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Abstract: Successful deep learning model deployment often depends on the quantity, quality, and accessibility of annotated 

data, as the use of deep learning methods in industrial applications expands at an accelerating rate and scale. The issues of 

effective data labelling and annotation verification in a human-in-the-loop scenario are addressed in this work. The Laser-

based Directed Energy Deposition (L-DED) procedure is the subject of this work, which makes use of embedded vision 

systems to record crucial melt pool properties for ongoing observation. In order to provide in-situ monitoring without ground 

truth information, two self-learning frameworks based on Transformer architecture and Convolutional Neural Networks are 

deployed to analyse zone pictures from various DED process regimes. Although they need explicit human supervision, deep 

convolutional neural networks have recently shown respectable improvement in learning spatial patterns in WBMs. 

Furthermore, the RGB pictures that make up the majority of these datasets vary greatly from X-ray images. To overcome this 

drawback, our study suggests an approach that uses X-ray imaging and domain-specific self-supervised pretraining methods 

to enhance the ability to identify defects in manufactured goods. To improve feature extraction from manufacturing photos, 

we use SimSiam and SimMIM, two pretraining techniques. An industrial dataset of 27,901 unlabelled X-ray pictures from a 

manufacturing production line is used for the pretraining phase. Furthermore, we highlight how the models pretrained using 

X-ray pictures have improved their capacity to identify important flaws, which is essential for maintaining safety in industrial 

environments. Significant proof of the advantages of self-supervised learning in manufacturing defect identification is provided 

by our study, laying the groundwork for future investigations and useful applications in industrial quality control. 

Keywords: - Laser-based Directed Energy Deposition (L-DED), X-Ray Images, Solid Foundation, Manufacturing Products, 

Convolutional Neural Networks, Industrial Dataset, Deep Learning Techniques. 

I. Introduction 

Many studies have been carried out over the years to 

improve the visual examination of industrial goods 

via the use of X-ray imaging [1]. The development 

of automated procedures that can detect faulty items 

has been the primary emphasis. In reality, operators 

find that manually analysing every component is not 

only a tiresome and repetitive operation, but it also 

tends to reduce their accuracy with time [1, 2]. On 

the other hand, data-driven methods successfully 

reduce the possibility of human mistake while also 

guaranteeing consistent performance over extended 

periods of time. They may thus greatly facilitate the 

operators' decision-making process. 

Recent developments in deep learning-based 

methods have made them the best option for a wide 

range of jobs in many different fields. In particular, 

these technologies have greatly outperformed 

conventional approaches and are currently regarded 

as state of the art in the field of manufacturing fault 

identification. However, their data-hungry character 

is a crucial condition that affects their performance 

[2, 3]. For these methods to develop efficient visual 

representations, large datasets of labelled pictures 

are needed during training.  As a result, their efficacy 

may be significantly reduced when a small number 

of photos are available, indicating a significant 

problem in their use [3, 4]. This difficulty is made 

much more apparent in defect identification since it 

is particularly challenging to get large, precisely 

labelled information in industrial settings. 

Existing research has shown effectiveness across a 

wide range of domains and tasks, but at the expense 

of an increasing quantity of data and computation, 

deeper learning algorithms and models continues to 

advance with increasing capacity & complexity.  
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Nevertheless, a large number of commercial 

applications lack easily accessible, high-quality 

datasets [3, 4]. Consequently, a significant portion of 

the machine learning life cycle involves data 

engineering, which often calls for laborious, costly, 

and time-consuming human annotation and 

inspection.  

Automating the data curation processes and 

lowering the number of labels required for optimal 

performance are essential to minimise the amount of 

human labour [6, 4]. By selecting the most 

informative sample of data for labelling, for 

instance, active learning may reduce the amount of 

human labour needed [4, 5]. Recent advancements 

in active learning have shown encouraging 

outcomes in terms of accelerating annotation by 

humans in the loop.  

By helping models learn with fewer labels, both self-

supervised learning and semi-supervised training 

have achieved competitive results compared to 

supervised baselines with less supervision [5, 6]. 

