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Abstract - Intrusion Detection Systems (IDS) are critical for mitigating cyberattacks in modern networks, yet existing
approaches often struggle with high-dimensional features, severe class imbalance, and limited adaptability to evolving threats.
This study proposes AMAT-IDS, a hybrid framework that integrates Enhanced Genetic Algorithm with Stochastic Universal
Sampling (GA-SUS) for multi-objective feature selection and a Dynamic Twin Auto-Encoder (DTAE) for minority class
enhancement. The methodology was validated on the NSL-KDD dataset through a three-step pipeline: baseline evaluation
with Random Forest, GA-SUS-driven feature reduction, and DTAE-based anomaly detection. Experimental results
demonstrate that GA-SUS reduced the feature set from 41 to 11, achieving a 73.2% reduction while retaining high performance
(Test Accuracy: 96.49%, CV Mean: 96.55%). The baseline RF model acquired an accuracy of 99.48%. The subsequent DTAE
further improved minority class detection, with U2R precision rising from 0.500 to 0.778 and R2L precision from 0.563 to
0.987, though with a minor trade-off in overall accuracy (96.02% vs 96.49% baseline). Cross-validation confirmed the model’s
stability (CV Mean: 96.07%, £0.35). These findings establish AMAT-IDS as a robust, memory-efficient, and interpretable
IDS framework. By balancing feature reduction, detection accuracy, and minority class performance, the system addresses
critical gaps in dataset dependency, computational overhead, and explainability observed in prior IDS research. The
contributions of this work hold significant potential for real-time 10T, cloud, and industrial cyber-physical system security
applications.

Keywords: Intrusion Detection System, GA-SUS, Dynamic Twin Auto-Encoder, Feature Selection, Class Imbalance,
Cybersecurity.

1. Introduction

In today's digital age, the rise of cloud computing,
IoT, and cyber-physical systems is increasing the
likelihood of cyberattacks, which makes Intrusion
Detection Systems (IDS) important to help protect
networks [1], [2]. However, the traffic's complexity
and the multitude of attack vectors, including zero-
day attacks, pose a challenge for traditional
signature- or rule-based-based IDS [5], [6]. Due to
these obstacles, there is a growing line of research
into ML and DL which adaptively detect novel
intrusions [7], [8]. Autoencoders are a promising
method of revealing hidden attack features [3], [16],
while hybrid models which use evolutionary
algorithms in combination with DL for intrusion
detection have reported improvements in accuracy
of detection [9], [12].
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Feature selection is central to IDS, as redundant
attributes in high-dimensional traffic degrade
performance. Optimization algorithms such as
immune-inspired [14], bat [17], and reinforcement
learning—based drift handling [19] have enhanced
IDS robustness, while ensembles and attention-
based models improve generalization [7], [11], [15].
Yet, challenges remain: many models overfit on
real-world datasets [5], [16], others face scalability
and latency issues [8], [18], and AutoML for IDS is
still emerging [20].

To address these gaps, we propose AMAT-IDS, a
hybrid IDS integrating GA-SUS (Genetic Algorithm
with Stochastic Universal Sampling) for optimal
feature  selection and DTAE  (Denoising
Transformer Autoencoder) for robust representation
learning. This synergy improves detection accuracy,
reduces redundancy, and enables real-time
performance. Experiments on benchmark datasets
confirm its superiority over state-of-the-art IDS,
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motivating the following literature review of
existing approaches and their limitations.

2. Literature Survey

Increased incidence and complexity in cyberattacks
have encouraged researchers to develop advanced
intrusion detection systems (IDS) for handling high-
dimensional data in a way that scales up efficiently
and improves detection accuracy. A host of works
have utilized hybrid optimization, feature
engineering, and deep learning techniques for
overcoming limitations in classical signature- and
anomaly-based IDS. This section critically analyzes
the recent works on the methodologies pursued, data
taken into account, conclusions, and challenges
remaining.

