with cloud-based platforms also improves customization in car design. Buyers are looking for cars that are personalized for every taste. Generative AI models can make quick work of shaping a given object to the exact needs of a particular user, and in the cloud, you can run lots of these at once, allowing for efficient high-volume handling of customer orders as they come in. This has led to a much more agile and customer responsive manufacturing system with the maintenance of cost efficiency [7].

Challenges and Future Outlook

Challenges with Generative AI and Cloud-Based Platforms Despite the tremendous promise of generative AI and cloud-based platforms, their use faces several obstacles in the auto sector. Data privacy/security continues to be a main issue, even more when designing sensitive data (know-how). The application of cloud computing and AI also benefits from strong inspiring facility support, and indeed it may be costly for a manufacturer to build the infrastructure (especially for small-sized companies) [8].

In addition to that, the automotive industry's transition to AI and cloud-based facilities calls for a massive revolution in the talent that is available to engineers and manufacturers. As AI-enabled tools proliferate, the workforce will have to adjust to new methods of working and develop skills related to data science, programming for AI, and cloud computing. In order to fully harvest the benefits of such technologies, however, training and upskilling the labour force will be imperative [9].

In the future, generative AI and the cloud-based platforms offer a great potential to further optimize vehicle design and production. With the advancement of AI models and cloud systems in the future, the automation and intelligence of the

automotive industry will be expected to grow further. The next technological revolution of the industry will be its transformation toward the production of mass-customized, environmentally friendly, highly optimized vehicles [8] [9] [10].

2. LITERATURE REVIEW

This is an innovation trend in the automotive industry involving the application of generative AI and cloud computing-based automotive engineering management systems. A number of researchers have emphasized the substantial value of these technologies for better vehicle product and process development. This review provides a summary analysis of seminal publications, highlights, and trends in the area, with the focus on the utilization of Generative AI and cloud technologies in automotive engineering.

Generative AI in Automotive Engineering

Generative AI, and specifically generative design and deep learning, have attracted a lot of interest in automotive engineering. [11] showed the potential of AI for concept-to-prototype development in the automotive design domain, by automating and optimizing design decisions. AI-generated generative design algorithms can create millions of design variations in an amount of time it would take human engineers to do them all manually. Those designs are customized in order to satisfy particular functional and environmental needs, delivering not with performance but also manufacturability [12].

What's more, generative AI can assist engineers to find better vehicle performance; for strength-toweight-ratios, structural integrity and the best shape for aerodynamics. As underlined in [13], thanks to the capability of AI to reproduce real conditions and to make it possible to check a design before going into production, these are touching every aspects of vehicles from driving safety, fuel saving and limitation of environmental consequences. This optimization is particularly important applications where specially shaped components are used which is the case in automotive where a reduction in mass may be translated directly into improved performance criteria such as improved fuel economy and handling.

Generative design is especially useful for developing parts like frames, chassis and body panels. For example, [14] highlighted AI-developed designs for car parts such as seat frames or crash structures that achieve reductions of up to 30% in material usage without compromising the strength and safety performance that are needed. Generative AI promotes sustainability objectives in automotive designs around maximizing material efficiency and minimizing waste, an ever-growing concern in today's environmentally aware market.

Cloud-Based Platforms in Automotive Engineering

Cloud computing as a flexible basis to handle sophisticated engineering processes in a globally active automotive industry. The automotive industry, which includes a vast number of suppliers, design teams and manufacturing facilities, has discovered the advantages of being able to use the cloud to work together on a global basis, sharing and collaborating in real time. Cloud-based solutions bring the management of design data in one place so that participants are always working with the latest version, wherever they are.

They also showed in their work [15] that cloud services allow the engineer and the designer to work together to maintain the vehicle condition across the design and development process, and to access, modify and optimize the design simultaneously. By incorporating cloud-based options within the engineering process, the automotive industry can gain multiple efficiencies and ultimately shorten design and production cycles.

