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Abstract: An executable Data Contract (EDC) is an emerging paradigm of data architecture in assuring data quality, 

compliance and interoperability of contemporary data ecologies. In contrast to more traditional, static contracts that 

exist only as documents defining schema and validation rules, EDCs contain that logic as part of a runnable, executable 

program that can fit directly into data pipelines and systems of record. This paper measures the operational, compliance 

and performance costs of deploying EDCs on a heterogeneous data landscape integrating cloud-native warehouses, 

API-centric integration and regulated use-cases, like finance and healthcare. We determined how efficiencies in 

validation, reduction of error, compliance with regulation, and cost minimization are looked at using a mixed-methods 

approach that comprises of both empirical measurement and simulation-based stress tests as well as interviews with 

stakeholders.  

The results will bring findings that adoption of EDC will reduce data-related defects 62 to 74 percent, pipeline set up 

approval time 35 to 42 percent, and compliance scores to 15 percent. Nevertheless, its implementation does not occur 

without some of the obstacles, such as the complexity of primary development, investment required in integrating them 

with the legacy systems, and the alignment of governances across business units. The study then comes to a conclusion 

that EDCs have most potency when used together with automated CI/CD validation pipelines, schema version control 

and compliance aware orchestration layers.  

The maturity scheme provided is a phased plan of using EDCs that companies can follow in order to balance 

performance enhancement against manageability and governance. These findings can serve as an empirical basis on 

which an adequate effort to roll out the data governance policies to a real time environment can be based with minimal 

friction between the engineering and compliance groups. 
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I. INTRODUCTION 

The Radical developments in the popularity of distributed 

platforms of data, streaming ad network, and API-

integrated solutions have become the new hallmark in 

collaboration with data management, data sharing, and 

data validation by organizations. Although such an 

evolution enables enterprises to achieve scale and agility 

hitherto unseen, it, however, also opens them up to certain 

risks, including (but not limited to) schema drift and 

incompatibility of data formats and non-compliance with 

regulatory frameworks like GDPR, HIPAA, and the EU 

Data Act.  

Static contracts on schema, type and business rules, which 

have traditionally been used as data contracts, have been 

shown to be an insufficient approach to such challenges at 

scale given that they depend on manual enforcement, 

delayed validation and human supervision. 

The most encouraging group of solutions to close this gap 

is in the form of Executable Data Contracts (EDCs) which 

embeds the contract terms within executable code that can 

be automatically enforced through data ingestion, 

transformation and consumption processes. In contrast to 

their static counterparts, EDCs allow integrating with 

continuous integration / continuity strike (CI / CD) 

pipelines, running in real time as part of data pipelines, 

and can respond with prompt feedback or blocking 

shutdowns to any violations. This will enable the 

organizations to not only confirm quality of the data and 

format adherence but also implement the domain specific 

business rules and privacy needs. 

Other than the potential there is a difficulty that comes 

with the use of EDCs. These are the difficulty 

surrounding embedding executable validation logic into 

legacy systems, cross-functional work between the data 

engineer and compliance officer and the overhead needed 

to maintain and evolve contracts when the business rules 

evolve. 

In the current paper, the author will attempt to assess 

(empirically) operational, compliance, and cost 

measurements of EDC implementation. The inclusion of 

quantitative experiments (e.g., the latency of validation 

and the percentage of errors reduced) and the qualitative 

attitude of the stakeholders should present a neutral 

picture of pros and cons. Also, we suggest the EDC 
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adoption maturity model defining the stages of 

experimental pilot to the enterprise level.  

The study also tries to understand the bigger picture about 

the position of EDCs with regard to data governance, 

observability, and self-healing pipelines. The end 

objective is to arm decision-makers, architects and 

compliance executives with the actionable intelligence to 

use EDCs to build trusted, interoperable and regulation-

compliant data ecosystems. 

Methodology 

The research design of the study was mixed-methods 

research where the performance was quantitatively 

measured and stakeholder information was gathered 

through qualitative means to assess the effects of 

Executable Data Contracts (EDCs) on data quality, 

compliance and efficiency in the operations. The study 

took place within six months’ time together with three 

enterprise case study partners (finance, healthcare and e-

commerce) companies having a heterogeneous data 

environment with leveled regulative exposure. 

To pay attention to controlled experiments in production-

like environments, the quantitative phase was used. The 

implementation of EDCs on selected pipelines, the equal 

application of a standard contract protocol with CI/CD 

inserted in it. The measures that were used were such as 

defect detection rate, validation latency and compliance 

adherence scores. Baseline of operation of existing 

pipelines without EDC enforcement during one month 

and subsequent addition of EDCs over the period of three 

months was thus developed. A monitoring system on 

automatically accessed performance data made it possible 

to have a statistical comparison of the pre or post-

implementation performance results. 

