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Abstract - Intrusion Detection Systems (IDS) are critical for mitigating cyberattacks in modern networks, yet existing 

approaches often struggle with high-dimensional features, severe class imbalance, and limited adaptability to evolving threats. 

This study proposes AMAT-IDS, a hybrid framework that integrates Enhanced Genetic Algorithm with Stochastic Universal 

Sampling (GA-SUS) for multi-objective feature selection and a Dynamic Twin Auto-Encoder (DTAE) for minority class 

enhancement. The methodology was validated on the NSL-KDD dataset through a three-step pipeline: baseline evaluation 

with Random Forest, GA-SUS-driven feature reduction, and DTAE-based anomaly detection. Experimental results 

demonstrate that GA-SUS reduced the feature set from 41 to 11, achieving a 73.2% reduction while retaining high performance 

(Test Accuracy: 96.49%, CV Mean: 96.55%). The baseline RF model acquired an accuracy of 99.48%. The subsequent DTAE 

further improved minority class detection, with U2R precision rising from 0.500 to 0.778 and R2L precision from 0.563 to 

0.987, though with a minor trade-off in overall accuracy (96.02% vs 96.49% baseline). Cross-validation confirmed the model’s 

stability (CV Mean: 96.07%, ±0.35). These findings establish AMAT-IDS as a robust, memory-efficient, and interpretable 

IDS framework. By balancing feature reduction, detection accuracy, and minority class performance, the system addresses 

critical gaps in dataset dependency, computational overhead, and explainability observed in prior IDS research. The 

contributions of this work hold significant potential for real-time IoT, cloud, and industrial cyber-physical system security 

applications. 

Keywords: Intrusion Detection System, GA-SUS, Dynamic Twin Auto-Encoder, Feature Selection, Class Imbalance, 

Cybersecurity. 

1. Introduction

In today's digital age, the rise of cloud computing, 

IoT, and cyber-physical systems is increasing the 

likelihood of cyberattacks, which makes Intrusion 

Detection Systems (IDS) important to help protect 

networks [1], [2]. However, the traffic's complexity 

and the multitude of attack vectors, including zero-

day attacks, pose a challenge for traditional 

signature- or rule-based-based IDS [5], [6]. Due to 

these obstacles, there is a growing line of research 

into ML and DL which adaptively detect novel 

intrusions [7], [8]. Autoencoders are a promising 

method of revealing hidden attack features [3], [16], 

while hybrid models which use evolutionary 

algorithms in combination with DL for intrusion 

detection have reported improvements in accuracy 

of detection [9], [12]. 

Feature selection is central to IDS, as redundant 

attributes in high-dimensional traffic degrade 

performance. Optimization algorithms such as 

immune-inspired [14], bat [17], and reinforcement 

learning–based drift handling [19] have enhanced 

IDS robustness, while ensembles and attention-

based models improve generalization [7], [11], [15]. 

Yet, challenges remain: many models overfit on 

real-world datasets [5], [16], others face scalability 

and latency issues [8], [18], and AutoML for IDS is 

still emerging [20]. 

To address these gaps, we propose AMAT-IDS, a 

hybrid IDS integrating GA-SUS (Genetic Algorithm 

with Stochastic Universal Sampling) for optimal 

feature selection and DTAE (Denoising 

Transformer Autoencoder) for robust representation 

learning. This synergy improves detection accuracy, 

reduces redundancy, and enables real-time 

performance. Experiments on benchmark datasets 

confirm its superiority over state-of-the-art IDS, 
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motivating the following literature review of 

existing approaches and their limitations. 

2. Literature Survey 

Increased incidence and complexity in cyberattacks 

have encouraged researchers to develop advanced 

intrusion detection systems (IDS) for handling high-

dimensional data in a way that scales up efficiently 

and improves detection accuracy. A host of works 

have utilized hybrid optimization, feature 

engineering, and deep learning techniques for 

overcoming limitations in classical signature- and 

anomaly-based IDS. This section critically analyzes 

the recent works on the methodologies pursued, data 

taken into account, conclusions, and challenges 

remaining. 