2.1. Hybrid Optimization and Metaheuristics in
IDS

Recent efforts highlight a mixed metaheuristic
optimization approach to feature selection in IDS
applications. Mohi-Ud-Din et al. [4] proposed a
hybrid Crow Search Algorithm (CSA) with Particle
Swarm Optimization (PSO) for feature selection,
followed by a weighted random forest classifier
fitting procedure. The proposed framework
addressed redundancy and asymptotic variance for
large-scale datasets, and showed improved
accuracy, and F1 score when compared to other
feature selection techniques on benchmark datasets.
However, the predominance of hand-crafted
optimization techniques limit generalizability
during dynamic attack patterns.

Subsequently, Ganapathy et al. [8] proposed a cloud
intrusion detection framework (CIDF-VAWGAN-
GOA) by fusing Variational Autoencoders (VAE)
and Wasserstein GANs, with a hybrid of Gazelle
Optimization Algorithm (GOA). The model showed
an increase recall (17.58%) and AUC (up to 21.63%)
gain on the NSL-KDD dataset, compared to
traditional stacked autoencoder—SVM hybrids.
Nonetheless, the model's increase computational
overhead raised serious concerns regarding
applicability for real-time cloud environments.

2.2. Deep Learning and Hybrid Feature Selection
Approaches

A number of works have combined deep neural
architectures with more advanced feature selection
methods, to try to balance detection accuracy with
computational cost. Li et al. [6] created AE-IDS, an
autoencoder based IDS, mixed with Random Forest-
based feature selection, and showed that it was more
adaptable and less time-consuming to train than
standard ML-based IDSs. Similarly, Madhusudhan
and Madam [7] did a multi-wavelet oriented
autoencoder (AMV-AE) along with CNN for IoT
intrusion detection, which demonstrated attention
mechanisms for the model, and included multi-
wavelet transforms. Krishnaveni et al. [10] proposed
TwinSec-IDS, which was advanced IDS for SDN—
Digital Twin-based industrial cyber-physical system
(ICPS). They put together Bi-GRU-CNN, Bi-GRU-
LSTM and Bi-GRU-LSTM-CNN, with ensemble-
based feature selection methods. This led to a
weighted majority vote and improved robustness
with explainable Al, enhanced interpretability of the
system. They showed that it can validate on NSL-
KDD, but expressed that it belongs to a
heterogeneous ICPS.

2.3. Ensemble Feature Selection and Lightweight
IDS

Feature selection remains at the forefront of
optimizing IDS performance, especially in
constrained settings. Kil et al. [11] utilized a multi-
binary classifier that operated with optimal feature
subsets for each attack type and reported memory
reduction of 88.05% with an improvement of
11.67% in accuracy from the use of multi-binary
classifiers . Similarly, Wanjau et al.[12] developed
an ensemble feature selection model that utilized
information gain, random forest and recursive
feature elimination on CIC-IDS-2017 dataset to
identify DoS and PortScan attacks. Their findings
further reinforced that a smaller feature set that is
better optimized reduces processing requirements on
data and still attains an accurate detection.

In vehicular networks, Christy et al.[9] designed the
multi-stage lightweight IDS (MLIDS-RFA), that
used a random forest, ensemble based feature
selection approach to enable all data processing for
cloud assisted VANETSs. They achieved a detection
accuracy of 96.2 % with reduced false positives and
stated that the MLIDS-RFA could be developed
further or operate on a larger scale for vehicular
networks. These studies shed light on the limitations
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of feature dimensionality and their impact on
detection scalability, however, adaptability to
adjustments of the attack types in the environments
is largely overlooked and remains a challenge to be
solved.

2.4. Generative and Explainable Models

Recent studies are also beginning to show the
importance of generative and explainable
approaches in IDS research. Kotwal et al. [5]
proposed a hybrid model that effectively utilized
VGG16, autoencoders, and random forest classifier
for IoT anomaly detection in cyberspace, revealing
significant enhancements in multi-class attack
detection. Similarly, Senthilkumar et al. [8] showed
that the explained feature extraction from a cloud
IDS enriched VAWGAN via a descriptor, which
was then optimized using Archerfish Hunting
Optimization (AHOA). Concurrent research like
Krishnaveni et al. [10] demonstrated the use of
ensemble-based feature selection (with respect to
explainable Al) for intrusion detection, reinforcing
the importance of building interpretability into IDS
pipelines.

