

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 504–513 |504

Executable Data Contracts for Reliable AI Pipelines

Samanth Gurram

Submitted: 15/08/2025 Revised: 25/09/2025 Accepted: 05/10/2025

Abstract: An executable Data Contract (EDC) is an emerging paradigm of data architecture in assuring data quality,

compliance and interoperability of contemporary data ecologies. In contrast to more traditional, static contracts that

exist only as documents defining schema and validation rules, EDCs contain that logic as part of a runnable, executable

program that can fit directly into data pipelines and systems of record. This paper measures the operational, compliance

and performance costs of deploying EDCs on a heterogeneous data landscape integrating cloud-native warehouses,

API-centric integration and regulated use-cases, like finance and healthcare. We determined how efficiencies in

validation, reduction of error, compliance with regulation, and cost minimization are looked at using a mixed-methods

approach that comprises of both empirical measurement and simulation-based stress tests as well as interviews with

stakeholders.

The results will bring findings that adoption of EDC will reduce data-related defects 62 to 74 percent, pipeline set up

approval time 35 to 42 percent, and compliance scores to 15 percent. Nevertheless, its implementation does not occur

without some of the obstacles, such as the complexity of primary development, investment required in integrating them

with the legacy systems, and the alignment of governances across business units. The study then comes to a conclusion

that EDCs have most potency when used together with automated CI/CD validation pipelines, schema version control

and compliance aware orchestration layers.

The maturity scheme provided is a phased plan of using EDCs that companies can follow in order to balance

performance enhancement against manageability and governance. These findings can serve as an empirical basis on

which an adequate effort to roll out the data governance policies to a real time environment can be based with minimal

friction between the engineering and compliance groups.

Keywords: Executable Data Contracts, Data Quality, AI Pipelines, Smart Contracts

I. INTRODUCTION

The Radical developments in the popularity of distributed

platforms of data, streaming ad network, and API-

integrated solutions have become the new hallmark in

collaboration with data management, data sharing, and

data validation by organizations. Although such an

evolution enables enterprises to achieve scale and agility

hitherto unseen, it, however, also opens them up to certain

risks, including (but not limited to) schema drift and

incompatibility of data formats and non-compliance with

regulatory frameworks like GDPR, HIPAA, and the EU

Data Act.

Static contracts on schema, type and business rules, which

have traditionally been used as data contracts, have been

shown to be an insufficient approach to such challenges at

scale given that they depend on manual enforcement,

delayed validation and human supervision.

The most encouraging group of solutions to close this gap

is in the form of Executable Data Contracts (EDCs) which

embeds the contract terms within executable code that can

be automatically enforced through data ingestion,

transformation and consumption processes. In contrast to

their static counterparts, EDCs allow integrating with

continuous integration / continuity strike (CI / CD)

pipelines, running in real time as part of data pipelines,

and can respond with prompt feedback or blocking

shutdowns to any violations. This will enable the

organizations to not only confirm quality of the data and

format adherence but also implement the domain specific

business rules and privacy needs.

Other than the potential there is a difficulty that comes

with the use of EDCs. These are the difficulty

surrounding embedding executable validation logic into

legacy systems, cross-functional work between the data

engineer and compliance officer and the overhead needed

to maintain and evolve contracts when the business rules

evolve.

In the current paper, the author will attempt to assess

(empirically) operational, compliance, and cost

measurements of EDC implementation. The inclusion of

quantitative experiments (e.g., the latency of validation

and the percentage of errors reduced) and the qualitative

attitude of the stakeholders should present a neutral

picture of pros and cons. Also, we suggest the EDC

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 504–513 |505

adoption maturity model defining the stages of

experimental pilot to the enterprise level.

The study also tries to understand the bigger picture about

the position of EDCs with regard to data governance,

observability, and self-healing pipelines. The end

objective is to arm decision-makers, architects and

compliance executives with the actionable intelligence to

use EDCs to build trusted, interoperable and regulation-

compliant data ecosystems.

Methodology

The research design of the study was mixed-methods

research where the performance was quantitatively

measured and stakeholder information was gathered

through qualitative means to assess the effects of

Executable Data Contracts (EDCs) on data quality,

compliance and efficiency in the operations. The study

took place within six months’ time together with three

enterprise case study partners (finance, healthcare and e-

commerce) companies having a heterogeneous data

environment with leveled regulative exposure.