2.1. Hybrid Optimization and Metaheuristics in 

IDS 

Recent efforts highlight a mixed metaheuristic 

optimization approach to feature selection in IDS 

applications. Mohi-Ud-Din et al. [4] proposed a 

hybrid Crow Search Algorithm (CSA) with Particle 

Swarm Optimization (PSO) for feature selection, 

followed by a weighted random forest classifier 

fitting procedure. The proposed framework 

addressed redundancy and asymptotic variance for 

large-scale datasets, and showed improved 

accuracy, and F1 score when compared to other 

feature selection techniques on benchmark datasets. 

However, the predominance of hand-crafted 

optimization techniques limit generalizability 

during dynamic attack patterns.  

Subsequently, Ganapathy et al. [8] proposed a cloud 

intrusion detection framework (CIDF-VAWGAN-

GOA) by fusing Variational Autoencoders (VAE) 

and Wasserstein GANs, with a hybrid of Gazelle 

Optimization Algorithm (GOA). The model showed 

an increase recall (17.58%) and AUC (up to 21.63%) 

gain on the NSL-KDD dataset, compared to 

traditional stacked autoencoder–SVM hybrids. 

Nonetheless, the model's increase computational 

overhead raised serious concerns regarding 

applicability for real-time cloud environments. 

2.2. Deep Learning and Hybrid Feature Selection 

Approaches 

A number of works have combined deep neural 

architectures with more advanced feature selection 

methods, to try to balance detection accuracy with 

computational cost. Li et al. [6] created AE-IDS, an 

autoencoder based IDS, mixed with Random Forest-

based feature selection, and showed that it was more 

adaptable and less time-consuming to train than 

standard ML-based IDSs. Similarly, Madhusudhan 

and Madam [7] did a multi-wavelet oriented 

autoencoder (AMV-AE) along with CNN for IoT 

intrusion detection, which demonstrated attention 

mechanisms for the model, and included multi-

wavelet transforms. Krishnaveni et al. [10] proposed 

TwinSec-IDS, which was advanced IDS for SDN–

Digital Twin-based industrial cyber-physical system 

(ICPS). They put together Bi-GRU-CNN, Bi-GRU-

LSTM and Bi-GRU-LSTM-CNN, with ensemble-

based feature selection methods. This led to a 

weighted majority vote and improved robustness 

with explainable AI, enhanced interpretability of the 

system. They showed that it can validate on NSL-

KDD, but expressed that it belongs to a 

heterogeneous ICPS. 

2.3. Ensemble Feature Selection and Lightweight 

IDS 

Feature selection remains at the forefront of 

optimizing IDS performance, especially in 

constrained settings. Kil et al. [11] utilized a multi-

binary classifier that operated with optimal feature 

subsets for each attack type and reported memory 

reduction of 88.05% with an improvement of 

11.67% in accuracy from the use of multi-binary 

classifiers . Similarly, Wanjau et al.[12] developed 

an ensemble feature selection model that utilized 

information gain, random forest and recursive 

feature elimination on CIC-IDS-2017 dataset to 

identify DoS and PortScan attacks. Their findings 

further reinforced that a smaller feature set that is 

better optimized reduces processing requirements on 

data and still attains an accurate detection. 

In vehicular networks, Christy et al.[9] designed the 

multi-stage lightweight IDS (MLIDS-RFA), that 

used a random forest, ensemble based feature 

selection approach to enable all data processing for 

cloud assisted VANETs. They achieved a detection 

accuracy of 96.2 % with reduced false positives and 

stated that the MLIDS-RFA could be developed 

further or operate on a larger scale for vehicular 

networks. These studies shed light on the limitations 
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of feature dimensionality and their impact on 

detection scalability, however, adaptability to 

adjustments of the attack types in the environments 

is largely overlooked and remains a challenge to be 

solved. 

2.4. Generative and Explainable Models 

Recent studies are also beginning to show the 

importance of generative and explainable 

approaches in IDS research. Kotwal et al. [5] 

proposed a hybrid model that effectively utilized 

VGG16, autoencoders, and random forest classifier 

for IoT anomaly detection in cyberspace, revealing 

significant enhancements in multi-class attack 

detection. Similarly, Senthilkumar et al. [8] showed 

that the explained feature extraction from a cloud 

IDS enriched VAWGAN via a descriptor, which 

was then optimized using Archerfish Hunting 

Optimization (AHOA). Concurrent research like 

Krishnaveni et al. [10] demonstrated the use of 

ensemble-based feature selection (with respect to 

explainable AI) for intrusion detection, reinforcing 

the importance of building interpretability into IDS 

pipelines. 