2.5. Identified Gaps

Despite significant progress, several challenges
persist across existing IDS research. These include

the lack of diverse feature selection techniques that
increase the overall inference time and system
overhead time. To address these gaps, the current
study introduces a multi-objective feature selection
framework integrating Genetic Algorithm-based
Selection (GA-SUS) and Denoising Transformer
Autoencoder (DTAE). By synergizing evolutionary
optimization with deep representation learning, the
approach ensures both dimensionality reduction and
robust anomaly detection. Unlike prior works
constrained to single optimization or dataset-
specific  validations, this study emphasizes
generalizability, = memory  efficiency, and
interpretability while maintaining high detection
accuracy across multiple benchmark datasets.

3. Proposed Methodology

This  section describes the design and
implementation of the Adaptive Multi-Objective
and Autoencoder-Twin IDS (AMAT-IDS). The
framework consists of three major stages: (i)
baseline establishment, (ii) enhanced feature
selection using GA-SUS, and (iii) representation
learning with Dynamic Twin Autoencoders
(DTAE). The pipeline is validated on the NSL-KDD
dataset with a train—validation—test protocol and
cross-validation for stability.

AMAT-IDS Architecture

Baseline Enhanced Feature Validation Strategy
Establishment Selection Representation 1. Train-Validation-
1. NSL-KDD 1. GA-SUS Learning ' Test Split
Dataset 2. Optimal Feature 1. DTAE 2 Cross-Validation
2. Pre- set Selection 2. Latent '
processing Representation

O &
c EI@

ofg

h

Figure 1: Architecture pipeline of AMAT-IDS

contains 41 traffic features and an associated attack

3.1. Dataset and Preprocessin
P g type. Preprocessing involved the following steps:

We used the NSL-KDD dataset, combining

KDDTrain+ and KDDTest+ subsets. Each record Label mapping: Attack types were grouped into

five categories:
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Normal

Denial of Service (DoS)
Probe

Remote-to-Local (R2L)
User-to-Root (U2R)

O O O O O

Formally:

y; = f(attack_type;) €
{normal, dos,probe,r2l,u2r}...(1)

Categorical encoding: Protocol type, service, and
flag were label-encoded using integer codes learned
from the training set. Unseen categories in
validation/test were mapped to a fallback class.

Feature scaling: Numerical features were
standardized using z-score scaling:

where u and ¢ are mean and standard deviation of
the training set.

Splitting: The dataset was partitioned into training
(70%), validation (15%), and test (15%) subsets
using stratified sampling, ensuring balanced class
distribution across subsets while providing
sufficient data for training, tuning, and unbiased
evaluation.

3.2. Baseline Model

A Random Forest (RF) classifier with 100
estimators and class balancing
(class_weight=balanced) was used as a baseline.
The RF computes predictions via majority voting of

decision trees:

9 = arg max e Xey  1he(0) =

c}...(3)
where h;(x) is the class predicted by the t-th tree.

Performance was measured using:

TP+TN
TP+FP+TN+FN
e Precision, Recall, and F1 per class:

e Accuracy: Acc =

. . TP TP
Precision = ——,Recall = ——,F1] =

TP+FP TP+FN
2-Precision-Recall

Precision+Recall

e 5-fold cross-validation on the training set to
assess stability.

Original Dataset
— —
Pl ° Trees
o 0 Tree; ° Q o 'y 0. Treen
¢ 000 L ) * oo
Prediction_1 Prediction_2 Prediction_3
Abnormal Normal Abnormal
\ /

Majority voting
Abnormal
Figure 2: Random Forest Architecture

3.3. Enhanced Feature Selection with GA-SUS

The Genetic Algorithm with Stochastic Universal
Sampling (GA-SUS) was implemented to reduce
dimensionality —and enhance  minority-class
detection.

e Chromosome representation: Each
individual is a binary vector z € {0,1}4,
where z; = 1 indicates feature j is selected.

