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Abstract: This paper presents a deep learning-based framework for human action recognition from thermal images, with a 

specific emphasis on pose estimation. The framework we proposed processes thermal images in stages. First, we extracted 

frames from the thermal video, followed by preprocessing the thermal frames, which included resizing, augmenting, and 

labelling action classes; labelling bounding boxes, and labelling 17 COCO-like keypoints. We developed a custom dataset 

with nine human actions including walking, sitting, lying, and an abnormal behaviour class. Lastly, we trained a YOLOv8-

Pose model on the Thermal-IM dataset to both detect humans and estimate pose. Among the tested variants, the YOLOv8n-

pose had the best accuracy-efficiency tradeoff. When evaluated on the Thermal-IM validation set, the YOLOv8n-pose 

achieved bounding box and pose mAP@0.5 average precision scores of 0.98 with mAP@0.5:0.95 scores of 0.96–0.97. It 

also achieved bounding box precision and recall values of 0.94 and 0.96, respectively, and pose precision and recall values 

of 0.93 and 0.96, respectively. The results show that the Deep Learning model can be effective for reliably detecting slight 

changes in human poses from thermal imagery in infinitely variable and difficult thermal conditions. Overall, the results 

confirm that pose-based analysis using thermal imagery is an appropriate, privacy-respecting and illumination independent, 

method for automated human behavior monitoring in complex indoor scenarios, with direct relevance for applications in 

surveillance, healthcare, and security fields of study. 
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1. Introduction 

Thermal imaging, which captures variations in infrared 

radiation emitted from surfaces, has proven to be an 

essential tool for visual perception, especially in 

environments where traditional visible-light imaging fails. 

In contrast to color cameras that rely on ambient light, 

thermal cameras sense the heat that objects and living 

organisms radiate. This makes it possible to detect humans 

continuously in low-light conditions, through smoke and 

fog, or even in total darkness. Consequently, thermal 

imaging is particularly well-suited for applications that 

necessitate continuous observation in visually degraded 

environments. In the military, thermal imaging coupled with 

human pose estimation aids in enhancing situational 

awareness on the battlefield. It facilitates accurate tracking 

of individuals, enhances target localization, and assists in 

the automation of tactical assessment based on posture or 

movement. In search and rescue missions, such technology 

aids in the identification of victims obscured in rubble or out 

of sight, and also conveys information on their posture or 

condition, which can guide the level of urgency in response. 

Outside mission-critical uses, thermal-based human pose 

estimation (HPE) is also being introduced into civilian 

applications. In medicine, it supports passive, non-invasive 

monitoring of postures and physiological states in dark or 

low-visibility environments [1], offering valuable support in 

elder care and intensive care units. In sports and 

rehabilitation, thermal pose analysis aids in monitoring 

performance, detecting stress or fatigue early, and 

preventing injury. Smart homes also use thermal imaging 

for gesture recognition and natural user interaction, even in 

the absence of visible light, and while maintaining privacy 

and improving accessibility. 

Present HPE systems are mainly based on deep learning 

models, such as convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and transformer models 

[2]. These have improved the field by providing high-

accuracy pose detection of keypoints describing human 

joints. Pose estimation of multiple subjects, however, brings 

complexity, and models must detect multiple individuals 

and assign each joint to the appropriate person. To solve 

this, two main strategies are utilized: bottom-up and top-

down. The bottom-up approach starts with the detection of 

all body joints within an image and then clusters them into 
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skeletons of individuals. Models such as OpenPose [3], 

HRNet [4], and CenterNet [5] adopt this approach. Top-

down approaches, on the other hand, detect each person first 

and then estimate pose within the detected space. Though 

computationally more expensive, the approach tends to 

produce higher accuracy, with some examples being 

ViTPose [6], YOLOv8-Pose [7], and AlphaPose [8]. A 

closely related field is Human Action Recognition (HAR), 

whose aim is to automatically recognize and classify human 

activity recorded in visual data. Activities may be simple, 

such as sitting or walking, or more complex, involving 

several joints or synchronized movement. HAR is at the 

core of applications such as interactive media, autonomous 

systems, health behavior analysis, and smart living spaces. 

A lot of the advancement with HAR has been spurred by 

large annotated color datasets such as UCF101, KTH, and 

HMDB51 [11], which have made training and 

benchmarking increasingly advanced models possible. 