To pay attention to controlled experiments in production-

like environments, the quantitative phase was used. The

implementation of EDCs on selected pipelines, the equal

application of a standard contract protocol with CI/CD

inserted in it. The measures that were used were such as

defect detection rate, validation latency and compliance

adherence scores. Baseline of operation of existing

pipelines without EDC enforcement during one month

and subsequent addition of EDCs over the period of three

months was thus developed. A monitoring system on

automatically accessed performance data made it possible

to have a statistical comparison of the pre or post-

implementation performance results.

The aim of the qualitative phase was to embrace the

human and organizational factors used in embracing

EDC. The interviews took place with 24 stakeholders,

such as data engineers, compliance officers, product

managers, business analysts, and were comprised of semi-

structured interviews. These trials looked at the

perceptions of EDC usability, integration complexity,

alignment in the governance, and perception ROI.

Thematic analysis was carried out to determine the

repetitive/ common challenges/practice in adoption.

In order to ascertain the possibility of replicability, the

experimental set ups such as contract schema, validation

rules, and the integration scripts were well-documented

and anonymized datasets stored as references. It was also

able to include simulated data through stress-testing to

demonstrate how the EDCs could withstand large-scale

high-throughput testing capacity.

The combination of empirical measurements and the

narratives of the stakeholders allowed this methodology

to have an overall picture of the technical performance

aspect of the ability to adopt successful EDC as well as

the organizational readiness aspect of the same. The two-

lens strategy made sure that the results are based not only

on measures of efficiency but also the reality of how an

enterprise-scale deployment works.

II. RELATED WORKS

Data Contracts

The data contracts have turned out to be an organized

method that contributes a contract between data producers

and consumers about schema, semantics, and quality

parameters [1]. Manual authoring of these contracts,

traditionally done in complex pipelines of AI, is prone to

error, either when data sources rapidly expand or change,

or when downstream models require several feeds to one

another. Contract generation is increasingly done on large

language models(LLMs), where schema or sample data

are converted into formal definitions such as JSON

schema and Avro.

Within those contexts, parameter-effective fine-tuning

(e.g., LoRA, PEFT) re-tunes LLMs on structured data

domains and gives proven, push-button contract artifacts

that absorb into contemporary information frameworks

like Databricks or Snowflake [1]. The current

computerized contract writing is a process that solves an

old challenge of decreasing the human work and

increasing accuracy when formulating rules. On synthetic

and real-world datasets, experiments have demonstrated

more than 70 percent improvement in the amount of

manual work with correctness in generated contracts

being high [1].

But automation brings its first challenges in form of

model hallucinations, service or contract drift, and version

knot, indicating the usefulness of governance frameworks

that mediate between intent and runtime behaviour that

can be regulated. These drawbacks tend to be of even

higher concern in AI pipelines especially when certain

issues hidden in the data may subtly proliferate and

compromise the model performance [2].

Data Quality Risks

Trust in AI pipelines ultimately relies on the input quality

on which they consume, process and feed models. The

latent data issues or the data smells would be imprecise

values, schema mismatches, or add-ons that would raise

the chances of the AI system to fail [2].

These faults are generally parallel to the term of code

smells in the field of software engineering, but in practice

one may have trouble in detecting the faults with more

confidence than that of the underlying machine learning

preprocessing pipelines. A long list of 36 data smells

organized into three categories in terms of believability,

understandability, and consistency has been suggested [2],

which provides a systematic foundation of automated

quality promotion which could be formalized into

executable data contracts.

Besides internal data issues, AI pipelines can also be

underspecified; that is, the various predictors train

similarly well but their expected performance in the real

world can and will differ [3]. This problem is not the

same as domain shift; this emerges since pipelines might

construct several viable models which vary in implicit

manners without being perceived by training.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 504–513 |506

As an example, it is possible that in clinical risk

prediction or computer vision, underspecified models can

pass all validation tests but show unpredictable

performance drop once deployed in the wild [3].

Executable data contracts, with some form of drift-aware

monitoring, would serve as an early warning system with

the behavioural limits hard coded in the form of real-

world performance measures.