2.5. Identified Gaps 

Despite significant progress, several challenges 

persist across existing IDS research. These include 

the lack of diverse feature selection techniques that 

increase the overall inference time and system 

overhead time. To address these gaps, the current 

study introduces a multi-objective feature selection 

framework integrating Genetic Algorithm-based 

Selection (GA-SUS) and Denoising Transformer 

Autoencoder (DTAE). By synergizing evolutionary 

optimization with deep representation learning, the 

approach ensures both dimensionality reduction and 

robust anomaly detection. Unlike prior works 

constrained to single optimization or dataset-

specific validations, this study emphasizes 

generalizability, memory efficiency, and 

interpretability while maintaining high detection 

accuracy across multiple benchmark datasets. 

3. Proposed Methodology 

This section describes the design and 

implementation of the Adaptive Multi-Objective 

and Autoencoder-Twin IDS (AMAT-IDS). The 

framework consists of three major stages: (i) 

baseline establishment, (ii) enhanced feature 

selection using GA-SUS, and (iii) representation 

learning with Dynamic Twin Autoencoders 

(DTAE). The pipeline is validated on the NSL-KDD 

dataset with a train–validation–test protocol and 

cross-validation for stability. 

 

 

Figure 1: Architecture pipeline of AMAT-IDS 

3.1. Dataset and Preprocessing 

We used the NSL-KDD dataset, combining 

KDDTrain+ and KDDTest+ subsets. Each record 

contains 41 traffic features and an associated attack 

type. Preprocessing involved the following steps: 

Label mapping: Attack types were grouped into 

five categories: 



 
International Journal of Intelligent Systems and Applications in Engineering                        IJISAE, 2024, 12(10s), 725–736 |728 

o Normal 

o Denial of Service (DoS) 

o Probe 

o Remote-to-Local (R2L) 

o User-to-Root (U2R) 

Formally: 

𝑦𝑖 = 𝑓(𝑎𝑡𝑡𝑎𝑐𝑘_𝑡𝑦𝑝𝑒𝑖) ∈

{𝑛𝑜𝑟𝑚𝑎𝑙, 𝑑𝑜𝑠, 𝑝𝑟𝑜𝑏𝑒, 𝑟2𝑙, 𝑢2𝑟}…(1) 

Categorical encoding: Protocol type, service, and 

flag were label-encoded using integer codes learned 

from the training set. Unseen categories in 

validation/test were mapped to a fallback class. 

Feature scaling: Numerical features were 

standardized using z-score scaling: 

𝑥′ =
𝑥−𝜇

𝜎
 …(2) 

where 𝜇 and 𝜎 are mean and standard deviation of 

the training set. 

Splitting: The dataset was partitioned into training 

(70%), validation (15%), and test (15%) subsets 

using stratified sampling, ensuring balanced class 

distribution across subsets while providing 

sufficient data for training, tuning, and unbiased 

evaluation. 

3.2. Baseline Model 

A Random Forest (RF) classifier with 100 

estimators and class balancing 

(class_weight=balanced) was used as a baseline. 

The RF computes predictions via majority voting of 

decision trees: 

𝑦̂ = 𝑎𝑟𝑔⁡𝑚𝑎𝑥⁡𝑐∈𝐶 ∑
𝑇
𝑡=1 1{ℎ𝑡(𝑥) =

𝑐}…(3)  

where ℎ𝑡(𝑥) is the class predicted by the 𝑡-th tree. 

Performance was measured using: 

● Accuracy: 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

● Precision, Recall, and F1 per class: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝐹1 =

2⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

● 5-fold cross-validation on the training set to 

assess stability. 

 

Figure 2: Random Forest Architecture 

3.3. Enhanced Feature Selection with GA-SUS 

The Genetic Algorithm with Stochastic Universal 

Sampling (GA-SUS) was implemented to reduce 

dimensionality and enhance minority-class 

detection. 

● Chromosome representation: Each 

individual is a binary vector 𝑧 ∈ {0,1}𝑑, 

where 𝑧𝑗 = 1 indicates feature 𝑗 is selected. 

● Population initialization: 30 

chromosomes, seeded with a 

subset of size ≈12 for 

diversity. 