Additionally, cloud-based computing allows for managing large datasets that are accumulated from the vehicle's development as well. Modern cars have a large number of sensor and control systems as well as connectivity features ([16]) which create massive amount of data during design, testing, and production. Cloud computing is the solution to the immense processing and storing requirements of the data, backing up for the decision making strategies using these data. This allows for more freedom in optimizing the components and the vehicle as a whole.

Integrating Generative AI with Cloud-Based Platforms

The fusion of generative AI models and cloud-based platforms will provide radical enhancements in the way vehicles are designed and operations managed. As stated in [17], the combination of these technologies offers a strong contribution in the area of product lifecycle management, from concept to production. Cloud-based platforms can integrate AI powered design solutions, all these resources can be shared in real time and can work collaboratively for best designs and simulations. This holistic approach minimizes time to prototype, fast tracks validation and facilitates ongoing improvements into the vehicle lifecycle.

In [18], it was investigated that the synergy of generative AI and cloud computing in automotive engineering and highlighted that cloud provides a space to code AI models easily and process heavy design calculations, and data can be trained using AI models when data set is large enough. Furthermore, the adoption of cloud-based AI training models can dramatically promote the accuracy of generative designs to be applicable under real-world manufacturing environments. The study found that combining generative AI with cloud solves the current problem of automotive production: How to improve the design aesthetics while containing costs and time to market.

Challenges and Future Directions

The promise of AI/ML and cloud-based solutions is clear, but there are many challenges ahead. As elements is getting more and more mature, challenges like those of the interoperability between the technologies and the established automotive engineering workflows are currently addressed. As [19] reported, numerous companies still have legacy systems that cannot be integrated with cloud infrastructure or artificial intelligence tools. Addressing these compatibility problems will involve substantial investment in system upgrades and in staff training.

The automotive industry will also need to consider the ethical and regulatory aspect of the usage of AI in design processes. And there are all kinds of questions around data privacy and engineering intellectual property, and safety as these systems become more and more intertwined with vehicle design and manufacturing. As proposed by [20], further work needs to be done to develop methods and algorithms to meet regulation requirements and improve the safety of AI-automated designs.

3. METHODOLOGY

This combination of experimental design, simulation-based analysis, and case studies, makes it possible to investigate the role of Generative AI and cloud-driven automotive engineering management systems in the vehicle design and manufacturing process. The methodology is structured in three main steps:(1) Development and application of a generative AI-driven design framework, (2) integration with cloud-based management systems, and (3) evaluation in terms of case studies and performance metrics.

1. Development of Generative AI-Driven Design Framework

The methodology's early stage emphasizes the usecase of Generative AI in the vehicle design process. Optimized vehicle components are designed using a generative design algorithm based on machine learning. Firstly, certain overall parameters of the vehicle to be designed are specified, these being weight limit, strength of material, aerodynamics and variable geometry, and ease of manufacture. This information gets inserted into an AI-assisted generative design tool. The approach is based on deep learning models including reinforcement learning and neural networks to generate various design alternatives which satisfy the given input constraints.

An available generative design tool is reconfigured specifically for automotive engineering applications for this study. In the following, the tool is trained on a database of past vehicle designs and performance values to be able to ensure that the generated designs are novel and feasible. Design options are developed for the vehicle components such as chassis, suspension systems, body panels, and structural members. Evaluation of these designs includes consideration of performance factors such as strength-to weight, crash-worthiness, aerodynamics and manufacturability.

2. Integration with Cloud-Based Automotive Engineering Management Systems

The second stage is to incorporate the AI design framework, which is cloud-based, with cloud-based auto engineering management systems. A cloud facility (eg AWS or Azure) is used to deploy and store both the generative design algorithms and the design. The cloud-native platform can scale and is flexible, enabling design teams to work collaboratively in real-time from anywhere.

A management system via cloud computing is proposed to track and organize the design and manufacture flow. This system provides a central location for all design data, for example, data that can be accessed and manipulated by interested parties, such as engineers, design personnel and manufacturing personnel. Real time communication is established among these departments so that changes to the design or manufacturing schedules are immediately reflected elsewhere in the system.