The aim of the qualitative phase was to embrace the 

human and organizational factors used in embracing 

EDC. The interviews took place with 24 stakeholders, 

such as data engineers, compliance officers, product 

managers, business analysts, and were comprised of semi-

structured interviews. These trials looked at the 

perceptions of EDC usability, integration complexity, 

alignment in the governance, and perception ROI. 

Thematic analysis was carried out to determine the 

repetitive/ common challenges/practice in adoption. 

In order to ascertain the possibility of replicability, the 

experimental set ups such as contract schema, validation 

rules, and the integration scripts were well-documented 

and anonymized datasets stored as references. It was also 

able to include simulated data through stress-testing to 

demonstrate how the EDCs could withstand large-scale 

high-throughput testing capacity. 

The combination of empirical measurements and the 

narratives of the stakeholders allowed this methodology 

to have an overall picture of the technical performance 

aspect of the ability to adopt successful EDC as well as 

the organizational readiness aspect of the same. The two-

lens strategy made sure that the results are based not only 

on measures of efficiency but also the reality of how an 

enterprise-scale deployment works. 

II. RELATED WORKS 

Data Contracts  

The data contracts have turned out to be an organized 

method that contributes a contract between data producers 

and consumers about schema, semantics, and quality 

parameters [1]. Manual authoring of these contracts, 

traditionally done in complex pipelines of AI, is prone to 

error, either when data sources rapidly expand or change, 

or when downstream models require several feeds to one 

another. Contract generation is increasingly done on large 

language models(LLMs), where schema or sample data 

are converted into formal definitions such as JSON 

schema and Avro.  

Within those contexts, parameter-effective fine-tuning 

(e.g., LoRA, PEFT) re-tunes LLMs on structured data 

domains and gives proven, push-button contract artifacts 

that absorb into contemporary information frameworks 

like Databricks or Snowflake [1]. The current 

computerized contract writing is a process that solves an 

old challenge of decreasing the human work and 

increasing accuracy when formulating rules. On synthetic 

and real-world datasets, experiments have demonstrated 

more than 70 percent improvement in the amount of 

manual work with correctness in generated contracts 

being high [1].  

But automation brings its first challenges in form of 

model hallucinations, service or contract drift, and version 

knot, indicating the usefulness of governance frameworks 

that mediate between intent and runtime behaviour that 

can be regulated. These drawbacks tend to be of even 

higher concern in AI pipelines especially when certain 

issues hidden in the data may subtly proliferate and 

compromise the model performance [2]. 

Data Quality Risks 

Trust in AI pipelines ultimately relies on the input quality 

on which they consume, process and feed models. The 

latent data issues or the data smells would be imprecise 

values, schema mismatches, or add-ons that would raise 

the chances of the AI system to fail [2]. 

These faults are generally parallel to the term of code 

smells in the field of software engineering, but in practice 

one may have trouble in detecting the faults with more 

confidence than that of the underlying machine learning 

preprocessing pipelines. A long list of 36 data smells 

organized into three categories in terms of believability, 

understandability, and consistency has been suggested [2], 

which provides a systematic foundation of automated 

quality promotion which could be formalized into 

executable data contracts. 

Besides internal data issues, AI pipelines can also be 

underspecified; that is, the various predictors train 

similarly well but their expected performance in the real 

world can and will differ [3]. This problem is not the 

same as domain shift; this emerges since pipelines might 

construct several viable models which vary in implicit 

manners without being perceived by training.  
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As an example, it is possible that in clinical risk 

prediction or computer vision, underspecified models can 

pass all validation tests but show unpredictable 

performance drop once deployed in the wild [3]. 

Executable data contracts, with some form of drift-aware 

monitoring, would serve as an early warning system with 

the behavioural limits hard coded in the form of real-

world performance measures. 

Adaptive anomaly detection and correction systems, sub-

second latency processing and multi-cloud scale are 

already integrated into real-time data pipeline 

frameworks, including the AI-Enhanced Cloud Data 

Pipeline (AECDP) [4]. Nevertheless, throughput and 

availability are generally the emphasis of these systems 

and not semantic integrity. With combinations of adaptive 

resource management in AECDP style and executable 

data contracts, it becomes possible to build self-correcting 

pipelines that, besides being scalable, can be of high 

semantic fidelity even as data landscape evolve. 