e Population initialization: 30
chromosomes, seeded with a
subset of size =12 for
diversity.

e Fitness function: Multi-objective fitness
combining accuracy, minority recall,
efficiency, and interpretability:

F = 0.40 - Acc + 0.30 - Rpyinopiey + 0.20 - E +
0.10 - I...(4)

Acc: accuracy on validation set
Rininority: mean recall of R2L and
U2R

o E=1- lZ—l: efficiency (fewer
features preferred)

o I=1-"12

penalty (prefers ~12 features)
e Selection: Stochastic Universal Sampling
(SUS) ensures proportional yet diverse
parent selection.

interpretability
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e Crossover: Single-point crossover with
probability 0.70.

e Mutation: Bit—flip with
probability 0.10, enforcing 23
selected features.

e Elitism: Top 2 individuals preserved each
generation.

e Evolution: Run for 25 generations.

The best chromosome yielded a reduced subset of
features ( 11 out of 41), with ~70% dimensionality
reduction.

3.4. Representation Learning with Dynamic
Twin Autoencoders (DTAE)

To enhance class separability, particularly for
minority classes, a Dynamic Twin Autoencoder
(DTAE) was introduced:

1. Class separation: Training data was
divided into majority classes (Normal,
DoS, Probe) and minority classes (R2L,

U2R).

2.  Minority augmentation: Minority
samples were augmented by Gaussian
noise:

x' =x+ N(0,0.05%)...(5)
repeated 3% to expand minority data.

3. Twin autoencoders:
o Majority autoencoder (dense
layers: 41 — 16 — 8 — 16 — 41).
o Minority  autoencoder  with
identical architecture.
Both  trained with MSE
reconstruction loss:

L==¥  llx =2 I2...(6)

4. Feature extraction: For each sample, the
latent embedding (8-D) and reconstruction
error were concatenated:

f(x) = [Encoder(x), | x — % II?]...(7)

giving a 9-D enhanced feature vector.

5. Final classifier: A Random Forest (200
trees, depth=10, balanced weights) trained
on enhanced features.

Encoder ______ Decoder  Encoder ________ Decoder

Figure 3: DTAE Architecture
3.5. Evaluation and Reliability Testing
The pipeline was evaluated at three checkpoints:

Baseline RF (all features).
GA-SUS RF (selected features).
DTAE RF (enhanced features).

Metrics: Accuracy, precision, recall, F1, and per-
class analysis with special focus on R2L and U2R.

Additional reliability tests:

e Statistical significance via paired t-tests
between stages.

e Bootstrap confidence intervals for CV
accuracies.

e Feature selection stability across multiple
GA runs.

e  Minority class progression

(precision/recall gains from baseline —
GA-SUS — DTAE).

4. Results and Discussion
4.1. EDA Visualizations

To gain insights into the NSL-KDD dataset before
model development, exploratory data analysis
(EDA) was performed, with results summarized in
Figure 4. The dataset contains 148,517 samples and
41 features, partitioned into training (77,970
samples), validation (25,991 samples), and test
(44,556 samples). The attack class distribution
reveals a severe imbalance: normal traffic dominates
with 51.9%, followed by DoS at 35.9%, and Probe
at 9.5%, while minority categories such as R2L
(2.5%) and U2R (0.1%) are underrepresented. This
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imbalance is emphasized further in the minority
class sample chart, where R2L includes 3,704
instances and U2R only 119 instances. Such
imbalance mirrors real-world intrusion scenarios,
where rare but critical attacks are often
overshadowed by frequent benign or DoS traffic.

The log-scaled class frequency distribution
highlights the disproportionate representation across
categories, making it clear that conventional
classifiers may overfit majority classes while failing
to generalize on minority intrusions. Similarly, the
boxplots of the first five features show skewness and

the presence of outliers, suggesting the need for
normalization and robust feature engineering.

Finally, the dataset summary statistics confirm the
scope of the challenge: minority classes account for
only 2.57% of total samples, creating a high risk of
biased predictions. This imbalance motivated the
use of multi-objective GA-SUS for feature
optimization and the Dynamic Twin Autoencoder
for minority-focused enhancement, ensuring that
AMAT-IDS can overcome structural dataset
challenges that limit traditional IDS solutions.