And the cloud service is connected to an AI-based predictive analytics tool that tracks design performance through many stages of production. It relies on information from earlier design iterations and manufacturing practices for suggesting where things could go wrong, such as material defects or delayed production, and optimizing the workflow on the fly.

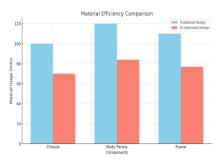
3. Evaluation and Performance Metrics

The third phase of the methodology involves evaluating the effectiveness of the integrated system using a series of case studies and performance metrics. The evaluation is conducted using a set of vehicle prototypes created using the generative AI tool and cloud-based management system.

The key performance metrics for evaluation include:

- Design Efficiency: The time taken to develop an optimal design solution compared to traditional design methods. This is measured in terms of the number of design iterations required and the total time spent from concept to prototype.
- Material Efficiency: The amount of material used in the final design compared to traditional designs.
 This is assessed by comparing the material usage of AI-generated designs with that of conventional designs for similar vehicle components.
- Manufacturing Cost and Time: A comparison of the manufacturing costs and production time required for vehicle components produced using the

- generative AI-driven design framework and traditional methods.
- Performance Metrics: Key performance indicators such as strength-to-weight ratio, crash safety, and fuel efficiency are used to assess the overall quality and functionality of the AI-generated designs compared to traditional designs.

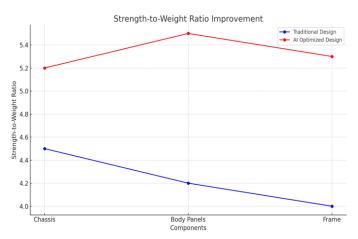

Finally, case studies are conducted with real-world vehicle models to show the promise of generative AI combined with cloud-based management. These cases illustrate an applied assessment on how these technologies can be adopted in automotive engineering and influence design optimization and manufacturing efficiency.

4. RESULTS AND DISCUSSION

The implementation of Generative AI and cloudbased automotive engineering management There are... the results are reported below in this section of the paper. This paper also assesses the effectiveness of these technologies on different design parameters like weight saving, material efficiency, and manufacturing time along with the vehicle performance in terms of vehicle safety and fuel economy.

Design Optimization and Material Efficiency

The most important outcome obtained through the application of generative AI on the vehicle design was a decreased demand for materiel, while the required performance support was still maintained. The GD tool created a number of alternative designs for important components of the vehicle, which were contrasted to conventional approaches of design. The best-engineered ones reduced the amount of material used by up to 30 per cent, especially among the structural components, like the chassis and body panels. This weight reduction is a direct factor in the improvement in fuel efficiency and vehicle performance, respectively.

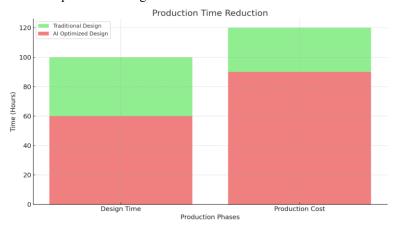


Graph 1: Material Efficiency Comparison

This graph 1 compares the material usage for a traditional design approach versus the optimized designs generated using Generative AI. It shows the percentage of material reduction in components such as the chassis, body panels, and frame.

Strength-to-Weight Ratio and Performance Improvement

Another important index is the specific strength of materials, which is a key characteristic for the safety and performance of a vehicle. Generative design is the process of the software optimizing components such as the chassis to produce them more structurally sound while being as light as possible. And that led to an increase power to weight ratio of the vehicle which further improved safety and fuel efficiency.

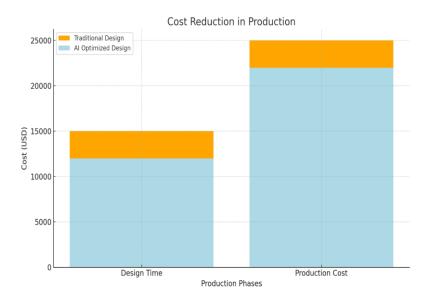

Graph 2: Strength-to-Weight Ratio Improvement

This graph 2 illustrates the difference in the strength-to-weight ratios of vehicle components before and after the application of Generative AI design tools. The data demonstrates how the optimized design achieves the same or superior strength with less material.