The other important aspect in pipeline reliability is 

traceability. The process of data preparation defined 

formally, as proposed in [5], makes it possible to recreate 

results, conduct compliance audit and apply forensic 

recovery of errors. Such formal specifications can be used 

as the basis of executable data contracts, which can 

extend them into runtime validation and the automatic 

rollback in response to violations of the contract. This 

shift of change-based documentation to the dynamic 

enforcement also fills the loop gap between operational 

assurance and specification. 

Executable Data Contracts 

Executable data contracts are based on the blockchain 

concept of smart contracts-self-enforcing programs that 

implement business logic without involving any manual 

effort [6][10]. Smart contracts are used in circumstances 

where money flows, chain of supply, and legal contracts 

are made and this may involve formal specification to 

make sure of correctness [10]. Nevertheless, legacy smart 

contracts work on deterministic data, but probabilistic, 

noisy, and changing data must be dealt with in case of AI 

data contracts. 

 

The analogy becomes reinforced by the recent progress in 

relation extraction models that are driving AI-based smart 

contract automation so that being passed as unstructured 

text in law, it can be structured and become enforceable 

business rules [6].  

This change is comparable to shifting of the business-

level rules concerning the quality of data into business AI 

pipeline execution validators. Further, the formal 

verification tools on the smart contract literature [10] 

might be used to develop formal semantics on data 

contracts to ensure that schema and semantic regulations 

can be verified to hold under all the runtime conditions. 

The application of the data contracts in controlled spheres 

like the sphere of healthcare or sphere of the money 

circulation also highlights the intersection with privacy, 

copyright and compliance requirements. Such frameworks 

as PETLP [7] prove the idea that the safeguards of the 

legislation could be integrated into ETL processes, which 

ensures the consistency of GDPR and work with such 

sensitive sets of data as social media records. The same 

can be true of executable data contracts: privacy can be 

constrained, retention policies enacted and jurisdiction 

specific rules enforceable along with the quality and 



 

International Journal of Intelligent Systems and Applications in Engineering                        IJISAE, 2025, 13(1), 504–513 |507 

schema validators, both technologically and legally 

sound. 

One such reference architecture that holds the DataBench 

Big Data and AI Pipeline Framework [8] could be used to 

enable executable data contracts as an extension thereof. 

It is possible to guarantee an end-to-end data protection 

by incorporating contract enforcement check points at the 

four canonical stages of data acquisition, preparation, 

analytics and action/interaction. Also, the benchmarking 

tools of the DataBench observatory may be adapted to 

track the contracts compliance degrees, emergence of 

drifts and decreases of incidents metrics. 

Future Integration Strategies 

The comprehension of the underlying causes of pipeline 

unreliability is a key issue to help develop effective 

executable data contracts. Taxonomy of 41 factors that 

influence quality in data pipelines [9] presents major areas 

that can be linked to possible contract clauses, which are 

data, infrastructure, life cycle management, development 

and deployment, and processing.  

As an example, one can note the most common data issue 

because which is wrong data types that have been 

revealed to cause 33 percent of data problems [9], where 

they can be considered as hard constraints on schema-

level contracts. In the same manner, compatibility 

problems which are noticed as another category of 

problems independent of the traditional ingestion and 

transformation errors might be coded as inter-system 

interoperability scripts. 

The Stack Overflow and GitHub mining in [9] 

underscores the long-standing challenges that developers 

continue to encounter when addressing integration and 

ingestion thus recommending that executable data 

contracts must add integration level validation and 

automatic compatibility tests. These kinds of contracts 

would serve as a further CI/CD gate that will not pass 

non-conforming data to downstream models. 

The combination of smart contract verification principles 

[10] and pipeline-specific taxonomies [9] and data smell 

detection [2] forward the defense-in-depth multi-layered 

defence. Contracts ensure type-safety and field presence 

at the schema level, illustrate anomaly and latent data 

smells at the semantic level and drift and under 

specification-induced instability at the behavioral level 

[3]. 

It would require an entire executable data contract system 

thus: 

1. Automated Authoring on the basis of LLMs to deliver 

contract generation [1]. 

2. Formal Semantics took motivation to Smart contract 

Verification [10]. 

3. AECDP style of adptive monitoring + Runtime 

Enforcement [4]. 

4. Compliance As per the privacy-by-design of PETLP 

[7]. 

5. DataBench-style networks provide the basis of 

Ecosystem Benchmarking [8]. 

Preliminary evidence indicates that such a system can 

decrease the rate of incidents in the AI pipeline by 40-

70%, dramatically decrease diagnosis times, particularly 

in large scale, multi-cloud, and multi team settings.  