Despite advancements in color-based pose estimation, 

applying these techniques to thermal or infrared (IR) images 

presents unique challenges. A significant limitation is the 

lack of large-scale, diverse, annotated IR datasets. Unlike 

color tasks supported by benchmarks like COCO [9] and 

MPII Human Pose [10], thermal datasets are often limited 

in scope and variability, restricting model generalization 

across different poses, body types, environments, and 

clothing conditions. Moreover, thermal imagery differs 

fundamentally from visible-light images. It lacks color and 

fine texture, instead encoding information based on heat 

patterns that can be influenced by environmental and 

physiological factors. These differences often result in low-

contrast images with blurred outlines, making keypoint 

localization more difficult. Additionally, self-occlusion, a 

common issue in pose estimation, is exacerbated in thermal 

images. When body parts are close together, their thermal 

signatures may overlap, complicating joint assignment and 

increasing prediction ambiguity. Given these challenges, 

this study investigates the application of human pose 

estimation and action recognition techniques in thermal 

imaging contexts. The goal is to adapt and optimize deep 

learning models to operate effectively on thermal data, even 

in the absence of large-scale training sets. Through this 

research, we aim to advance the capabilities of thermal 

vision systems in domains ranging from public safety and 

healthcare monitoring to smart environments and defense 

analytics. 

The rest of this paper is structured as follows. Section II 

reviews related work on thermal human detection, pose 

estimation, and action recognition. Section III explains the 

proposed method in detail. Section IV presents the 

experimental setup, results, and analysis. Finally, Section V 

concludes the paper and discusses potential future work. 

2. LITERATURE REVIEW 

Human action recognition and detection in thermal and 

infrared imagery has attracted growing research interest due 

to its potential in night-time surveillance and security 

applications. A variety of approaches leveraging deep 

learning, sensor fusion, and innovative feature extraction 

have been developed to address the inherent challenges of 

limited illumination and low-contrast thermal data. 

Manssor et al. [13] solved the problems of pedestrian 

detection in thermal infrared images by enhancing the Tiny-

YOLOv3 model. They augmented it with channel-wise 

contrast enforcement and paired it with a hybrid architecture 

consisting of PDM-Net and TIE-Net. Darknet-53, in this 

configuration, was tasked with extracting strong feature 

representations, while PDL-Net carried out classification 

operations. The approach effectively minimized loss of 

information during the early stages of processing, leading to 

more consistent detections, particularly in low-light 

environments where visible-spectrum detectors perform 

poorly. Imran et al. [14] proposed a four-stream deep 

learning architecture that pairs CNN and BiLSTM networks 

for detecting global and local motion patterns. Their 

approach infused dense optical flow-based features in the 

forms of SSDI and SDFDI, which allowed for encoding 

spatial and temporal information more holistically. By 

dividing video clips into segments and processing them 

through parallel CNN-BiLSTM streams, their system was 

able to fuse complementary features and deliver better 

action recognition across a wide range of activities. Krišto 

et al. [15] compared some of the top object detection 

models, including YOLOv3, by retraining them on thermal 

images recorded under different weather conditions such as 

rain, fog, and clear nights. Their findings suggested that 

YOLOv3 represented a good accuracy-speed trade-off and 

therefore was an efficient choice for real-time surveillance 

systems. 

Batchuluun et al. [16] sought to recover skeletal keypoints 

from thermal video. They did so by converting single-

channel thermal frames into three-channel inputs 

appropriate for a Joint-GAN model and subsequently 

generating joint and skeleton data with it. These were then 

passed through a CNN-LSTM architecture, allowing it to 

recognize complex human actions accurately. 

Ding et al. [17] designed a thermal infrared system that was 

aimed at recognizing airport apron activities. Their pipeline 

began with the use of tracking algorithms to identify moving 

individuals from the background and subsequently extract 

spatiotemporal features within short time windows. These 

were input into a deep network with stacked LSTM layers 

to identify longer-term temporal patterns in order to aid the 

classification of walking, standing, and operational 

movements behaviors. 

One of the most important works in this field is the work of 

Liu and Ostadabbas [18], who created the SLP dataset. The 

dataset is made up of thermal, visible, depth, and pressure 

images taken from 109 subjects who were lying in bed under 

three different conditions, namely uncovered, thinly 

covered, and fully covered conditions. Each person 

performed multiple poses across three main categories 

supine, left side, and right side leading to a total of 14,715 

images. Their findings showed that visible images produced 

strong results when no cover was present, but performance 

dropped considerably when blankets were used. In such 

cases, thermal images were more effective for pose 

detection. Despite its usefulness, the SLP dataset has low 

variability since all data were recorded in the same 

environment with identical sensor settings, which limits its 

applicability to other contexts. Building on this dataset, Liu 

et al. [20] examined how combining different sensing 
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modalities including visible, thermal, depth, and pressure 

information could enhance pose estimation accuracy. Their 

experiments confirmed that multimodal input improves 

performance. Nevertheless, their work remained restricted 

to in-bed monitoring due to the dataset’s narrow scope. In 

an effort to further improve thermal pose estimation, Chen 

et al. [21] compiled a large dataset containing 24,000 pairs 

of thermal and visible images recorded indoors. The visible 

images were high-resolution, whereas the thermal images 

had much lower resolution (80 × 60 pixels). To generate 

labels, OpenPose [3] was used on the visible images in the 

training set, while a subset of 2,000 test images was 

manually annotated. They proposed the ThermalPose 

model, which adapts OpenPose for thermal data. 