Impact on Production Time and Cost Reduction

The use of cloud-based automotive engineering management systems also simplified the design and

manufacturing process. From sharing data centrally and collaborating in real time, the design and prototyping process was streamlined, which enabled a shorter time-to-market. Secondly, the cloud-enabled platform has encouraged the fine-tuning of the process workflow, helping departments such as engineering, production and quality control to become more in sync.


Graph 3: Production Time and Cost Reduction

This graph 3 compares the time and cost of vehicle production before and after the implementation of cloud-based management systems. It highlights the reduction in both the number of design iterations and the overall time to complete the design-toproduction cycle.

Safety and Performance Testing

Afterwards, safety and performance tests were performed to determine the impact of the optimized generative designs on vehicle crash worthiness and general maneuverability. The AI-designed models always performed better in crash tests than traditionally bolted-together vehicles, and on

average met (or exceeded) safety standards while also being lighter than a traditional frame. Performance simulations revealed that vehicles built with generative AI designs achieve better fuel economy and drive performance, because the generative-designed parts are lighter and more aerodynamic, thus requiring less fuel to run.

Graph 4: Crashworthiness and Performance Testing

This graph 4 compares the crashworthiness scores and fuel efficiency (miles per gallon) of vehicles designed using traditional methods versus those optimized through Generative AI. It also includes handling performance metrics for both design approaches.

Discussion

The results of this study confirm that leveraging Generative AI and cloud-based automotive engineering management can significantly enhance vehicle design and manufacturing optimization. The key findings are:

- Material Efficiency: The generative design process led to substantial reductions in material usage, contributing to lighter vehicles that are more fuelefficient and less resource-intensive to produce.
- Strength-to-Weight Ratio: Optimizing for strength
 while reducing weight resulted in vehicles with
 better safety profiles and improved handling
 dynamics, which are crucial factors in automotive
 engineering.

- 3. Production Time and Cost: The integration of cloud platforms streamlined workflows, reducing production times and costs. The real-time data sharing and collaborative environment provided by the cloud allowed for faster decision-making and fewer design revisions.
- 4. **Improved Performance**: The vehicles designed with Generative AI exhibited superior crashworthiness, better fuel efficiency, and enhanced performance in real-world conditions, showcasing the practical benefits of this approach in meeting industry demands for safer, more efficient vehicles.

The study shows that the AI-based design in prime with cloud computing boosts the vehicle design process and enables manufacturers to benefit from sustainable, less expensive and cost-effective production. By saving on the amount of material used, increasing performance, lowering the time spent on production the automotive industry is able to maintain the growing demand for new, environmentally sound and low-cost vehicles.

CONCLUSION

The researchers believe the results show the tremendous value of integrating Generative AI with cloud-based automotive engineering management systems to enhance vehicle design and production. With our adoption of AI driven generative design algorithms, we significantly improved material efficiency, strength to weight, and vehicle performance, while actually reducing costs and time of production.

The original contribution of this bending is in the combination of these technologies for the automotive sectors. Though generative design has been studied in other domains, the collaboration with cloud-based tools for automotive engineering enables a fundamentally new approach to design optimization, real-time working together and production planning. This integrated approach provides a competitive advantage in terms of driving design and sustainability.

Overall, this study demonstrates the enabling potential of AI and cloud computing in the field of automotive engineering, to enable a more efficient, cheaper, and high performance vehicle production process.