 

IV. RESULTS 

Pipeline Incidents  

Tests of executable data contracts showed that reliability 

of AI pipelines improved quantifiably on simulated 

testbeds, and in real enterprise datasets. We implemented 

the pro- posed framework in three large enterprise-scale 

settings: a financial fraud detection system, a healthcare 

claims analytics platform and a real-time e- commerce 

recommendation engine. The main KPIs were incident 

rate, average mean-time-to-diagnose (MTTD) and data 

contract compliance rate. 

Table 1 illustrates improvements on average during a 6-

month observation period with regards to pre-contract and 

post-contract deployment. 

Table 1 – Reduction in Incidents 

Environment 
Incident Rate 

Before 

Incident Rate 

After 
Reduction 

MTTD 

Before  

MTTD 

After  
Reduction  

Fraud Detection 12.3 6.5 47.2 9.8 4.1 58.2 

Healthcare 

Claims 
15.7 8.9 43.3 12.4 6.3 49.2 

E-commerce  18.4 5.7 69.0 14.6 4.9 66.4 

 

These findings validate the guess that schema, semantic 

and quality run time enforcement lessen the occurrence of 

failures. The greatest advantage happened in the e-

commerce recommendation engine since there was a 

regular schema drift based on a dynamic catalog update. 

Below is an example of Python validation code, as would 

be run in actual contracts: 

________________________________________________________________________________________________ 

1. from jsonschema import validate 
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2. import json 

3. contract_schema = { 

4.     "type": "object", 

5.     "properties": { 

6.         "user_id": {"type": "string"}, 

7.         "purchase_amount": {"type": "number", "minimum": 0} 

8.     }, 

9.     "required": ["user_id", "purchase_amount"] 

10. } 

11.  

12. # Validate incoming payload 

13. def enforce_contract(payload): 

14.     validate(instance=payload, schema=contract_schema) 

15. enforce_contract({"user_id": "U123", "purchase_amount": 59.99}) 

________________________________________________________________________________________________ 

This kind of schema- level enforcement would be built in to ingestion levels that forbid incompatible information to get 

to transformation levels. 

 

Drift-Aware Thresholds  

Drift-aware monitoring was one of the necessary 

attributes of the offered system. It is also on our part that 

we have incorporated population stability index (PSI) and 

Kolmogorov Smirnov (KS) tests such that there is 

automatic contract revalidation or roll back. 

Adding drift thresholds in experiments resulted in less of 

an impairment to underspecified models [3]. In the 

absence of drift-aware contracts, the models had an 

average decrease of AUC of 0.07 after three months. 

Included in contracts, this decline was only restricted up 

to 0.02. 
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Table 2 – Model Stability Metrics 

Model/Application AUC Without Contracts AUC With Contracts Improvement 

Fraud Detection 0.08 0.03 62.5 

Claims Prediction  0.06 0.02 66.7 

Product Ranking 0.07 0.02 71.4 

 

At run time, it employing a small fragment of minimalistic drift detection in the enforcement layer: 

________________________________________________________________________________________________ 

1. import numpy as np 

2. def population_stability_index(expected, actual, bins=10): 

3.     expected_perc, _ = np.histogram(expected, bins=bins) 

4.     actual_perc, _ = np.histogram(actual, bins=bins) 

5.     expected_perc = expected_perc / np.sum(expected_perc) 

6.     actual_perc = actual_perc / np.sum(actual_perc) 

7.     psi = np.sum((actual_perc - expected_perc) * np.log(actual_perc / expected_perc)) 

8.     return psi 

9. # Trigger revalidation if PSI > 0.25 

10. if population_stability_index(train_data, live_data) > 0.25: 

11.     rollback_model() 

________________________________________________________________________________________________ 

Combined with such drift-aware checks, this automation facilitated the possibility of automated rollbacks that did not 

require any human interaction thus maintaining the continuity of the service. 
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Versioned Contract Registry  

There was a need to be able audit the contracts and to 

trace contracts by means of versioning. Any update in a 

data contract such as schema update, threshold tuning or 

semantic rule change was recorded in a contract registry 

where they were assigned version labels, deployment 

time, and rollback IDs. 

After a year, the compliances rate (per cent of incoming 

data meeting contract checks) and rate of rollback in the 

version-controlled contract mechanism were analysed. 

Table 3 – Contract Compliance  

Environment Compliance Rate Rollbacks  Major Causes  

Fraud Detection 97.4 1 Field removal 

Healthcare Claims  95.1 2 Null value  

E-commerce  92.8 3 Feature drift  

 

At e-commerce setting, the maximum rollback frequency was recorded, which shows volatility of data structure and 

continuously changing product taxonomy at this setting. 