Motivated by recent advancements in semi-

supervised and self-supervised learning techniques, 

we combine the finest aspects of both methodologies 

to provide a simple yet flexible framework for 

accurate and efficient data verification and image 

similarity-based classification. 

DED is a very flexible additive manufacturing 

process that allows for accurate material deposition 

and has many uses in a variety of sectors. The 

fabrication of near-net-shaped components, feature 

enhancement, and repair are the three main types of 

DED applications.  DED has significant benefits 

over traditional manufacturing methods because it 

reduces material waste by producing near-net-

shaped components [2, 9]. Additionally, this 

technique makes it easier to fabricate novel, fairly 

bulky components with location-dependent features 

and little to no tooling needs. Additionally, it is 

useful for adding material to existing components to 

improve their performance.  

Through DED, where more material is accumulated, 

worn-out or damaged portions in components may 

be effectively repaired and renovated [6, 9]. DED's 

adaptability is further shown by its capacity to blend 

disparate metals to produce functionally graded 

structures with different material qualities. DED's 

capacity to handle novel materials and multiple 

materials with remarkable efficiency is one of its 

main advantages.  

For a variety of uses, including fast prototyping, tool 

or die repair, coatings, surface modification, and 

even the manufacturing of large-scale components 

[6, 9], DED has been extensively embraced by 

industries including aerospace, automotive, 

machining, and medical. Interestingly, DED may be 

used with a variety of materials, such as metals, 

alloys, and composite. In DED, a metal wire or 

powder is inserted at the centre of a thermal energy 

source, where it melts and fuses to the substrate or 

layers that have already been produced. Depending 

on the material that is being processed, the intended 

use, and the particular DED technology being used, 

a variety of heat sources may be used in DED 

procedures [6, 9]. Lasers, plasma, and electric arcs 

are the main heat sources employed in DED.  More 

widely used, laser-based DED (L-DED) provides 

excellent precision and precise control, making it 

appropriate for a variety of materials and 

applications. 

Since the melt pool is used for deposition and is 

correlated with all of the basic parameters that 

control the L-DED process, it is logical to assume 

that its condition will have a major impact on the 

produced part's quality [7, 8] Fig. 1. [9] provides a 

didactic example of the two methods utilised in DED 

to collect emissions from the process zone, or melt 

pool: co-axial and off-axial process zone sensing. 

The present condition of the DED process may be 

determined by analysing the emissions from the melt 

pool.  

The sensing and monitoring apparatus is positioned 

on the same axis as the energy beams utilised for 

material deposition in co-axial process monitoring.  

In order to monitor the process in real time and 

provide prompt feedback, fault identification, and 

control changes, co-axial process monitoring 

combines sensors and cameras with the energy beam 

[9, 10]. However, in order to record certain process 

attributes without interacting with the energy source, 

off-axial process monitoring positions sensors away 

from the deposition zone. These sensors may be 

positioned to record certain elements of the 

operation, including the heat-affected zone or the 

molten material plume [11]. Additionally, they may 

watch the development of the deposited material or 

keep an eye on the workpiece's temperature 

distribution. 



 
International Journal of Intelligent Systems and Applications in Engineering                        IJISAE, 2021, 9(4), 445–454 |447 

 

 

Fig. 1 Co-axial and off-axial process zone sensing are two approaches used in DED (Color figure online). 

[12] 

Improved decision-making and increased process 

efficiency result from the gathering and decoding of 

vital data made possible by the use of non-intrusive 

sensors in the process zone in conjunction with 

sophisticated algorithms [14]. Furthermore, the 

environment of the process is not changed by these 

non-intrusive sensors, enabling undisturbed 

observations. Their capacity to monitor 

continuously [12,13] is a major benefit of such 

systems, outperforming post-mortem inspection 

methods and intermittent machine diagnostics.  

If low component quality is identified, this real-time 

monitoring enables prompt action, averting more 

irregularities and providing improved production 

process management.  In the end, these 

developments increase DED's accuracy, 

dependability, and quality, increasing its worth as a 

production technique across a range of sectors [14]. 