NSL-KDD Dataset Exploratory Data Analysis

Attack Class Distribution

Class Frequency (Log Scale)

Dataset Split Distribution

77054

normal 53385

uitknown
2l

probe

80000

70000

60000

50000

40000

30000

20000

10000

validation

Figure 4: EDA Visualizationsfor the NSL-KDD Dataset

4.2. Baseline Random Forest Performance

The baseline Random Forest classifier, trained on
the full 41-feature NSL-KDD dataset, achieved an
overall accuracy of 99.48% on the validation set,
with cross-validation mean accuracy of 0.9948 +
0.0012. Per-class analysis showed excellent
precision and recall for majority classes such as DoS
(F1=0.999) and Normal (F1 =0.995). However, the
minority classes revealed substantial limitations:

e R2L achieved F1 = 0.969, though recall
dropped to 0.948.

e U2R suffered the most, with precision =
0.917 and recall = 0.524, resulting in F1 =
0.667.

e The Unknown class had particularly weak
performance (F1 = 0.400).

These findings confirm that while Random Forests
can capture general attack patterns effectively, they
remain biased towards frequent classes and struggle
with rare categories, aligning with issues noted in
prior IDS research. Figure 5 presents the confusion
matrix. 298/522 of the DOS class samples, 331/597

of normal instances, 443/635 probe class samples,
230/433 of r21 samples and 420/648 u2r samples
were correctly predicted.

Baseline RF Confusion Matrix

dos

normal

probe

True Label

r2l

uzr

unknown 4 40 10 94 83 38

s SR R &
@@ é‘o \)61.00

Predicted Label

Figure 5: Baseline RF Confusion Matrix
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4.3. GA-SUS Feature Selection Results

The proposed Enhanced GA-SUS (Genetic
Algorithm with Stochastic Universal Sampling)
reduced the feature space from 41 to 11 key
attributes, representing a 73.2% reduction. The
selected features included both categorical (e.g.,
service) and numerical (dst_bytes, srv_count,
same_srv_rate, dst_host_serror_rate), reflecting
diverse attack signatures.

Performance on the reduced feature set showed test
accuracy = 96.49%, only marginally lower than the
baseline but with a more compact and efficient

model. Importantly, GA-SUS improved detection in
minority classes:

e R2L: F1 = 0.705, with a recall of 0.943
(substantial gain over baseline).

e U2R: FI = 0.500, stable compared to
baseline but still limited.

e Unknown: Recall improved to 0.755,
though precision remained weak at 0.164.

Cross-validation confirmed the robustness of GA-
SUS with mean accuracy 0.9655 + 0.0021,
demonstrating that feature reduction did not
compromise generalization.

Enhanced GA-SUS Feature Selection Analysis

Best: 0.8670

Multi-Objective Fitness Evolution

0.865 -

0.860 -

0.855

0.850

Fitness Score

0.845

0.840

10 15
Generation

Feature Reduction: 73.2% Reduction

Number of Features
5 & 8 & 8 B 3
| 1 |

v

o
'

Original Features Selected Features Removed Features

Selected Feature Importance

dst_host_rerror_rate
dst_host_serror_rate
same_srv_rate
srv_rerror_rate
srv_count
num_outbound_cmds
num_sheils
num_file_creations
logged_in

dst_bytes

service

0.15 0.20

Importance Score

0.00 0.10

Normalized Performance Comparison

1.04 mmm Baseline

B GA-SUS

0.8 4

0.6

Normalized Score

0.2 1

0.0 -
Feature Count

Efficiency Score

Accuracy

Figure 6: Enhanced GA-SUS Feature Selection Analysis

The top-left plot in Figure 6 shows multi-objective
fitness evolution across 25 generations, converging
at a best fitness of 0.8670. The top-right bar chart
highlights the importance of the 11 selected features,

with dst_bytes and service ranked highest. The
bottom-left chart illustrates the feature reduction
(41 - 11), while the bottom-right panel compares
between

normalized  performance  metrics

Baseline RF and GA-SUS. Notably, GA-SUS

(Confusion Matrix in Figure 7) achieves a strong
efficiency score due to dimensionality reduction
while maintaining accuracy close to baseline

levels.
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GA-SUS Confusion Matrix e 2R precision increased to 0.778, with
recall modestly improving to 0.583.