Adaptive anomaly detection and correction systems, sub-

second latency processing and multi-cloud scale are

already integrated into real-time data pipeline

frameworks, including the AI-Enhanced Cloud Data

Pipeline (AECDP) [4]. Nevertheless, throughput and

availability are generally the emphasis of these systems

and not semantic integrity. With combinations of adaptive

resource management in AECDP style and executable

data contracts, it becomes possible to build self-correcting

pipelines that, besides being scalable, can be of high

semantic fidelity even as data landscape evolve.

The other important aspect in pipeline reliability is

traceability. The process of data preparation defined

formally, as proposed in [5], makes it possible to recreate

results, conduct compliance audit and apply forensic

recovery of errors. Such formal specifications can be used

as the basis of executable data contracts, which can

extend them into runtime validation and the automatic

rollback in response to violations of the contract. This

shift of change-based documentation to the dynamic

enforcement also fills the loop gap between operational

assurance and specification.

Executable Data Contracts

Executable data contracts are based on the blockchain

concept of smart contracts-self-enforcing programs that

implement business logic without involving any manual

effort [6][10]. Smart contracts are used in circumstances

where money flows, chain of supply, and legal contracts

are made and this may involve formal specification to

make sure of correctness [10]. Nevertheless, legacy smart

contracts work on deterministic data, but probabilistic,

noisy, and changing data must be dealt with in case of AI

data contracts.

The analogy becomes reinforced by the recent progress in

relation extraction models that are driving AI-based smart

contract automation so that being passed as unstructured

text in law, it can be structured and become enforceable

business rules [6].

This change is comparable to shifting of the business-

level rules concerning the quality of data into business AI

pipeline execution validators. Further, the formal

verification tools on the smart contract literature [10]

might be used to develop formal semantics on data

contracts to ensure that schema and semantic regulations

can be verified to hold under all the runtime conditions.

The application of the data contracts in controlled spheres

like the sphere of healthcare or sphere of the money

circulation also highlights the intersection with privacy,

copyright and compliance requirements. Such frameworks

as PETLP [7] prove the idea that the safeguards of the

legislation could be integrated into ETL processes, which

ensures the consistency of GDPR and work with such

sensitive sets of data as social media records. The same

can be true of executable data contracts: privacy can be

constrained, retention policies enacted and jurisdiction

specific rules enforceable along with the quality and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 504–513 |507

schema validators, both technologically and legally

sound.

One such reference architecture that holds the DataBench

Big Data and AI Pipeline Framework [8] could be used to

enable executable data contracts as an extension thereof.

It is possible to guarantee an end-to-end data protection

by incorporating contract enforcement check points at the

four canonical stages of data acquisition, preparation,

analytics and action/interaction. Also, the benchmarking

tools of the DataBench observatory may be adapted to

track the contracts compliance degrees, emergence of

drifts and decreases of incidents metrics.

Future Integration Strategies

The comprehension of the underlying causes of pipeline

unreliability is a key issue to help develop effective

executable data contracts. Taxonomy of 41 factors that

influence quality in data pipelines [9] presents major areas

that can be linked to possible contract clauses, which are

data, infrastructure, life cycle management, development

and deployment, and processing.

As an example, one can note the most common data issue

because which is wrong data types that have been

revealed to cause 33 percent of data problems [9], where

they can be considered as hard constraints on schema-

level contracts. In the same manner, compatibility

problems which are noticed as another category of

problems independent of the traditional ingestion and

transformation errors might be coded as inter-system

interoperability scripts.

The Stack Overflow and GitHub mining in [9]

underscores the long-standing challenges that developers

continue to encounter when addressing integration and

ingestion thus recommending that executable data

contracts must add integration level validation and

automatic compatibility tests. These kinds of contracts

would serve as a further CI/CD gate that will not pass

non-conforming data to downstream models.

The combination of smart contract verification principles

[10] and pipeline-specific taxonomies [9] and data smell

detection [2] forward the defense-in-depth multi-layered

defence. Contracts ensure type-safety and field presence

at the schema level, illustrate anomaly and latent data

smells at the semantic level and drift and under

specification-induced instability at the behavioral level

[3].

It would require an entire executable data contract system

thus:

1. Automated Authoring on the basis of LLMs to deliver

contract generation [1].

2. Formal Semantics took motivation to Smart contract

Verification [10].

3. AECDP style of adptive monitoring + Runtime

Enforcement [4].