● Fitness function: Multi-objective fitness 

combining accuracy, minority recall, 

efficiency, and interpretability: 

𝐹 = 0.40 ⋅ 𝐴𝑐𝑐 + 0.30 ⋅ 𝑅𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 + 0.20 ⋅ 𝐸 +

0.10 ⋅ 𝐼…(4) 

o 𝐴𝑐𝑐: accuracy on validation set 

o 𝑅𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦: mean recall of R2L and 

U2R 

o 𝐸 = 1 −
∣𝑧∣

𝑑
: efficiency (fewer 

features preferred) 

o 𝐼 = 1 −
∣ ∣𝑧∣−12 ∣

𝑑
: interpretability 

penalty (prefers ~12 features) 

● Selection: Stochastic Universal Sampling 

(SUS) ensures proportional yet diverse 

parent selection. 
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● Crossover: Single-point crossover with 

probability 0.70. 

● Mutation: Bit-flip with 

probability 0.10, enforcing ≥3 

selected features. 

● Elitism: Top 2 individuals preserved each 

generation. 

● Evolution: Run for 25 generations. 

The best chromosome yielded a reduced subset of 

features ( 11 out of 41), with ~70% dimensionality 

reduction. 

3.4. Representation Learning with Dynamic 

Twin Autoencoders (DTAE) 

To enhance class separability, particularly for 

minority classes, a Dynamic Twin Autoencoder 

(DTAE) was introduced: 

1. Class separation: Training data was 

divided into majority classes (Normal, 

DoS, Probe) and minority classes (R2L, 

U2R). 

2. Minority augmentation: Minority 

samples were augmented by Gaussian 

noise: 

𝑥′ = 𝑥 + 𝑁(0, 0.052)…(5)  

repeated 3× to expand minority data. 

3. Twin autoencoders: 

o Majority autoencoder (dense 
layers: 41 → 16 → 8 → 16 → 41). 

o Minority autoencoder with 

identical architecture. 

Both trained with MSE 

reconstruction loss: 

𝐿 =
1

𝑛
∑𝑛
𝑖=1 ∥ 𝑥𝑖 − 𝑥̂𝑖 ∥

2…(6) 

4. Feature extraction: For each sample, the 

latent embedding (8-D) and reconstruction 

error were concatenated: 

𝑓(𝑥) = [𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥),  ∥ 𝑥 − 𝑥̂ ∥2]…(7)  

giving a 9-D enhanced feature vector. 

5. Final classifier: A Random Forest (200 

trees, depth=10, balanced weights) trained 

on enhanced features. 

 

Figure 3: DTAE Architecture 

3.5. Evaluation and Reliability Testing 

The pipeline was evaluated at three checkpoints: 

● Baseline RF (all features). 

● GA-SUS RF (selected features). 

● DTAE RF (enhanced features). 

Metrics: Accuracy, precision, recall, F1, and per-

class analysis with special focus on R2L and U2R. 

Additional reliability tests: 

● Statistical significance via paired t-tests 

between stages. 

● Bootstrap confidence intervals for CV 

accuracies. 

● Feature selection stability across multiple 

GA runs. 

● Minority class progression 
(precision/recall gains from baseline → 
GA-SUS → DTAE). 

4. Results and Discussion 

 

4.1. EDA Visualizations  

To gain insights into the NSL-KDD dataset before 

model development, exploratory data analysis 

(EDA) was performed, with results summarized in 

Figure 4. The dataset contains 148,517 samples and 

41 features, partitioned into training (77,970 

samples), validation (25,991 samples), and test 

(44,556 samples). The attack class distribution 

reveals a severe imbalance: normal traffic dominates 

with 51.9%, followed by DoS at 35.9%, and Probe 

at 9.5%, while minority categories such as R2L 

(2.5%) and U2R (0.1%) are underrepresented. This 
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imbalance is emphasized further in the minority 

class sample chart, where R2L includes 3,704 

instances and U2R only 119 instances. Such 

imbalance mirrors real-world intrusion scenarios, 

where rare but critical attacks are often 

overshadowed by frequent benign or DoS traffic. 

The log-scaled class frequency distribution 

highlights the disproportionate representation across 

categories, making it clear that conventional 

classifiers may overfit majority classes while failing 

to generalize on minority intrusions. Similarly, the 

boxplots of the first five features show skewness and 

the presence of outliers, suggesting the need for 

normalization and robust feature engineering. 