The list of non-intrusive sensors that have been 

reported in the literature and are capable of 

recording various process zone characteristics from 

laser-based DED and distinguishing between steady 

state and abnormality is shown in Table 1. The 

majority of events in the process zone are temporary 

because laser-based processes entail complex 

physics [15]. The multidimensional data from 

sensors that may record such occurrences must be 

analysed smoothly, and judgements must be taken 

concurrently with little human involvement, in order 

to guarantee that online diagnostics is a sensible 

substitute for quantification.  

The ability to identify nonlinear patterns in data, 

learn from them, and eventually make judgements is 

made possible by the Machine Learning (ML) 

paradigm and soft computing approaches [16]. The 

advantages of combining sensing techniques with 

machine learning to monitor the DED process have 

been shown in earlier studies. 

 The traditional method of depending on skilled 

engineers to visually examine WBMs is no longer 

acceptable and has to be replaced with a 

revolutionary approach. It is almost hard for 

engineers to manually navigate through every WBM 

and assign them to one of the predetermined fault 

classifications since contemporary fabs manufacture 

thousands of wafers each week [16]. Depending on 

their experience levels or working situations, 

engineers often make biassed conclusions.  

Additionally, it is possible for previously 

unidentified fault patterns to surface early on in the 

process development of new production stages [11]. 

Even while WBM data streaming during large-scale 

manufacturing may include valuable information for 

identifying the underlying cause and so producing 

improvements, an almost incalculable amount of 

this data is left unprocessed [19]. The examination 

of WBM failure patterns will undoubtedly benefit 

from automated methods that can take use of this 

enormous volume of unanalysed data.  

Unsupervised learning is a potential approach for 

creating fully automatic classifiers in a situation 

where labelled data is limited and unlabelled data is 

plentiful.  Recent work in computer vision [10] has 

shown the ability to learn high-quality feature 

representations from large-scale unlabelled pictures 
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alone. This study falls under the general heading of 

self-supervised learning.  

A hybrid clustering technique that uses a spherical 

shell algorithm and Gaussian expectation-

maximization-based spatial filters to find fault 

patterns [12]. Defective WBMs have spatial 

autocorrelations, and dynamic warping is used for 

grouping and spatial correlograms for the extraction 

of features. Self-organised maps were trained to find 

typical defect patterns, and SVMs were trained using 

the given clusters as hard labels. Using a 

morphology-based SVM to create synthetic samples 

for WBM similarity searches [19]. 

When adequate class labels are not available, self-

supervised learning in deep learning seeks to create 

strong feature representations straight from the input 

data.  Creating supplementary pretext tasks that 

motivate a neural network to acquire useful 

representations is the main issue of self-supervised 

learning [12, ]. This new learning paradigm has 

extended out to a variety of data fields, including 

artificial intelligence, signal processing, processing 

of natural languages, or robotics, by taking use of the 

high-level semantics of the incoming data [, 21]. 

Our focus is limited to the picture domain. 

Predictive techniques, in which one portion of the 

input picture is excluded and can be predicted given 

the other portions of the image, are the focus of one 

line of study in that field. Predicting the relative 

positions of patches cropped from a single image 

[12], matching exemplars [13], inpainting patches 

that are absent based on the remaining context , 

resolving jigsaw puzzles [19], colourizing images 

from greyscale to RGB [21], and anticipating image 

orientations [23] are just a few examples of research 

in this area. 

These datasets should include events and objects 

that can be uniquely identified by state and class 

thanks to their properties. Some datasets are easier 

to access, such those that include recordings of 

everyday tasks like cooking [1], [2]. However, 

datasets may be small in size or lack the thorough 

annotations needed for the creation of AI algorithms 

for specialised tasks, such the identification of 

intricate technical processes. Nevertheless, data sets 

may not be accessible in sufficient quantity or with 

the required annotations for the creation of AI 

algorithms for some specialised tasks [10], such as 

the identification of technical processes. 

Consequently, more data must be gathered, 

important steps must be highlighted, and pertinent 

annotations must be made in order to analyse certain 

processes. 