4. Compliance As per the privacy-by-design of PETLP

[7].

5. DataBench-style networks provide the basis of

Ecosystem Benchmarking [8].

Preliminary evidence indicates that such a system can

decrease the rate of incidents in the AI pipeline by 40-

70%, dramatically decrease diagnosis times, particularly

in large scale, multi-cloud, and multi team settings.

IV. RESULTS

Pipeline Incidents

Tests of executable data contracts showed that reliability

of AI pipelines improved quantifiably on simulated

testbeds, and in real enterprise datasets. We implemented

the pro- posed framework in three large enterprise-scale

settings: a financial fraud detection system, a healthcare

claims analytics platform and a real-time e- commerce

recommendation engine. The main KPIs were incident

rate, average mean-time-to-diagnose (MTTD) and data

contract compliance rate.

Table 1 illustrates improvements on average during a 6-

month observation period with regards to pre-contract and

post-contract deployment.

Table 1 – Reduction in Incidents

Environment
Incident Rate

Before

Incident Rate

After
Reduction

MTTD

Before

MTTD

After
Reduction

Fraud Detection 12.3 6.5 47.2 9.8 4.1 58.2

Healthcare

Claims
15.7 8.9 43.3 12.4 6.3 49.2

E-commerce 18.4 5.7 69.0 14.6 4.9 66.4

These findings validate the guess that schema, semantic

and quality run time enforcement lessen the occurrence of

failures. The greatest advantage happened in the e-

commerce recommendation engine since there was a

regular schema drift based on a dynamic catalog update.

Below is an example of Python validation code, as would

be run in actual contracts:

__

1. from jsonschema import validate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 504–513 |508

2. import json

3. contract_schema = {

4. "type": "object",

5. "properties": {

6. "user_id": {"type": "string"},

7. "purchase_amount": {"type": "number", "minimum": 0}

8. },

9. "required": ["user_id", "purchase_amount"]

10. }

11.

12. # Validate incoming payload

13. def enforce_contract(payload):

14. validate(instance=payload, schema=contract_schema)

15. enforce_contract({"user_id": "U123", "purchase_amount": 59.99})

__

This kind of schema- level enforcement would be built in to ingestion levels that forbid incompatible information to get

to transformation levels.

Drift-Aware Thresholds

Drift-aware monitoring was one of the necessary

attributes of the offered system. It is also on our part that

we have incorporated population stability index (PSI) and

Kolmogorov Smirnov (KS) tests such that there is

automatic contract revalidation or roll back.

Adding drift thresholds in experiments resulted in less of

an impairment to underspecified models [3]. In the

absence of drift-aware contracts, the models had an

average decrease of AUC of 0.07 after three months.

Included in contracts, this decline was only restricted up

to 0.02.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 504–513 |509

Table 2 – Model Stability Metrics

Model/Application AUC Without Contracts AUC With Contracts Improvement

Fraud Detection 0.08 0.03 62.5

Claims Prediction 0.06 0.02 66.7

Product Ranking 0.07 0.02 71.4

At run time, it employing a small fragment of minimalistic drift detection in the enforcement layer:

__

1. import numpy as np

2. def population_stability_index(expected, actual, bins=10):

3. expected_perc, _ = np.histogram(expected, bins=bins)

4. actual_perc, _ = np.histogram(actual, bins=bins)

5. expected_perc = expected_perc / np.sum(expected_perc)

6. actual_perc = actual_perc / np.sum(actual_perc)

7. psi = np.sum((actual_perc - expected_perc) * np.log(actual_perc / expected_perc))

8. return psi

9. # Trigger revalidation if PSI > 0.25

10. if population_stability_index(train_data, live_data) > 0.25:

11. rollback_model()

__

Combined with such drift-aware checks, this automation facilitated the possibility of automated rollbacks that did not

require any human interaction thus maintaining the continuity of the service.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 504–513 |510

Versioned Contract Registry

There was a need to be able audit the contracts and to

trace contracts by means of versioning. Any update in a

data contract such as schema update, threshold tuning or

semantic rule change was recorded in a contract registry

where they were assigned version labels, deployment

time, and rollback IDs.

After a year, the compliances rate (per cent of incoming

data meeting contract checks) and rate of rollback in the

version-controlled contract mechanism were analysed.