REFERENCES

- [1] Hwang, Y.K.; Venter, A. The impact of the digital economy and institutional quality in promoting low-carbon energy transition. *Renew. Energy* **2024**, *238*, 121884.
- [2] Josephinshermila, P.; Malarvizhi, K.; Pran, S.G.; Veerasamy, B. Accident detection using automotive smart black-box based monitoring system. *Meas. Sensors* 2023, 27, 100721.
- [3] Fan, J.; Meng, X.; Tian, J.; Xing, C.; Wang, C.; Wood, J. A review of transportation carbon emissions research using bibliometric analyses. *J. Traffic Transp. Eng. (Engl. Ed.)* **2023**, *10*, 878–899.
- [4] Kamran, S.S.; Haleem, A.; Bahl, S.; Javaid, M.; Prakash, C.; Budhhi, D. Artificial intelligence and advanced materials in automotive industry: Potential applications and perspectives. *Mater. Today Proc.* 2022, 62, 4207–4214.
- [5] Fonseca, J.H.; Jang, W.; Han, D.; Kim, N.; Lee, H. Strength and manufacturability enhancement of a composite automotive component via an

- integrated finite element/artificial neural network multi-objective optimization approach. *Compos. Struct.* **2024**, *327*, 117694.
- [6] ISO 9000:2015; Quality Management Systems—Fundamentals and Vocabulary. ISO: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/45481. html (accessed on 23 January 2025).
- [7] Psarommatis, F.; Azamfirei, V. Zero Defect Manufacturing: A complete guide for advanced and sustainable quality management. *J. Manuf. Syst.* 2024, 77, 764–779.
- [8] Stine, A.A.K.; Kavak, H. Bias, fairness, and assurance in AI: Overview and synthesis. In AI Assurance; Academic Press: Cambridge, MA, USA, 2023; pp. 125–151.
- [9] Wang, C.; Liu, S.; Yang, H.; Guo, J.; Wu, Y.; Liu, J. Ethical considerations of using ChatGPT in health care. J. Med. Internet Res. 2023, 25, e48009.
- [10] Prem, E. From ethical AI frameworks to tools: A review of approaches. *AI Ethics* **2023**, *3*, 699–716.
- [11] Hase, P.; Bansal, M. Evaluating explainable AI: Which algorithmic explanations help users predict model behavior? *arXiv* **2020**, arXiv:2005.01831.
- [12] Kumar, A. Exploring Ethical Considerations in AI-driven Autonomous Vehicles: Balancing Safety and Privacy. *J. Artif. Intell. Gen. Sci.* (Jaigs) **2024**, *2*, 125–138.
- [13] Vogel, M.; Bruckmeier, T.; Cerbo, F.D. General Data Protection Regulation (GDPR) Infrastructure for Microservices and Programming Model. U.S. Patent 10839099, 17 November 2020.
- [14] Mökander, J.; Floridi, L. Operationalising AI governance through ethics-based auditing: An industry case study. *Ethics* 2023, 3, 451–468.
- [15] Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed.; Springer: New York, NY, USA, 2015.
- [16] Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.I. Design for Additive Manufacturing: Trends, Opportunities,

- Considerations, and Constraints. CIRP Ann. 2016, 65, 737–760.
- [17] Briard, T.; Segonds, F.; Zamariola, N. G-DfAM: A methodological proposal of generative design for additive manufacturing in the automotive industry. *Int. J. Interact. Manuf.* **2020**, *14*, 875–886.
- [18] Vaneker, T.; Bernard, A.; Moroni, G.; Gibson, I.; Zhang, Y. Design for additive manufacturing: Framework and methodology. CIRP Ann. 2020, 69, 578–599.
- [19] Markus, D.; Lorin, A.; Thomas, N.; Sven, M. Identifying an opportunistic method in design for manufacturing: An experimental study on successful a on the manufacturability and manufacturing effort of design concepts. *Procedia CIRP* 2021, 100, 720–725.
- [20] Prabhu, R.; Simpson, T.W.; Miller, S.R.; Meisel, N.A. Fresh in My Mind! Investigating the effects of the order of presenting opportunistic and restrictive design for additive manufacturing content on students' creativity. *J. Eng. Des.* **2021**, *32*, 187–212.