Experimental results showed that visible-based models 

achieved better accuracy under good lighting conditions, but 

in low-light or dark settings, ThermalPose outperformed all 

other approaches because visible cameras failed to detect 

people. However, the dataset’s limited manually labeled 

subset and its indoor-only nature pose challenges for 

broader application. 

To help address the lack of thermal data, Kniaz et al. [19] 

developed ThermalGAN, a generative adversarial network 

capable of translating visible images into thermal 

representations to support tasks like person re-identification. 

Their approach incorporated segmentation masks to 

estimate average temperatures for each object and to model 

variations within them. They introduced the ThermalWorld 

dataset, which includes over 15,000 visible–thermal image 

pairs with corresponding object annotations. Although this 

work shows promise in supplementing training data, its 

evaluation relied mostly on subjective judgments of image 

realism rather than objective performance metrics, making 

its practical impact on pose estimation uncertain. 

Mehra et al. [22] also explored the benefits of fusing thermal 

and depth information for pose estimation. They developed 

a smaller dataset of 1,000 labeled images divided into 

training, validation, and testing sets. Using a modified 

version of the part affinity fields detector, they demonstrated 

that combining thermal and depth modalities resulted in 

more accurate detection than thermal input alone. However, 

the dataset’s annotations covered only five keypoints per 

person, which limits its ability to support more detailed pose 

estimation. Several benchmark datasets have been 

introduced to facilitate research in thermal human detection 

and pose estimation. Each offers distinct characteristics 

suited for different application scenarios. 

The CAMEL dataset [24] contains 26 sequences of paired 

color and thermal videos, totaling over 23,000 annotated 

frames, with around 7,775 precisely aligned pairs. Captured 

at 336 × 256 resolution and 30 fps in the LWIR spectrum, it 

features both indoor and outdoor urban settings under 

diverse lighting and weather conditions. The KAIST dataset 

[25] provides 95,000 aligned color–thermal image pairs and 

over 103,000 annotated pedestrian bounding boxes. 

Acquired at 640 × 480 resolution and 20 fps, it includes 

dynamic outdoor scenes captured from a moving vehicle 

across varying times of day and weather.The OTP dataset 

[27] offers 6,090 thermal images with bounding boxes and 

17 keypoints per person, covering over 14,000 human 

instances in challenging outdoor conditions. It includes a 

range of activities, occlusions, scale variations, and 

environmental diversity. The LLVIP dataset [26] supports 

pedestrian detection and color–thermal fusion in low-light 

conditions, featuring 15,438 aligned image pairs from 

nighttime scenes. Its extension, LLVIP-POSE (LLVIP-P) 

[23], is the largest thermal pose estimation dataset to date, 

with over 26,000 annotated poses across training and test 

sets. 

3. METHODOLOGY 

 

 

Fig.1.The Proposed Architecture of Human Action 

Recogniton 

 

A. YOLOv8-Pose Overview 

There are three parameters of YOLOv8-pose that determine 

the version: depth_multiple, width_multiple, and 

max_channels. The depth_multiple parameters decide how 

many bottleneck blocks are in the C2f block. The 

width_multiple and max_channels parameters define the 

output channels. The yolov8 stem is comprised of two 

convolution blocks with stride 2, kernel size 3. These two 

blocks create the origins of features and reduce the input 

resolution. The stage component in YOLOv8 is structured 

using the C2f block. The 8 stages are blocks no. 2, 4, 6, 8, 

12, 15, 18, and 21. The stages in the backbone (blocks no. 

2, 4, 6, and 8) utilize shortcuts while the neck (blocks 12, 

15, 18, and 21) does not. Using shortcuts or not is based on 

seemingly sensible, valid results obtained from trial and 

error to try to achieve optimal. Downsampling for YOLOv8 

is accomplished using a convolution block with a stride of 2 

and a kernel size of 3. A stride of 2 will yield an output 

spatial resolution that is half the size. After the final block 

on the backbone, SPPF (Spatial Pyramid Pooling Fast) is 

used at the neck to give a multi-scale representation from 

the feature map. When pooling features at different scales, 

SPPF allows the model to capture features at different levels 

of abstraction. There are a few concat and upsample blocks 

on the neck. Upsampling increases the resolution of the 

feature map. YOLOv8 uses the nearest neighbor technique 

to conduct upsampling. This method fills the new pixels in 

a larger feature map by copying the value of neighboring 

pixels. Feature maps are concatenated with concat. The 

resolution does not change, however, the number of 

channels will increase when concatenating feature maps. 

YOLOv8 has three heads. The first head is connected to 

block No. 15 and detects small objects. The second head is 

connected to block No. 18 and detects medium objects. The 

third head is connected to block No. 21 and detects large 

objects. After these predictions, the model applies Non-
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Maximum Suppression (NMS) to remove overlapping 

boxes and discard low-confidence results. This produces 

clean and reliable detections. The overall design of 

YOLOv8-Pose makes it well-suited for real-time human 

analysis in thermal imagery, especially in applications like 

activity monitoring, surveillance, and anomaly detection. 