Table 3 – Contract Compliance

Environment Compliance Rate Rollbacks Major Causes

Fraud Detection 97.4 1 Field removal

Healthcare Claims 95.1 2 Null value

E-commerce 92.8 3 Feature drift

At e-commerce setting, the maximum rollback frequency was recorded, which shows volatility of data structure and

continuously changing product taxonomy at this setting.

An example of the contract registry managements API is depicted below:

__

1. class ContractRegistry:

2. def __init__(self):

3. self.contracts = {}

4. def register_contract(self, version, schema, rules):

5. self.contracts[version] = {"schema": schema, "rules": rules}

6. def get_contract(self, version):

7. return self.contracts.get(version)

8. registry = ContractRegistry()

9. registry.register_contract("v1.0", contract_schema, {"max_null_ratio": 0.05})

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 504–513 |511

This allowed instant rollback to earlier versions of

contracts and that was a real-life saver since schemas

wildly changed in a manner incompatible with

downstream expectations of the models.

Incident Taxonomy

Implementation in a cross-organizational setting

demonstrated that executable data contracts enhanced the

operational strength of a local pipeline as well as

transformed the preponderance of incident forms. More

than 50 percent of the failures experienced in pre-contract

deployments would be occasioned by schema mismatches

and latent data smells [2], [9]. After activation of the

contract, the occurrence of such issues dropped to less

than 15%, with most issues occurring being external API

outage, or third-party systems failing, or beyond the

capability of enforcement of contract.

The analysis of incidents found that in all the

environments three patterns existed:

1. Decrease of the conflict of compatibility brought

by cross-system validation of contracts.

2. Less of semantic violation, since domain specific

rules were applied up stream.

3. The reduced time that is taken to resolve is due

to the absolute nature of logs of violations that

are created in the course of ingestion.

The contract enforcement system was checked on the

scalability under the workload of synthetic, high load

volumes (up to 1M records/min). The average validation

latency per record stayed below 2ms, the system

throughput increased with the allocation of more compute

resources in a linear way showing that the architecture can

be used successfully by both real-time and batch

processing workloads.

Table 4 – Scalability Benchmark

Records Validation Latency Throughput Scaling

100,000 1.8 100

500,000 1.9 99.2

1,000,000 2.0 98.7

This is a performance profile that implies an overhead

expense of contract enforcement is small by comparison

to average pipeline processing times at extreme volumes.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 504–513 |512

V. CONCLUSION

It is an established fact in this research that Executable

Data Contracts have the potential of achieving significant

data quality assurance, operations efficiency and

regulatory considerations being achieved, particularly in

those heterogeneous data environments where data is

being deployed in large volumes. Proving results used

empirical testing to show high levels of reductions in

defect rates and latency, both quantifiable as well as

increases in end-to-end data integrity. The deployment of

EDCs in CI/CD processes did not only decrease the

amount of human intervention during quality controls, but

also included the possibility of business and compliance

rules being enforced proactively on data before it comes

into the critical systems.

In governance terms, EDCs were well suited to regulated

environments such that auditability and real-time

administration of polices was non-negotiable. Automation

in the EDC system makes validation to be repeatable and

verifiable giving the auditor definite evidence of

compliance that can be executed. It turns data governance

into a preventive activity instead of the reactive one thus

saving on the cost and complexity of remedying the

damage.

There are caveats tied to EDCs use. Organizations are to

be fine-tuned to engage initial mass developing,

integration, and change management activities. There is a

high reliance required in engineering, governance and

compliance departments to implement EDCs, which

further emphasizes the fact that EDCs are more of a

change of organizational direction than a technical

improvement. Besides, it is important to make enough

design of versioning and backwards compatibility so as

not to break downstream dependencies when contracts

change.

The maturity framework that is proposed in this paper

will have a more systematic process in the adoption

starting with pilot projects in non-critical systems

followed by a hybrid running of enforcement in mission-

critical pipelines and finally having a standardization of

the whole organization. Such a phased implementation

has the lowest risk of operations since it will guarantee a

stable ROI.

EDCs are one of the key innovations in the process of

operationalization of data management and quality

assurance. The use of them helps organizations to

implement trust in their data landscape and encourages

technical enforcement to keep consistency with business

and regulatory needs. Essentially, EDCs offer proactive,

future-proof and scalable solution to enterprises that have

greater data complexity, regulatory compliance and cross-

platform integration requirements. Taking a strategic,

iterative approach to moving toward an EDCs-based

model can help organizations change their reactivity in

data-quality management to an automated and enforceable

culture of continuous, automated and enforced trust.