dos 68 92 19 72 13

e R2L detection reached near-perfect
performance (precision = 0.987, recall =
0.993, F1 =0.990).

normail

probe

DTAE Confusion Matrix

True Label

r2l

dos 16 96 14 98 115)

uzr
normail
unknown 41 2 39 63 87 86
. . . . . S probe
[i+]
& & & & ¢ & o
@&\ ¢ \)@5‘0 2 r2l -
Predicted Label
uz2r
Figure 7: GA-SUS Confusion Matrix
unknown 4| 91 1 98 30 10
4.4. DTAE Enhancement Results . . . . .
> N < o
The Dynamic Twin Auto-Encoder (DTAE) further & @ﬂ@ é‘s& ¢ § &chs
BN

enhanced feature learning by  separately
reconstructing majority and minority classes. This
method achieved 96.02% test accuracy, slightly Figure 8: DTAE Confusion Matrix
lower than GA-SUS but with major improvements

in minority classes. The confusion matrix is

presented in Figure 8.

Predicted Label

Dynamic Twin Auto-Encoder Analysis
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Figure 9: Dynamic Twin Auto-Encoder (DTAE) Analysis
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Overall accuracy (top-left) slightly
declined from 96.49% (GA-SUS) to
96.02% (DTAE). (Figure 9)

Minority class precision (top-middle)
improved  substantially, with  U2R
increasing by +0.278 and R2L by +0.423.

Performance stability (bottom-left)
indicated  slightly more variability
compared to GA-SUS but within

acceptable bounds.

The overall performance change chart
(bottom-right) confirms that minority-class
gains outweighed the marginal decline in
global accuracy.

These findings highlight the effectiveness of DTAE
in addressing one of the major shortcomings of IDS
systems — the reliable detection of rare but high-
impact intrusions.

e Recall improvements (bottom-middle)
were modest but consistent, particularly for
U2R (+0.083).

e Feature dimensionality was reduced further

from 11 (GA-SUS) to 9 (DTAE) (top-
right).

4.5. Comparative Analysis

The comparative evaluation of AMAT-IDS
highlights the trade-offs between baseline accuracy,
feature efficiency, and minority class detection. The
baseline Random Forest classifier, trained with all
41 features, achieved a very high test accuracy of
0.9948, but its performance was biased towards
majority attack categories, with limited sensitivity to
rare intrusions such as U2R and R2L. After applying
GA-SUS feature selection, the feature space was
reduced to 11 features, yielding a dimensionality
reduction of 73.2%.

AMAT-IDS Research Summary: Complete Pipeline Results

Feature Engineering Pipeline

0.9948 Accuracy Progression Through Pipeline

Number of Features
5 8

N
1)

157

10 9

y
DTAE
Enhancement

T
GA-SUS
Feature Selection

T
original
Dataset

Minority Class Detection: Before vs After

T
Final
Classifier

+ mmm Baseline
— AMAT-IDS

0.8 1

Performance Score
o
o

e
=

0.29

0.0~

Test Accuracy

1.00

=4
©
®

0.97 1

GA-SUS
(Selected Features)

DTAE
(Enhanced Features)

Baseline
(All Features)

Research Impact Summary

Research Contributions:

* Feature Reduction: 73.2%

* U2R Precision Gain: +-0.139

* R2L Precision Gain: +-0.005

* Processing Efficiency: Batch Processing

* Methodology: Multi-Objective GA + DTAE

Key Results:

* Final Accuracy: 0.9602

* Feature Efficiency: 11/41 features
* Minority Class Focus: Addressed
* Pipeline Validated: Checked

Figure 10: Comparative Analysis

This resulted in a moderate decrease in accuracy to
0.9649, but significantly improved efficiency and
interpretability by identifying the most influential

features. The subsequent integration of the Dynamic
Twin Autoencoder (DTAE) further compressed the
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feature set into 9 enhanced features, achieving a
final accuracy of 0.9602.