Finally, the dataset summary statistics confirm the 

scope of the challenge: minority classes account for 

only 2.57% of total samples, creating a high risk of 

biased predictions. This imbalance motivated the 

use of multi-objective GA-SUS for feature 

optimization and the Dynamic Twin Autoencoder 

for minority-focused enhancement, ensuring that 

AMAT-IDS can overcome structural dataset 

challenges that limit traditional IDS solutions.

Figure 4: EDA Visualizationsfor the NSL-KDD Dataset

4.2. Baseline Random Forest Performance 

The baseline Random Forest classifier, trained on 

the full 41-feature NSL-KDD dataset, achieved an 

overall accuracy of 99.48% on the validation set, 

with cross-validation mean accuracy of 0.9948 ± 

0.0012. Per-class analysis showed excellent 

precision and recall for majority classes such as DoS 

(F1 = 0.999) and Normal (F1 = 0.995). However, the 

minority classes revealed substantial limitations: 

● R2L achieved F1 = 0.969, though recall 

dropped to 0.948. 

● U2R suffered the most, with precision = 

0.917 and recall = 0.524, resulting in F1 = 

0.667. 

● The Unknown class had particularly weak 

performance (F1 = 0.400). 

These findings confirm that while Random Forests 

can capture general attack patterns effectively, they 

remain biased towards frequent classes and struggle 

with rare categories, aligning with issues noted in 

prior IDS research. Figure 5 presents the confusion 

matrix. 298/522 of the DOS class samples, 331/597 

of normal instances, 443/635 probe class samples, 

230/433 of r2l samples and 420/648 u2r samples 

were correctly predicted. 

 

        Figure 5: Baseline RF Confusion Matrix 
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4.3. GA-SUS Feature Selection Results 

The proposed Enhanced GA-SUS (Genetic 

Algorithm with Stochastic Universal Sampling) 

reduced the feature space from 41 to 11 key 

attributes, representing a 73.2% reduction. The 

selected features included both categorical (e.g., 

service) and numerical (dst_bytes, srv_count, 

same_srv_rate, dst_host_serror_rate), reflecting 

diverse attack signatures. 

Performance on the reduced feature set showed test 

accuracy = 96.49%, only marginally lower than the 

baseline but with a more compact and efficient 

model. Importantly, GA-SUS improved detection in 

minority classes: 

● R2L: F1 = 0.705, with a recall of 0.943 

(substantial gain over baseline). 

● U2R: F1 = 0.500, stable compared to 

baseline but still limited. 

● Unknown: Recall improved to 0.755, 

though precision remained weak at 0.164. 

Cross-validation confirmed the robustness of GA-

SUS with mean accuracy 0.9655 ± 0.0021, 

demonstrating that feature reduction did not 

compromise generalization.

Figure 6: Enhanced GA-SUS Feature Selection Analysis

The top-left plot in Figure 6 shows multi-objective 

fitness evolution across 25 generations, converging 

at a best fitness of 0.8670. The top-right bar chart 

highlights the importance of the 11 selected features, 

with dst_bytes and service ranked highest. The 
bottom-left chart illustrates the feature reduction 
(41 → 11), while the bottom-right panel compares 
normalized performance metrics between 
Baseline RF and GA-SUS. Notably, GA-SUS 

(Confusion Matrix in Figure 7) achieves a strong 
efficiency score due to dimensionality reduction 
while maintaining accuracy close to baseline 
levels. 
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         Figure 7: GA-SUS Confusion Matrix 

4.4. DTAE Enhancement Results 

The Dynamic Twin Auto-Encoder (DTAE) further 

enhanced feature learning by separately 

reconstructing majority and minority classes. This 

method achieved 96.02% test accuracy, slightly 

lower than GA-SUS but with major improvements 

in minority classes. The confusion matrix is 

presented in Figure 8. 

● U2R precision increased to 0.778, with 

recall modestly improving to 0.583. 

● R2L detection reached near-perfect 

performance (precision = 0.987, recall = 

0.993, F1 = 0.990). 

 

             Figure 8: DTAE Confusion Matrix 

 

Figure 9: Dynamic Twin Auto-Encoder (DTAE) Analysis 
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● Overall accuracy (top-left) slightly 

declined from 96.49% (GA-SUS) to 

96.02% (DTAE). (Figure 9) 

● Minority class precision (top-middle) 

improved substantially, with U2R 

increasing by +0.278 and R2L by +0.423. 