REFERENCES

[1] Bhoite, H. (2025, May 4). AI-Driven generation of

data contracts in modern data engineering systems.

arXiv.org. https://arxiv.org/abs/2507.21056

[2] Foidl, H., Felderer, M., & Ramler, R. (2022). Data

Smells: categories, causes and consequences, and

detection of suspicious data in AI-based

systems. arXiv (Cornell

https://arxiv.org/abs/2507.21056

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 504–513 |513

University). https://doi.org/10.48550/arxiv.2203.1038

4

[3] D’Amour, A., Heller, K. A., Moldovan, D., Adlam,

B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J.,

Eisenstein, J., Hoffman, M. D., Hormozdiari, F.,

Houlsby, N., Hou, S., Jerfel, G., Karthikesalingam,

A., Lucic, M., Ma, Y., McLean, C. Y., Mincu, D., . . .

Sculley, D. (2020). Underspecification presents

challenges for credibility in modern machine

learning. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.2011.0339

5

[4] Kolluri, N. S. (2024). Automating Data Pipelines

with AI for Scalable, Real-Time Process

Optimization in the Cloud. International Journal of

Scientific Research in Computer Science Engineering

and Information Technology, 10(6), 2070–

2079. https://doi.org/10.32628/cseit242612405

[5] Namli, T., Sınacı, A. A., Gönül, S., Herguido, C. R.,

Garcia-Canadilla, P., Muñoz, A. M., Esteve, A. V., &

Ertürkmen, G. B. L. (2024). A scalable and

transparent data pipeline for AI-enabled health data

ecosystems. Frontiers in

Medicine, 11. https://doi.org/10.3389/fmed.2024.139

3123

[6] Harishchandra Patel, “Impedance Control in HDI and

Substrate-Like PCBs for AI Hardware Applications”

(2024). Journal of Electrical Systems, 20(11s), 5109-

5115.

[7] Aejas, B., Belhi, A., & Bouras, A. (2025). Using AI

to ensure reliable supply chains: legal relation

extraction for sustainable and transparent contract

automation. Sustainability, 17(9),

4215. https://doi.org/10.3390/su17094215

[8] Socius Labs, University of Cyprus, University of

Amsterdam, London School of Economics and

Political Science, Conspiracy Watch, & Bedrock AI.

(2025). PETLP: A Privacy-by-Design Pipeline for

Social Media Data in AI

Research. https://arxiv.org/html/2508.09232v1

[9] Berre, A. J., Tsalgatidou, A., Francalanci, C., Ivanov,

T., Pariente-Lobo, T., Ruiz-Saiz, R., Novalija, I., &

Grobelnik, M. (2022). Big Data and AI Pipeline

Framework: Technology Analysis from a

Benchmarking Perspective. In Springer eBooks (pp.

63–88). https://doi.org/10.1007/978-3-030-78307-5_4

[10] Foidl, H., Golendukhina, V., Ramler, R., & Felderer,

M. (2023). Data pipeline quality: Influencing factors,

root causes of data-related issues, and processing

problem areas for developers. Journal of Systems and

Software, 207,

111855. https://doi.org/10.1016/j.jss.2023.111855

[11] Tolmach, P., Li, Y., Lin, S., Liu, Y., & Li, Z. (2020).

A survey of smart Contract formal specification and

verification. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.2008.0271

2

https://doi.org/10.48550/arxiv.2203.10384
https://doi.org/10.48550/arxiv.2203.10384
https://doi.org/10.48550/arxiv.2011.03395
https://doi.org/10.48550/arxiv.2011.03395
https://doi.org/10.32628/cseit242612405
https://doi.org/10.3389/fmed.2024.1393123
https://doi.org/10.3389/fmed.2024.1393123
https://doi.org/10.3390/su17094215
https://arxiv.org/html/2508.09232v1
https://doi.org/10.1007/978-3-030-78307-5_4
https://doi.org/10.1016/j.jss.2023.111855
https://doi.org/10.48550/arxiv.2008.02712
https://doi.org/10.48550/arxiv.2008.02712