 

 

Fig. 2. YOLOv8Pose Architecture 

B. Data Acquisition 

This work used the thermal component of the Thermal 

Indoor Motion (Thermal-IM) dataset [12] to develop a 

human action detection system specifically designed for 

indoor environments. The thermal sequences were recorded 

with a Hikvision DS-2TD4237T-10 camera at a frame rate 

of 15 frames per second and a resolution of 288 × 384 pixels. 

To overcome challenges caused by low illumination and 

background clutter, only the thermal data were considered, 

even though the dataset also includes color and depth 

channels. The dataset comprises 783 video segments 

totaling over 560,000 thermal frames (approximately 10.4 

hours) and captures actors performing everyday activities 

across various room configurations and camera positions. 

As seen in Fig. 3, this diverse and practical thermal-only 

dataset enables robust training and evaluation of models for 

pose estimation and action recognition 

C. Data Extraction 

53 thermal video samples were processed to construct a 

structured dataset for Human Action Recognition (HAR). 

Each video was accompanied by a corresponding JSON 

annotation file with temporal labels defining the start and 

end of various human actions. These actions were annotated 

into nine pre-defined classes: Abnormal, Leg_stretching, 

Lying, Push-ups, Sitting, Sitting_crosslegs, Sit-ups, 

Standing, and Walking. A Python script was designed to 

extract frames and corresponding short video samples 

automatically from the annotated areas. The source videos 

were captured using a thermal infrared camera in MPEG-4 

(.mp4) format, resolution 288 × 384 pixels, and captured at 

15 frames per second (FPS) in the 7.5–14 μm spectral band. 

All the extracted frames were resized to a standard 640 × 

640 pixels to ensure consistency for model input. The output 

was organized into class-specific directories to ensure a 

clean and well-annotated dataset appropriate for keypoint 

extraction and action classification. This processed dataset 

was used as the foundation for training and testing the 

YOLOv8-Pose model on thermal human action sequences. 

The video input was broken down into separate frames 

based on its frame rate, which is the number of frames 

recorded per second. 

 

 

 

Fig. 3. Sample Images From Thermal-IM Dataset [12]. 

D. Data Preprocessing 

To standardize the input for the YOLOv8-Pose model, all 

thermal images were resized to a fixed resolution of 

640×640 pixels using a custom script built with the Pillow 

library. This resizing ensured uniform spatial dimensions 

across the dataset, facilitating efficient training and 

inference. To enhance model generalizability, standard data 

augmentation techniques are applied to the thermal images. 

Horizontal flipping simulates mirrored movement, while 

Gaussian noise is introduced to mimic real-world thermal 

sensor distortions as seen in Fig 4. These augmentations 

were implemented using the PyTorch and torchvision 

libraries.  

 

  (a)                                       (b)                                        (c) 

  Fig. 4.  Preprocessed image (a) Original (b) Horizontal 

Filp  (c) Gaussian Noise 

After preprocessing, the final dataset consisted of 9,414 

thermal images categorized into nine distinct human action 

classes as shown in table 1, including both simple and 

complex movements. The dataset was organized into class-

specific directories, making it suitable for supervised 

learning tasks. The preprocessing steps helped reduce 

overfitting, increased robustness to real-world conditions, 

and provided a consistent and diverse foundation for pose 

estimation and action recognition in thermal environments. 
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TABLE 1. Summary of Image Distribution Across Action 

Classes 

Class Number of Images 

Abnormal 873 

Leg_streching 1,749 

Lying 414 

Push-ups 777 

Sit-ups 1692 

Sitting 1350 

Sitting_crosslegs 468 

Standing 312 

Walking 1761 

Total 9414 

 

 

 

Fig.5. Distribution of Images Across Action Class 

 

E. Keypoint and Bounding Box Annotation 

In this work, we manually prepared a dataset consisting of 

9,414 thermal images, each annotated with bounding boxes 

and 17 human keypoints according to the widely adopted 

COCO keypoint format. These keypoints capture critical 

anatomical landmarks such as the nose, eyes, shoulders, 

elbows, wrists, hips, knees, and ankles. Due to the nature of 

thermal imagery, where body outlines and joint positions are 

often less distinct, precise annotation proved to be a 

challenging and time-intensive task. For initial annotations, 

we utilized a YOLOv8m-pose model pre-trained on the 

COCO dataset to automatically detect bounding boxes and 

estimate keypoint positions. These initial predictions were 

then carefully reviewed and corrected through manual 

refinement to ensure accuracy, especially in cases where 

keypoints were missed or incorrectly positioned. A 

confidence threshold of 0.7 was used to filter reliable 

detections. The results were converted into normalized 

YOLO format, with annotations saved as .txt files 

corresponding to each image. Only frames containing valid 

detections were retained, and the dataset was organized into 

separate images and labels directories. This structured 

format enabled effective training and evaluation of the pose 

estimation model. 