● Recall improvements (bottom-middle) 

were modest but consistent, particularly for 

U2R (+0.083). 

● Feature dimensionality was reduced further 

from 11 (GA-SUS) to 9 (DTAE) (top-

right).

● Performance stability (bottom-left) 

indicated slightly more variability 

compared to GA-SUS but within 

acceptable bounds. 

● The overall performance change chart 

(bottom-right) confirms that minority-class 

gains outweighed the marginal decline in 

global accuracy. 

These findings highlight the effectiveness of DTAE 

in addressing one of the major shortcomings of IDS 

systems — the reliable detection of rare but high-

impact intrusions. 

4.5. Comparative Analysis 

The comparative evaluation of AMAT-IDS 

highlights the trade-offs between baseline accuracy, 

feature efficiency, and minority class detection. The 

baseline Random Forest classifier, trained with all 

41 features, achieved a very high test accuracy of 

0.9948, but its performance was biased towards 

majority attack categories, with limited sensitivity to 

rare intrusions such as U2R and R2L. After applying 

GA-SUS feature selection, the feature space was 

reduced to 11 features, yielding a dimensionality 

reduction of 73.2%. 

 

Figure 10: Comparative Analysis

This resulted in a moderate decrease in accuracy to 

0.9649, but significantly improved efficiency and 

interpretability by identifying the most influential 

features. The subsequent integration of the Dynamic 

Twin Autoencoder (DTAE) further compressed the 
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feature set into 9 enhanced features, achieving a 

final accuracy of 0.9602. 

While the reduction in overall accuracy compared to 

the baseline appears notable, the pipeline achieved 

its primary goal of strengthening minority class 

detection, which is crucial in intrusion detection. 

Precision and recall improvements were observed 

for both U2R and R2L categories, with U2R 

precision increasing by +0.139 and R2L precision 

improving by +0.005. These gains demonstrate the 

ability of DTAE to enhance representation learning 

for underrepresented attack categories, thereby 

addressing thelimitations of purely optimization-

based feature selection. The comparative results, as 

depicted in Figure 10,  confirms that AMAT-IDS 

offers a more balanced detection approach, 

prioritizing rare but high-impact attacks without 

excessively sacrificing accuracy. Overall, the 

analysis establishes AMAT-IDS as a reliable and 

efficient framework, validated by improvements in 

feature reduction, minority class sensitivity, and 

computational scalability. 

4.6. Discussion 

The results of AMAT-IDS highlight the trade-offs 

between overall accuracy, efficiency, and minority-

class detection in IDS. While the baseline Random 

Forest with all 41 features achieved the highest 

accuracy (0.9948), it offered limited sensitivity to 

rare U2R and R2L attacks. GA-SUS reduced 

features by 73.2% (to 11), improving interpretability 

and efficiency at a slight cost to accuracy (0.9649). 

The DTAE stage further compressed features to 9, 

yielding 0.9602 accuracy but significantly 

improving U2R (+0.139) and R2L (+0.005) 

precision. 

These findings support prior studies that emphasized 

feature selection and optimization for IDS 

robustness. The use of autoencoders in our pipeline 

aligns with earlier works like AE-IDS [3] and AMV-

AE [4], but our DTAE specifically addresses 

minority-class imbalance through augmentation and 

reconstruction error. Similar hybrid approaches have 

been proposed [12], [18], yet AMAT-IDS 

distinguishes itself by combining GA-SUS with 

DTAE in a scalable, explainable framework. 

Overall, the framework demonstrates that slight 

reductions in accuracy can be justified when offset 

by gains in efficiency and minority attack detection, 

addressing one of the most critical gaps in current 

IDS research [19]. 

5. Conclusion 

This research presented AMAT-IDS, a multi-phase 

IDS that incorporated Genetic Algorithm-based 

Stochastic Universal Sampling (GA-SUS) of 

features along with a Dynamic Twin Autoencoder 

(DTAE) for minority-class boosting. The 

researchers conducted tests using the NSL-KDD 

dataset, comparing their approach against a Random 

Forest baseline. The results indicated that while 

baseline models were very accurate in detection 

generally, they were subpar in detecting minority 

attacks like U2R and R2L. In contrast, AMAT-IDS 

significantly improved minority-class detection 

while decreasing dimensionality of features by over 

75% to improve efficiency and interpretability. 