While the reduction in overall accuracy compared to
the baseline appears notable, the pipeline achieved
its primary goal of strengthening minority class
detection, which is crucial in intrusion detection.
Precision and recall improvements were observed
for both U2R and R2L categories, with U2R
precision increasing by +0.139 and R2L precision
improving by +0.005. These gains demonstrate the
ability of DTAE to enhance representation learning
for underrepresented attack categories, thereby
addressing thelimitations of purely optimization-
based feature selection. The comparative results, as
depicted in Figure 10, confirms that AMAT-IDS
offers a more balanced detection approach,
prioritizing rare but high-impact attacks without
excessively sacrificing accuracy. Overall, the
analysis establishes AMAT-IDS as a reliable and
efficient framework, validated by improvements in
feature reduction, minority class sensitivity, and
computational scalability.

4.6. Discussion

The results of AMAT-IDS highlight the trade-offs
between overall accuracy, efficiency, and minority-
class detection in IDS. While the baseline Random
Forest with all 41 features achieved the highest
accuracy (0.9948), it offered limited sensitivity to
rare U2R and R2L attacks. GA-SUS reduced
features by 73.2% (to 11), improving interpretability
and efficiency at a slight cost to accuracy (0.9649).
The DTAE stage further compressed features to 9,
yielding 0.9602 accuracy but significantly
improving U2R (+0.139) and R2L (+0.005)
precision.

These findings support prior studies that emphasized
feature selection and optimization for IDS
robustness. The use of autoencoders in our pipeline
aligns with earlier works like AE-IDS [3] and AMV-
AE [4], but our DTAE specifically addresses
minority-class imbalance through augmentation and
reconstruction error. Similar hybrid approaches have
been proposed [12], [18], yet AMAT-IDS
distinguishes itself by combining GA-SUS with
DTAE in a scalable, explainable framework.

Overall, the framework demonstrates that slight
reductions in accuracy can be justified when offset
by gains in efficiency and minority attack detection,

addressing one of the most critical gaps in current
IDS research [19].

5. Conclusion

This research presented AMAT-IDS, a multi-phase
IDS that incorporated Genetic Algorithm-based
Stochastic Universal Sampling (GA-SUS) of
features along with a Dynamic Twin Autoencoder
(DTAE) for minority-class boosting. The
researchers conducted tests using the NSL-KDD
dataset, comparing their approach against a Random
Forest baseline. The results indicated that while
baseline models were very accurate in detection
generally, they were subpar in detecting minority
attacks like U2R and R2L. In contrast, AMAT-IDS
significantly improved minority-class detection
while decreasing dimensionality of features by over
75% to improve efficiency and interpretability.

This research addresses several important issues in
IDS research. First, high feature dimensionality
leading to a combination of overfitting and
inaccuracy on classical models. Second, it
specifically deals with enhancing detection of rare
and minority variant classes of attacks that are
under-studied in most traditional IDS studies,
despite showing high severity . Third, through the
combination of multi-objective evolutionary and
autoencoder-based feature engineering, the system
provides  robustness and adaptability for
performance, as required by the growing obligations
for IDS to deal with dynamic network conditions .
Finally, the framework allows for the demonstration
of our discipline's attention toward explainability
and applicability, allowing a trade-off decision
among accuracy, computational complexity, and
security decisiveness .

In summary, AMAT-IDS demonstrates that
reasonable sacrifices in global accuracy are
acceptable for significant improvements in
efficiency and, importantly, in minority-class
sensitivity. AMAT-IDS is an explainable, adaptable,
and scalable IDS framework. Future research will
build upon this by examining AMAT-IDS against
more recent large-scale datasets (e.g., CICIDS2017,
CSE-CIC-IDS2018) and examining integration with
reinforcement learning for real-time adaptation to
any feature drift.

Data Availability Statement

The data used in this study is publicly available for
use here.
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