 

An example of the contract registry managements API is depicted below: 

________________________________________________________________________________________________ 

1. class ContractRegistry: 

2.     def __init__(self): 

3.         self.contracts = {} 

4.     def register_contract(self, version, schema, rules): 

5.         self.contracts[version] = {"schema": schema, "rules": rules} 

6.     def get_contract(self, version): 

7.         return self.contracts.get(version) 

8. registry = ContractRegistry() 

9. registry.register_contract("v1.0", contract_schema, {"max_null_ratio": 0.05}) 
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This allowed instant rollback to earlier versions of 

contracts and that was a real-life saver since schemas 

wildly changed in a manner incompatible with 

downstream expectations of the models. 

Incident Taxonomy  

Implementation in a cross-organizational setting 

demonstrated that executable data contracts enhanced the 

operational strength of a local pipeline as well as 

transformed the preponderance of incident forms. More 

than 50 percent of the failures experienced in pre-contract 

deployments would be occasioned by schema mismatches 

and latent data smells [2], [9]. After activation of the 

contract, the occurrence of such issues dropped to less 

than 15%, with most issues occurring being external API 

outage, or third-party systems failing, or beyond the 

capability of enforcement of contract. 

The analysis of incidents found that in all the 

environments three patterns existed: 

1. Decrease of the conflict of compatibility brought 

by cross-system validation of contracts. 

2. Less of semantic violation, since domain specific 

rules were applied up stream. 

3. The reduced time that is taken to resolve is due 

to the absolute nature of logs of violations that 

are created in the course of ingestion. 

 

The contract enforcement system was checked on the 

scalability under the workload of synthetic, high load 

volumes (up to 1M records/min). The average validation 

latency per record stayed below 2ms, the system 

throughput increased with the allocation of more compute 

resources in a linear way showing that the architecture can 

be used successfully by both real-time and batch 

processing workloads. 

Table 4 – Scalability Benchmark 

Records  Validation Latency Throughput Scaling  

100,000 1.8 100 

500,000 1.9 99.2 

1,000,000 2.0 98.7 

 

This is a performance profile that implies an overhead 

expense of contract enforcement is small by comparison 

to average pipeline processing times at extreme volumes. 
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V. CONCLUSION 

It is an established fact in this research that Executable 

Data Contracts have the potential of achieving significant 

data quality assurance, operations efficiency and 

regulatory considerations being achieved, particularly in 

those heterogeneous data environments where data is 

being deployed in large volumes. Proving results used 

empirical testing to show high levels of reductions in 

defect rates and latency, both quantifiable as well as 

increases in end-to-end data integrity. The deployment of 

EDCs in CI/CD processes did not only decrease the 

amount of human intervention during quality controls, but 

also included the possibility of business and compliance 

rules being enforced proactively on data before it comes 

into the critical systems. 

In governance terms, EDCs were well suited to regulated 

environments such that auditability and real-time 

administration of polices was non-negotiable. Automation 

in the EDC system makes validation to be repeatable and 

verifiable giving the auditor definite evidence of 

compliance that can be executed. It turns data governance 

into a preventive activity instead of the reactive one thus 

saving on the cost and complexity of remedying the 

damage. 

There are caveats tied to EDCs use. Organizations are to 

be fine-tuned to engage initial mass developing, 

integration, and change management activities. There is a 

high reliance required in engineering, governance and 

compliance departments to implement EDCs, which 

further emphasizes the fact that EDCs are more of a 

change of organizational direction than a technical 

improvement. Besides, it is important to make enough 

design of versioning and backwards compatibility so as 

not to break downstream dependencies when contracts 

change. 

The maturity framework that is proposed in this paper 

will have a more systematic process in the adoption 

starting with pilot projects in non-critical systems 

followed by a hybrid running of enforcement in mission-

critical pipelines and finally having a standardization of 

the whole organization. Such a phased implementation 

has the lowest risk of operations since it will guarantee a 

stable ROI. 

EDCs are one of the key innovations in the process of 

operationalization of data management and quality 

assurance. The use of them helps organizations to 

implement trust in their data landscape and encourages 

technical enforcement to keep consistency with business 

and regulatory needs. Essentially, EDCs offer proactive, 

future-proof and scalable solution to enterprises that have 

greater data complexity, regulatory compliance and cross-

platform integration requirements. Taking a strategic, 

iterative approach to moving toward an EDCs-based 

model can help organizations change their reactivity in 

data-quality management to an automated and enforceable 

culture of continuous, automated and enforced trust. 
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