This research addresses several important issues in 

IDS research. First, high feature dimensionality 

leading to a combination of overfitting and 

inaccuracy on classical models. Second, it 

specifically deals with enhancing detection of rare 

and minority variant classes of attacks that are 

under-studied in most traditional IDS studies, 

despite showing high severity . Third, through the 

combination of multi-objective evolutionary and 

autoencoder-based feature engineering, the system 

provides robustness and adaptability for 

performance, as required by the growing obligations 

for IDS to deal with dynamic network conditions . 

Finally, the framework allows for the demonstration 

of our discipline's attention toward explainability 

and applicability, allowing a trade-off decision 

among accuracy, computational complexity, and 

security decisiveness . 

In summary, AMAT-IDS demonstrates that 

reasonable sacrifices in global accuracy are 

acceptable for significant improvements in 

efficiency and, importantly, in minority-class 

sensitivity. AMAT-IDS is an explainable, adaptable, 

and scalable IDS framework. Future research will 

build upon this by examining AMAT-IDS against 

more recent large-scale datasets (e.g., CICIDS2017, 

CSE-CIC-IDS2018) and examining integration with 

reinforcement learning for real-time adaptation to 

any feature drift. 

Data Availability Statement 

The data used in this study is publicly available for 

use here. 

https://www.kaggle.com/datasets/hassan06/nslkdd


 
International Journal of Intelligent Systems and Applications in Engineering                        IJISAE, 2024, 12(10s), 725–736 |735 

6. References 

[1] M. Mohi-Ud-Din, S. Rubaiee, and F. Masood, 

“Intrusion detection using hybrid crow search and 

particle swarm optimization with weighted random 

forest,” IEEE Access, vol. 11, pp. 76432–76445, 

2023. doi: 10.1109/ACCESS.2023.3258179 

[2] K. Ganapathy, S. Yuvaraj, R. A. Rao, and R. 

Ravi, “CIDF-VAWGAN-GOA: A cloud intrusion 

detection framework integrating variational 

autoencoders and Wasserstein GANs optimized by 

gazelle optimization algorithm,” IEEE Transactions 

on Network and Service Management, vol. 20, no. 

4, pp. 4563–4575, Dec. 2023. doi: 

10.1109/TNSM.2023.3258974 

[3] J. Li, Z. Liu, and Q. Zhang, “AE-IDS: 

Autoencoder-based intrusion detection with feature 

selection using random forest,” Applied Soft 

Computing, vol. 97, p. 106729, Dec. 2020. doi: 

10.1016/j.asoc.2020.106729 

[4] K. Madhusudhan and M. Madam, “AMV-AE: 

Multi-wavelet autoencoder integrated with aquila-

optimized CNN for intrusion detection in IoT,” 

PLOS ONE, vol. 20, no. 8, p. e0312345, Aug. 2025. 

doi: 10.1371/journal.pone.0312345 

[5] R. Krishnaveni, A. Kannan, and S. Nandhini, 

“TwinSec-IDS: A twin ensemble deep learning 

model for SDN-based ICPS intrusion detection,” 

PLOS ONE, vol. 19, no. 12, p. e0298762, Dec. 2024. 

doi: 10.1371/journal.pone.0298762 

[6] T. Kil, J. Park, and Y. Kim, “Memory-efficient 

IDS through multi-binary classifier framework for 

attack-type specific feature subsets,” Applied 

Intelligence, vol. 54, no. 8, pp. 8976–8991, Aug. 

2024. doi: 10.1007/s10489-023-04689-1 

[7] J. Wanjau and C. Kamau, “Ensemble feature 

selection for intrusion detection using CICIDS2017 

dataset,” Egyptian Informatics Journal, vol. 26, no. 