 

Fig.6. Keypoints Annotation Format used for Thermal-IM 

Dataset 

 

After training, the models are employed to predict keypoints 

from test samples. The coordinates of keypoint are skeletal 

descriptors of the underlying human action. Through spatial 

configuration and temporal evolution of keypoints analysis, 

actions are classified by posture and movement patterns. 

This completes the HAR pipeline to allow automatic action 

recognition from thermal video streams. 

F. Evaluation Metrics 

The quantitative performance of the suggested YOLOv8-

Pose model was evaluated with typical object detection and 

human pose estimation metrics. These metrics give a 

general idea about the accuracy of the model to detect 

people and predict anatomical keypoints from thermal 

images and the computational complexity in real-time 

applications. 

⚫ Object Detection Evaluation 

The performance of the suggested YOLOv8-Pose model 

was evaluated based on typical object detection and human 

pose estimation metrics. The metrics provide a 

comprehensive assessment of the model's accuracy in 

detecting humans and estimating anatomical keypoints from 
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thermal images and its computational cost for potential real-

time application. 

Precision (P) = the number of true positive detections 

among all the predicted positives: 

FPTP

TP
Precision

+
=                                                      

  (1) 

 

Recall (R) is the ratio of correct positive detections out of 

all actual ground-truth instances: 

FNTP

TP
Recall

+
=                                                      

  (2) 

Where: 

⚫ TP: True Positives (correctly detected 

persons), 

⚫ FP: False Positives (incorrect detections), 

⚫ FN: False Negatives (miss detections). 

       

In order to evaluate detection performance at various levels 

of localization accuracy, mean Average Precision (mAP) 

was computed over various levels of Intersection over 

Union (IoU) ranging from 0.50 to 0.95 with step size 0.05: 
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⚫ Pose Estimation Evaluation 

The accuracy of 17-keypoint human pose estimation was 

evaluated using the Object Keypoint Similarity (OKS) 

metric, which measures the similarity between predicted 

and ground-truth keypoints while accounting for object 

scale and keypoint visibility: 
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Based on the Object Keypoint Similarity (OKS), the 

following evaluation metrics were computed to assess the 

model’s performance in human pose estimation: AP₅₀ and 

AP9₅, which represent the Average Precision at OKS 

thresholds of 0.50 and 0.95, respectively; Mean Average 

Precision (mAP), computed across multiple OKS 

thresholds; and Average Recall (AR), which measures the 

proportion of visible keypoints correctly predicted by the 

model. In the OKS formulation, 
id denotes the Euclidean 

distance between the predicted and ground-truth keypoints, 

s represents the object scale (bounding box area),
ik is a 

keypoint-specific falloff constant,
iv indicates the visibility 

of the keypoint, and δ(.) is the indicator function. These 

metrics collectively provide a comprehensive evaluation of 

the model’s accuracy and consistency in detecting human 

keypoints from thermal images. 

 

⚫ Loss Function 

 The total loss function combined bounding box loss, 

classification loss, distribution focal loss, pose keypoint 

loss, and keypoint objectness loss. The final loss was 

computed as: 

 

.kobjLoss
kobj

+ λ PoseLoss .poseλ

+dflLoss .
dfl

+ λ .ClsLoss
cls

+ λ .BoxLoss
box

 λ= TotalLoss
                        

(5) 

Here, λ represents the loss weights used to balance each 

component in the total loss: λbox for bounding box loss, λcls 

for classification loss, λdfl for distribution focal loss, λpose 

pose keypoint loss, and λkobj for keypoint objectness loss. 

4. RESULT AND DISCUSSION 

A. IMPLEMENTATION AND PARAMETER SETTINGS 

Before starting the training process, it was necessary to 

adjust properly the model hyperparameters to provide stable 

performance. During this work, an input resolution of 640 × 

640 pixels was used to find a balance between accuracy of 

detection and computational load in all experiments. A 

mini-batch size of 32 was used, which is a good balance 

between the utilization of GPU memory and model 

convergence. Stochastic Gradient Descent (SGD) was used 

as the optimizer, with momentum equal to 0.9 to help speed 

up learning and weight decay equal to 0.0005 to promote 

generalization. An initial learning rate of 0.01 was used, and 

each model was trained for 100 epochs until the validation 

metrics converged. To make the models more robust and 

limit overfitting, various data augmentation strategies were 

employed, including random horizontal flip, scaling, mosaic 

augmentation, and color changes. Automatic Mixed 

Precision (AMP) was activated during training to reduce 

memory usage and speed up computation.  

All the experiments were conducted on the Lightning AI 

cloud platform with NVIDIA Tesla T4 and NVIDIA L4 

GPUs and CUDA acceleration. In this research, the 

performance of four YOLOv8 Pose models were evaluated: 

YOLOv8n-pose (nano), YOLOv8s-pose (small), 

YOLOv8m-pose (medium), and YOLOv8l-pose (large). 