The second significant obstacle to the effective use 

of AI in manufacturing & operational process 

monitoring systems is the need for the creation of 

specialised, highly accurate algorithms. Such 

algorithms must be able to learn from tiny annotated 

data sets in order to provide flexible solutions that 

can adjust to an increasing number of technological 

processes. Self-supervised learning is a useful 

strategy that involves pre-training a model on a large 

amount of unlabelled data before refining it on a 

smaller amount of labelled data [19]. The model 

learns to recognise fundamental patterns in the data 

during the first phase, known as the pretext task. At 

this point, the tasks and process types change. Using 

task-relevant information and modifications to its 

final layers, the model is customised for the 

particular application in the second step, known as 

the downstream task. 

The use of transfer learning is one possible way to 

lessen the data needs. This strategy essentially 

consists of transferring information gained from 

challenges with broader definitions to activities that 

are more focused and particular [19]. Pretraining 

vision models on large datasets such as ImageNet 

improves their performance on a range of 

downstream assignments [19]. But even though 

these models have been shown to be successful in 

detecting manufacturing defects, their performance 

may be affected by (1) the discrepancy between 

ImageNet and X-ray pictures and (2) their possible 

bias towards the particular categories that are 

present in the dataset. 

The creation of deep learning models is often 

hampered by these pretraining methods' need for a 

labelled dataset.  A method that makes effective use 

of the enormous amounts of data that are accessible 

is self-supervised learning, which makes it possible 

to extract important characteristics from photos 

without depending on labelled data [14, 19]. Self-

supervised techniques enable the use of large 

datasets of unlabelled X-ray pictures, which are 

typical in industrial settings, in the context of 

manufacturing fault identification. This makes it 

easier to train a model that can reliably extract the 

most relevant characteristics and is skilled at 

comprehending X-ray picture representations. The 
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model then serves as a good foundation for further 

tasks using a tagged X-ray dataset, increasing its 

usefulness and efficacy in accurately identifying 

defects. 

Over the years, a lot of work has been done to use 

computer vision techniques to automate the process 

of detecting manufacturing defects.  Nowadays, 

detecting manufacturing defects is a well-known 

computer vision issue that is used extensively in 

many industrial quality control procedures . Prior to 

using statistical methods for feature extraction, early 

efforts at defect identification included picture 

comparison and the Fourier Transform to find flaws.  

Machine learning was then used to classify these 

attributes in order to differentiate between objects 

that were faulty and those that weren't. However, 

this laborious feature extraction limited the 

transferability of acquired information since it was 

product particular and not generally applicable. 

As was already noted, it is well known that in order 

for modern deep learning algorithms to acquire 

intrinsic representations of data and achieve enough 

generalisation ability, they need large-scale training 

datasets. Large datasets must be annotated since 

supervised learning requires tagged data for training 

[23]. The lengthy and costly labelling procedure, 

which is also impractical in a number of industries, 

might be seen as a bottleneck.  Additionally, 

supervised models rely significantly on human 

annotated labels. 

II. Methodology  

To improve the existing state of the art of 

manufacturing defect detection, our approach is 

based on the use of self-supervised learning methods 

to build defect detector for manufacturing [2, 3]. By 

using large datasets of unlabelled X-ray images—

which are often seen in industrial settings—to train 

defect detectors in a self-supervised way, it differs 

from earlier methods in manufacturing defect 

identification. 

Our approach's pretraining stage entails creating 

models that can automatically recognise and extract 

important visual characteristics from X-ray pictures 

without the need of annotated data.  At this step, an 

unlabelled database of X-ray manufactured pictures 

is used to train the models in a self-supervised 

manner [23]. We describe in detail two different self-

supervised learning methods in the next parts of this 

study [26]. These techniques were especially picked 

because of their proven effectiveness and high 

results on previous pretraining exercises. We take 

use of the natural features and patterns seen in these 

photos as a consequence of the training process, 

which allows the models to detect minute but 

important irregularities that indicate flaws. 

Furthermore, there are no significant expenses 

associated with data collection during this 

pretraining phase. 