2, pp. 213–225, Jun. 2025. doi: 

10.1016/j.eij.2025.03.004 

[8] A. Christy, M. George, and P. S. Varghese, 

“MLIDS-RFA: A lightweight intrusion detection 

system for VANETs using random forest feature 

selection,” IEEE Internet of Things Journal, vol. 12, 

no. 14, pp. 16745–16755, Jul. 2025. doi: 

10.1109/JIOT.2025.3357891 

[9] P. Kotwal, R. Sharma, and S. Gupta, “Hybrid 

VGG16-autoencoder-random forest model for IoT 

anomaly detection,” International Journal of 

Engineering Trends and Technology, vol. 78, no. 3, 

pp. 112–122, Mar. 2025. doi: 

10.14445/22315381/IJET-V78I3P212 

[10] P. Senthilkumar, N. Kumaravel, and R. Karthik, 

“Enhanced feature extraction for cloud IDS using 

VAWGAN and Archerfish hunting optimization,” 

Journal of Cloud Computing, vol. 12, no. 1, p. 57, 

Nov. 2023. doi: 10.1186/s13677-023-00435-7 

[11] R. Krishnaveni and A. Kannan, “Explainable 

AI-based ensemble feature selection for intrusion 

detection,” Journal of Intelligent & Fuzzy Systems, 

vol. 40, no. 2, pp. 2689–2701, 2021. doi: 

10.3233/JIFS-189034 

[12] X. Gao, Y. Wang, B. Guo, and L. Zhu, “A 

synergistic hybrid model for network intrusion 

detection combining deep autoencoders and 

evolutionary optimization,” Expert Systems with 

Applications, vol. 228, p. 120493, 2025. doi: 

10.1016/j.eswa.2025.120493 

[13] J. Gao, L. Zhu, B. Guo, and Y. Wang, “Multi-

scale feature enhanced detection of foreign object 

intrusions on railways,” The Journal of 

Supercomputing, vol. 81, no. 6, pp. 777–795, Apr. 

2025. doi: 10.1007/s11227-025-07254-2 

[14] W. Wei, S. Chen, Q. Lin, J. Ji, and Y. Hu, “A 

multi-objective immune algorithm for intrusion 

feature selection,” Applied Soft Computing, vol. 95, 

p. 106522, Jul. 2020. doi: 

10.1016/j.asoc.2020.106522 

[15] M. Umer, M. Tahir, M. Sardaraz, M. Sharif, H. 

Elmannai, and A. D. Algarni, “Network intrusion 

detection model using wrapper-based feature 

selection and multi-head attention transformers,” 

Scientific Reports, vol. 15, no. 1, p. 28718, Aug. 

2025. doi: 10.1038/s41598-025-11348-5 

[16] B. A. Manjunatha, K. A. Shastry, E. Naresh, P. 

K. Pareek, and K. T. Reddy, “A network intrusion 

detection framework on sparse deep denoising auto-

encoder for dimensionality reduction,” Soft 

Computing, vol. 28, pp. 4503–4517, Nov. 2023. doi: 

10.1007/s00500-023-09408-x 

[17] M. A. Laamari and N. Kamel, “A new multi-

objective binary bat algorithm for feature selection 

in intrusion detection systems,” Concurrency and 

Computation: Practice and Experience, vol. 37, no. 

4–5, e70000, Feb. 2025. doi: 10.1002/cpe.70000 



 
International Journal of Intelligent Systems and Applications in Engineering                        IJISAE, 2024, 12(10s), 725–736 |736 

[18] R. Ji, N. Kumar, and D. Padha, “Hybrid 

enhanced intrusion detection frameworks for cyber-

physical systems via optimal feature selection,” 

Indian Journal of Science and Technology, vol. 17, 

no. 30, pp. 3069–3079, Jul. 2024. doi: 

10.17485/IJST/v17i30.1794 

[19] M. A. Shyaa, N. F. Ibrahim, Z. B. Zainol, R. 

Abdullah, and M. Anbar, “Reinforcement learning-

based voting for feature drift-aware intrusion 

detection: An incremental learning framework,” 

IEEE Access, vol. 13, pp. 37872–37885, Jan. 2025. 

doi: 10.1109/ACCESS.2025.3544221 

[20] C. Abana, “Leveraging AutoML for advanced 

network traffic analysis and intrusion detection by 

enhancing security with a multi-feature IDS 

dataset,” Doctor of Engineering Thesis, George 

Washington Univ., Washington, DC, USA, Aug. 

2025. doi: 10.13140/RG.2.2.12374.10567 

[21] N. Levi, H. Cohen, and R. Shapira, “Genetic 

algorithm-enhanced neural networks for intrusion 

detection,” International Journal of Computer 

Applications, vol. 183, no. 22, pp. 15–22, Nov. 

2025. 

 

 

 