The models were executed in Python 3.10.10 with PyTorch 

2.7.0 using the Ultralytics YOLOv8 framework (version 

8.3.133). The computational environment consisted of 64-

bit Intel Xeon-class processors and 32 GB of RAM. 

Automated checkpointing and validation were conducted 

during training to track key metrics, including precision, 
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recall, mean Average Precision (mAP), and pose estimation 

accuracy. 

B. TRAINING AND VALIDATION ON IM-THERMAL DATASET 

The IM-Thermal dataset was carefully partitioned to ensure 

robust model evaluation and fair comparison across 

different YOLOv8-pose variants. Specifically, the dataset 

was split into three subsets: 70% for training (6,589 images), 

10% for validation (941 images), and 20% for testing (1,884 

images). This stratified division maintained an even 

representation of all nine human action classes, including 

Abnormal, Leg Stretching, Lying, Push-ups, Sitting, Sitting 

Cross-legged, Sit-ups, Standing, and Walking. During 

training, the models learned to detect bounding boxes and 

estimate human pose keypoints in thermal images. The 

validation set was employed to monitor learning progress, 

fine-tune hyperparameters, and assess intermediate 

performance after each epoch. This approach was essential 

for minimizing overfitting and ensuring the models retained 

good generalization ability on unseen data. The reserved test 

set was only used in the final evaluation to measure accuracy 

and robustness in real-world scenarios. 

 

Fig.7. Model Performance Metrics for Bounding box (B) 

and Pose (P) Estimation over 100 Epochs. 

Figure 7 illustrates the model’s performance trends across 

key evaluation metrics. The results exhibit an initial phase 

of rapid improvement, followed by stabilization at 

consistently high values. Final performance metrics 

demonstrate excellent accuracy, with precision, recall, and 

mAP@0.5 achieving approximately 0.94, 0.96, and 0.98, 

respectively. Furthermore, the more stringent 

mAP@0.5:0.95 for pose estimation shows steady growth 

throughout training, ultimately reaching around 0.85. 

 

Fig.8. Training and Validation Loss Curves over 100 

Epochs. 

As shown in Figure 8 shows all Traning and validation loss 

curves display a sharp decrease in the initial epochs before 

converging steadily. This pattern indicates that the model 

learned the task effectively and generalized well to the 

validation data without significant overfitting. 

 

Fig. 9.  Bounding Box Precision vs Epochs for 

YOLOv8-Pose models on Thermal-IM Dataset. 

 

Fig. 10.  Bounding Box Recall vs Epochs for YOLOv8-

Pose models on Thermal-IM Dataset. 

 

Fig.11. Bounding Box mAP@0.5 vs Epochs for YOLOv8-

Pose models on Thermal-IM Dataset. 

 

Fig.12. Bounding Box mAP@0.5:0.95 vs Epochs for 

YOLOv8-Pose models on Thermal-IM Dataset. 
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Fig.13. Pose Keypoints Precision vs Epochs for YOLOv8-

Pose models on Thermal-IM Dataset. 

 

 

Fig.14. Pose Keypoints Recall vs Epochs for YOLOv8-

Pose models on Thermal-IM Dataset. 

 

 

   Fig.15.  Pose Keypoints mAP@0.5 vs Epochs for 

YOLOv8-Pose models on Thermal-IM Dataset 

 

 

Fig.16.  Pose Keypoints mAP@0.5:0.95 vs Epochs for 

YOLOv8-Pose models on Thermal-IM Dataset. 

 

Figures 9 through 16 provide a detailed overview of how the 

YOLOv8-Pose models performed during training on the 

thermal human pose dataset. Throughout the experiments, 

all models showed gradual improvement in both object 

detection and pose estimation metrics. Among the four 

versions, the YOLOv8l-Pose consistently delivered stronger 

results, achieving higher precision, recall, and mean 

Average Precision (mAP) for both bounding box detection 

and keypoint localization. These outcomes suggest that the 

larger model is better equipped to handle the complexities 

of human detection and pose estimation in thermal imagery. 

Overall, YOLOv8l-Pose proved to be the most accurate and 

dependable across the tasks evaluated in this work. 

TABLE 2. Comparison of Detection and Pose Estimation 

Performance Across Different YOLOv8-Pose Models on 

Thermal-IM Dataset 

Mod

el 

Box Pose 

Pr

eci

sio

n  

Rec

all  

m

A

P

@

0.

5  

m

A

P

@

0.

5–

0.

95 
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on 

Re

cal

l 

m

A

P

@

0.

5 

mA

P@

0.5–

0.95 

YO

LOv

8n-

pose 

0.9

4 

0.9

6 

0.

98 

0.

97 

0.9

3 

0.9

6 

0.

98 

0.85 

YO

LOv

8s-

pose 

0.9

4 

0.9

6 

0.

98 

0.

97 

0.9

3 

0.9

5 

0.

97 

0.86 

YO

LOv

8m-

pose 

0.9

3 

0.9

7 

0.