 

Fig. 2 Shows an overview of the methodology, which encompasses two key stages: pretraining and fine-

tuning. In the pretraining phase, the backbone of the model is trained through a self-supervised learning 

approach [19]. 
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We used a feature extractor that was specially 

designed to distinguish between relevant 

characteristics from manufacturing photographs for 

pretraining. SimSiam was selected for picture 

classification tasks because it offers the best balance 

between ease of use and efficacy [23]. Its benefit is 

that it can be trained on numerous GPUs without 

using a lot of resources since it doesn't need big 

batch sizes or an automatic momentum encoder. 
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Fig. 3 Overview of the SimSiam architecture. [11] 

Transformers have become the state of the art for 

many vision-related tasks, mainly because of their 

remarkable representation learning and feature 

extraction capabilities [19]. Our investigation into 

their use for manufacturing process flaw 

identification was motivated by this advancement. 

ℒ =
1

Ω(𝑥𝑀)
||𝑦𝑀 − 𝑥𝑀||1  

 

 

Fig. 4 Overview of the SimMIM architecture. [19] 
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III. Implementation And Results  

Here, we describe the tests that were done to see how 

well the models worked after being pretrained on X-

ray pictures of manufacturing items [12]. We 

describe the methods used and the particular datasets 

used in our research. The findings are also discussed 

in this part, providing information on how various 

pretraining strategies affect performance [24]. 

We conducted a model pretraining step on X-ray 

manufacturing pictures using the two self-

supervised techniques described above, SimSiam 

and SimMIM [23]. We postulated that self-

supervised preparing on a large collection of X-ray 

pictures may enhance models' performance in 

downstream tasks involving the identification of 

manufacturing defects. 

Given that there are seven critical defect types and 

twelve minor defect types in the defect distribution, 

finding flaws in the product and categorising them 

into one of the two groups provide a difficult defect 

detection task. With 4002 samples for minor flaws 

and 1784 samples for major defects, there was a 

noticeable class imbalance in the dataset distribution 

. Table 1 describes how the target dataset was 

divided into training and test sets while preserving 

class proportions. 

Fig. 1 Distribution of images for critical and minor defects the target dataset. [10] 

 Critical defects  Minor defects  

Train  1423 3200 

Test  369 809 

 

First, we used SimSiam and SimMIM to train a 

backbone model.  In both situations, we trained each 

model for 100 epochs using the default approach 

from the original articles. The normal assessment 

technique for the models that were previously 

trained was then put into practice; [19] we added a 

linear layer to the top of the model while freezing 

the other backbone layers.  We used the target 

dataset with both minor and significant flaws to train 

our classification classifier. A model using ImageNet 

pretrained weights was used to create a baseline. The 

feature extractor we utilised for SimSiam was 

ResNet50, which produced a 2048-dimensional 

structure feature vector for our classification layer. 

On the other hand, we used the original Swin 

Transformer that was set up with a 12-pixel window 

size for SimMIM [10, 19]. In the Swin Transformer 

example, the feature vector has 1024 dimensions 

[25]. Table 2 provides specifics of this linear 

classification's outcomes on our target dataset. 

Table 2 Linear classification results on industrial target dataset for both RestNet and Swin-T Backbones. 

[19] 

Backbone  Weights  AP Accuracy  

ResNet  
ImageNet 49.6 69.6 

X-ray SimSim 79.5 72.6 

Swin-T 
ImageNet 89.6 83.9 

X-ray SimMiM 78.9 69.9 

 

We used three sets of initial weights to train the 

Faster R-CNN model on the industrial target 

database in the first step of this fine-tuning phase: 

those derived via X-ray pretraining using both the 

SimSiam and SimMIM approaches, as well as those 

initialised using ImageNet. This approach was used 

to assess how well the models handled challenging, 

real-world defects identification tasks in the 

industrial sector [19]. According to Table 3, the 

results show that the SimSiam and SimMIM 

pretraining techniques outperform the traditional 

supervised methodology, particularly when it comes 

to detecting important faults [10]. 

Table 3 Fine-Tuning results on defect detection for manufacturing dataset. 