98 

0.

97 

0.9

3 

0.9

6 

0.

98 

0.86 

YO

LOv

8l-

pose 

0.9

4 

0.9

5 

0.

98 

0.

97 

0.9

3 

0.9

4 

0.

97 

0.86 

 

TABLE 3. Validation Performance Metrics of the 

YOLOv8n-pose model on theThermal-IM Dataset. 

Class Box Pose 

Prec

isio

n 

Re

cal

l 

mA

P@0

.5 

mAP@

0.5–

0.95 

Prec

isio

n 

Re

cal

l 

mA

P@0

.5 

mAP@

0.5–

0.95 

All 0.93

6 

0.9

60 

0.98

2 

0.966 0.93

1 

0.9

55 

0.97

5 

0.852 

Abnor

mal 

0.93

6 

0.9

96 

0.99

1 

0.969 0.93

6 

0.9

96 
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1 

0.877 
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Leg 

strechi

ng 

0.93

8 

0.9

59 

0.98

9 

0.983 0.93

8 

0.9

59 

0.98

9 

0.922 

Lying 0.91

3 

0.9

60 

0.98

1 

0.972 0.91

3 

0.9

60 

0.98

1 

0.899 

Push-

ups 

0.90

3 

0.9

09 

0.94

3 

0.897 0.90

3 

0.9

09 

0.94

0 

0.734 

Sitting 0.99

3 

0.9

94 

0.99

5 

0.985 0.97

8 

0.9

79 

0.98

8 

0.914 

Sitting 

crossle

gs 

0.91

4 

0.9

44 

0.98

5 

0.985 0.91

4 

0.9

44 

0.97

4 

0.850 

Sit-ups 0.94

8 

0.9

20 

0.97

8 

0.955 0.94

8 

0.9

20 

0.97

8 

0.693 

Standi

ng 

0.92

4 

1.0

00 

0.99

2 

0.976 0.92

4 

1.0

00 

0.99

2 

0.957 

Walki

ng 

0.95

7 

0.9

56 

0.98

6 

0.971 0.92

8 

0.9

27 

0.94

6 

0.822 

 

TABLE 4. Validation Performance Metrics of the 

YOLOv8s-pose model on theThermal-IM Dataset. 

 

Class 
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Pose 

 

Preci

sion 
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cal

l 

 

mA

P@0
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mAP

@0.5–

0.95 
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mA

P@0

.5 

 

mAP@
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0.95 
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0.935 

 

0.9

55 

 

0.98

1 

 

0.969 

 

0.93

0 

 

0.9

50 

 

0.97

4 

 

0.857 

Abnorma

l 

0.936 0.9

86 

0.99

2 

0.978 0.93

6 

0.9

86 

0.99

2 

0.895 

Leg 

streching 

0.936 0.9

68 

0.98

9 

0.982 0.93

6 

0.9

68 

0.98

9 

0.923 

Lying 0.908 0.9

60 

0.98

0 

0.972 0.90

8 

0.9

60 

0.98

0 

0.878 

Push-ups 0.922 0.8

61 

0.93

4 

0.907 0.92

2 

0.8

61 

0.92

4 

0.733 

Sitting 0.994 0.9

93 

0.99

5 

0.989 0.97

9 

0.9

78 

0.98

8 

0.915 

Sitting 

crosslegs 

0.915 0.9

44 

0.98

4 

0.984 0.91

5 

0.9

44 

0.97

6 

0.879 

Sit-ups 0.936 0.9

15 

0.97

3 

0.951 0.93

6 

0.9

15 

0.97

3 

0.699 

Standing 0.920 1.0

00 

0.99

5 

0.985 0.92

0 

1.0

00 

0.99

5 

0.956 

Walking 0.945 0.9

64 

0.98

7 

0.975 0.91

6 

0.9

35 

0.95

2 

0.834 

 

TABLE 5. Validation Performance Metrics of the 

YOLOv8m-pose model on theThermal-IM Dataset. 

 

Class 
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n 
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mA
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mAP

@0.5–

0.95 
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cisio

n 

 

Re
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l 

 

mA

P@0

.5 

 

mAP

@0.5–

0.95 
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0.93

4 

 

0.9

65 

 

0.98

3 

 

0.969 

 

0.92

9 

 

0.9

61 

 

0.97

6 

 

0.859 

Abnormal 0.91

3 

1.0

00 

0.99

1 

0.976 0.91

3 

1.0

00 

0.99

1 

0.901 

Leg 

streching 

0.93

3 

0.9

68 

0.98

8 

0.981 0.93

3 

0.9

68 

0.98

8 

0.929 

Lying 0.92

5 

0.9

85 

0.99

0 

0.981 0.92

5 

0.9

85 

0.99

0 

0.897 

Push-ups 0.91

9 

0.9

02 

0.94

1 

0.907 0.91

9 

0.9

02 

0.93

0 

0.720 
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6 

0.9

93 

0.99

5 

0.987 0.98

9 

0.9

85 

0.99

1 

0.923 
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crosslegs 
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3 

0.9

44 

0.98

4 

0.984 0.91

3 

0.9

44 
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6 

0.874 
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1 
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15 
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5 

0.950 0.93

1 

0.9

15 

0.97

5 

0.704 
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0 

1.0

00 

0.99

5 

0.983 0.92

0 

1.0

00 

0.99

5 

0.955 
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1 

0.9

76 
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3 
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2 

0.9

47 
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5 

0.831 
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TABLE 6. Validation Performance Metrics of the 

YOLOv8l-pose model on theThermal-IM Dataset. 

Class Box Pose 

Prec

isio

n 

Recall mA

P@0

.5 

mAP

@0.5

–0.95 

Prec
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n 
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mA

P@0
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mA

P@

0.5–

0.95 

All 0.93

9 

0.954 0.98

0 

0.969 0.93

4 

0.94

9 

0.97

4 

0.86

2 
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5 

0.983 0.99

1 

0.976 0.93

5 

0.98

3 

0.99

1 

0.88

7 

Leg 

streching 

0.94

0 

0.975 0.98

9 

0.985 0.94

0 

0.97

5 

0.98

9 

0.92

9 

Lying 0.92

0 

0.960 0.98

1 

0.973 0.92

0 

0.96

0 

0.98

1 

0.91

5 

Push-ups 0.92

2 

0.861 0.93

4 

0.912 0.92

2 

0.86

1 

0.93

4 

0.73

5 

Sitting 0.99

6 

0.993 0.99

5 

0.987 0.98

9 

0.98

5 

0.99

3 

0.91

9 

Sitting 

crosslegs 

0.91

2 

0.944 0.98

2 

0.982 0.91

1 

0.94

4 

0.97

5 

0.86

9 

Sit-ups 0.95

2 

0.907 0.97

0 

0.946 0.94

2 

0.89

8 

0.96

7 

0.69

8 

Standing 0.92

2 

1.000 0.99

2 

0.988 0.92

2 

1.00

0 

0.99

2 

0.96

1 

Walking 0.95

0 

0.964 0.98

6 

0.974 0.92

1 

0.93

5 

0.94

6 

0.84

5 

 

A comparative analysis of four YOLOv8-pose model 

variants (nano, small, medium, and large) was conducted. 

The results reveal a uniformly high level of performance 

with negligible differences between the model sizes. For the 

initial task of subject localization, all variants achieved an 

identical and excellent Box mAP@0.5 of 0.98. Similarly, 

for the final Pose based action classification, accuracy 

remained outstanding, with a mAP@0.5 score between 0.97 

and 0.98 for all models. A marginal advantage for the larger 

models was only observed in the stricter Pose mAP@0.5–

0.95 metric. These results demonstrate the model’s 

robustness and accuracy in detecting human poses from 

thermal imagery under challenging indoor conditions. 

 

 

Fig.17. Confusion Matrix for Human Action Recognition 

TABLE. 3. Class-wise best pose detection results showing 

original and predicted images with corresponding 

confidence scores 

 

 

 

Table 3 presents predicted actions and confidence scores for 

a set of thermal images. The model shows strong 

performance across all classes, with confidence values 

mostly above 0.97. It achieves the highest confidence for 

Lying (0.9902), followed by Push-ups (0.9895) and 

Abnormal (0.9878). Even visually similar actions like 

Sitting_crosslegs and Leg_streching are classified 

accurately. These results indicate the model's effectiveness 

in recognizing various actions from thermal images, despite 

limited texture and visual cues. 

5. CONCLUSION AND FUTURE WORK 

In this work, an extensive analysis of several YOLOv8-Pose 

models, such as YOLOv8n, YOLOv8s, YOLOv8m, and 

YOLOv8l, was performed on a thermal image dataset 

specially prepared for human action recognition. The 

models exhibited high detection precision, with box 

mAP@0.5 being more than 98% in all configurations and 

pose mAP@0.5 between 97.4% and 97.6%. Of particular 
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interest was YOLOv8l-pose, which posted the highest pose 

mAP@0.5–0.95 of 86.2%, indicating its best ability to 

correctly localize keypoints under adverse thermal imaging 

scenarios. The experimental results validate the efficacy of 

state-of-the-art pose estimation architectures in learning 

discriminative spatial representations from thermal data. In 

summary, this work proves that light models such as 

YOLOv8n-pose can still achieve competitive performance 

with faster inference speeds, making them appropriate for 

real-time applications where computational resources are 

scarce. 

In future research, this work can be continued by 

acquiring larger, more varied thermal datasets of complex 

scenes and unusual actions to better enhance model 

robustness. Further, modeling temporal dynamics or graph-

based approaches on pose sequences may further enhance 

action recognition on continuous video. Investigating 

domain adaptation from color to thermal data and model 

optimization for real-time edge deployment are also 

potential avenues to continue this research further. 
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