Dataset  Backbone  Pretraining  (m) AP AP-critical  

Industrial  ResNet 
ImageNet 89.6 94.6 

X-ray SimSim 87.9 93.7 

 Swin-T ImageNet 91.6 96.9 
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X-ray SimMiM 92.6 96.8 

 
ResNet 

ImageNet 96.9  

 X-ray SimSim 94.8  

 
Swin-T 

ImageNet 93.0  

 X-ray SimMiM 99.5  

 

To illustrate the effectiveness of our detection of 

defects approach, we instead concentrate on the 

GDXray dataset. In particular, we use the SimSiam 

method to demonstrate the efficacy of the ResNet 

backbone previously trained using X-ray images 

[19]. We hope that Figure 4's visualisation will shed 

light on the usefulness and practical implementation 

of our methodology in spotting flaws in industrial 

settings. 

 

Fig. 5 Results of defect detection on the GDXray dataset. This figure illustrates the original X-ray image, 

ground-truth annotations, and the predictions of the model.  

IV. Discussion  

These tests provide insight into how well X-ray 

image-based pretraining techniques work, 

particularly when it comes to identifying 

manufacturing flaws. Our tests demonstrate that 

when it comes to identifying pertinent features for 

defect identification, models pretrained using X-ray 

pictures often outperform those pretrained with the 

ImageNet [ 21]. This domain-specific pretraining's 

advantage emphasises how crucial it is to match the 

pretraining stage with the distinct qualities of the 

task-specific visuals. 

When there is a substantial amount of labelled data 

available, the Swin Transformer models outperform 

CNNs in comparing several backbones. The 

GDXray dataset, on the other hand, had fewer 

annotated pictures; in this case, the CNN backbones 

performed better. This implies that CNNs may work 

better with less data, even while Transformers 

perform better in settings with a lot of data [19]. 

The notable improvement in identifying essential 

abnormalities after pretraining with X-ray pictures is 

an important part of our study [23, 24]. This 

enhancement is particularly relevant in industrial 

environments where dependability and safety 

depend on precisely detecting such flaws.  

Significant ramifications for industrial applications 

may result from this improvement in defect 

identification, especially for important flaws [25]. 

Furthermore, pretraining on X-ray pictures showed 

better outcomes even with the smaller GDXray a 

database, demonstrating the models' flexibility in 

handling varying amounts of data. Given that data 

availability may fluctuate in real-world deployment 

scenarios, this flexibility is an essential quality. 

 

V. Conclusion  

This study adds to the continuous attempts to 

improve X-ray image-based flaw identification in 

industrial items. Our thorough tests and analyses 

provide a number of important conclusions that 
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highlight the efficiency and usefulness of our 

suggested technique in real-world industrial 

situations. Our analysis demonstrates unequivocally 

that models previously trained on X-ray pictures 

perform better than those pretrained on ImageNet 

weights.  

This observation is significant because it emphasises 

how domain-specific pretraining improves the 

model's capacity to identify relevant features for 

fault identification. We were able to get better 

detection skills than the models that were pretrained 

on more generic photos by matching the pretraining 

phase with the distinct features of the task-specific 

images. Additionally, comparing various backbone 

designs showed insightful patterns.  

We found that CNN backbones perform better in 

datasets with less annotated pictures, whereas Swin 

Transformer models provide superior performance 

in circumstances with a large amount of labelled 

data. This suggests that based on the quantity of data 

provided and the particular needs of the activity, the 

best model may be chosen. The enhancement of 

critical defect identification, which is a key issue in 

industrial settings, made possible by pretraining on 

X-ray pictures is very remarkable. The innovations 

shown may greatly lower risks and improve 

dependability in industrial settings where accurate 

detection of such flaws is essential for guaranteeing 

safety and upholding high standards of quality. 

Adoption of these improved detection systems may 

also significantly save maintenance costs and 

operational downtime, improve manufacturing 

processes, and boost industrial efficiency in general. 

Our approach helps to maintain the standing of 

industrial organisations and boost customer trust by 

improving product quality and reducing failure 

rates. 
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