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Abstract: An executable Data Contract (EDC) is an emerging paradigm of data architecture in assuring data quality,
compliance and interoperability of contemporary data ecologies. In contrast to more traditional, static contracts that
exist only as documents defining schema and validation rules, EDCs contain that logic as part of a runnable, executable
program that can fit directly into data pipelines and systems of record. This paper measures the operational, compliance
and performance costs of deploying EDCs on a heterogeneous data landscape integrating cloud-native warehouses,
API-centric integration and regulated use-cases, like finance and healthcare. We determined how efficiencies in
validation, reduction of error, compliance with regulation, and cost minimization are looked at using a mixed-methods
approach that comprises of both empirical measurement and simulation-based stress tests as well as interviews with
stakeholders.

The results will bring findings that adoption of EDC will reduce data-related defects 62 to 74 percent, pipeline set up
approval time 35 to 42 percent, and compliance scores to 15 percent. Nevertheless, its implementation does not occur
without some of the obstacles, such as the complexity of primary development, investment required in integrating them
with the legacy systems, and the alignment of governances across business units. The study then comes to a conclusion
that EDCs have most potency when used together with automated CI/CD validation pipelines, schema version control
and compliance aware orchestration layers.

The maturity scheme provided is a phased plan of using EDCs that companies can follow in order to balance
performance enhancement against manageability and governance. These findings can serve as an empirical basis on
which an adequate effort to roll out the data governance policies to a real time environment can be based with minimal
friction between the engineering and compliance groups.
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L. INTRODUCTION their static counterparts, EDCs allow integrating with
continuous integration / continuity strike (CI / CD)
pipelines, running in real time as part of data pipelines,
and can respond with prompt feedback or blocking
shutdowns to any violations. This will enable the

organizations to not only confirm quality of the data and

The Radical developments in the popularity of distributed
platforms of data, streaming ad network, and API-
integrated solutions have become the new hallmark in
collaboration with data management, data sharing, and

data validation by organizations. Although such an
evolution enables enterprises to achieve scale and agility
hitherto unseen, it, however, also opens them up to certain
risks, including (but not limited to) schema drift and
incompatibility of data formats and non-compliance with
regulatory frameworks like GDPR, HIPAA, and the EU
Data Act.

Static contracts on schema, type and business rules, which
have traditionally been used as data contracts, have been
shown to be an insufficient approach to such challenges at
scale given that they depend on manual enforcement,
delayed validation and human supervision.

The most encouraging group of solutions to close this gap
is in the form of Executable Data Contracts (EDCs) which
embeds the contract terms within executable code that can
be automatically enforced through data ingestion,
transformation and consumption processes. In contrast to

format adherence but also implement the domain specific
business rules and privacy needs.

Other than the potential there is a difficulty that comes
with the use of EDCs. These are the difficulty
surrounding embedding executable validation logic into
legacy systems, cross-functional work between the data
engineer and compliance officer and the overhead needed
to maintain and evolve contracts when the business rules
evolve.

In the current paper, the author will attempt to assess
(empirically) operational, compliance, and cost
measurements of EDC implementation. The inclusion of
quantitative experiments (e.g., the latency of validation
and the percentage of errors reduced) and the qualitative
attitude of the stakeholders should present a neutral
picture of pros and cons. Also, we suggest the EDC
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adoption maturity model defining the

experimental pilot to the enterprise level.

stages of

The study also tries to understand the bigger picture about
the position of EDCs with regard to data governance,
observability, and self-healing pipelines. The end
objective is to arm decision-makers, architects and
compliance executives with the actionable intelligence to
use EDCs to build trusted, interoperable and regulation-
compliant data ecosystems.

Methodology

The research design of the study was mixed-methods
research where the performance was quantitatively
measured and stakeholder information was gathered
through qualitative means to assess the effects of
Executable Data Contracts (EDCs) on data quality,
compliance and efficiency in the operations. The study
took place within six months’ time together with three
enterprise case study partners (finance, healthcare and e-
commerce) companies having a heterogeneous data
environment with leveled regulative exposure.

To pay attention to controlled experiments in production-
like environments, the quantitative phase was used. The
implementation of EDCs on selected pipelines, the equal
application of a standard contract protocol with CI/CD
inserted in it. The measures that were used were such as
defect detection rate, validation latency and compliance
adherence scores. Baseline of operation of existing
pipelines without EDC enforcement during one month
and subsequent addition of EDCs over the period of three
months was thus developed. A monitoring system on
automatically accessed performance data made it possible
to have a statistical comparison of the pre or post-
implementation performance results.

The aim of the qualitative phase was to embrace the
human and organizational factors used in embracing
EDC. The interviews took place with 24 stakeholders,
such as data engineers, compliance officers, product
managers, business analysts, and were comprised of semi-
structured interviews. These trials looked at the
perceptions of EDC usability, integration complexity,
alignment in the governance, and perception ROI.
Thematic analysis was carried out to determine the
repetitive/ common challenges/practice in adoption.

In order to ascertain the possibility of replicability, the
experimental set ups such as contract schema, validation
rules, and the integration scripts were well-documented
and anonymized datasets stored as references. It was also
able to include simulated data through stress-testing to
demonstrate how the EDCs could withstand large-scale
high-throughput testing capacity.

The combination of empirical measurements and the
narratives of the stakeholders allowed this methodology
to have an overall picture of the technical performance
aspect of the ability to adopt successful EDC as well as
the organizational readiness aspect of the same. The two-
lens strategy made sure that the results are based not only
on measures of efficiency but also the reality of how an
enterprise-scale deployment works.

II. RELATED WORKS
Data Contracts

The data contracts have turned out to be an organized
method that contributes a contract between data producers
and consumers about schema, semantics, and quality
parameters [1]. Manual authoring of these contracts,
traditionally done in complex pipelines of Al, is prone to
error, either when data sources rapidly expand or change,
or when downstream models require several feeds to one
another. Contract generation is increasingly done on large
language models(LLMs), where schema or sample data
are converted into formal definitions such as JSON
schema and Avro.

Within those contexts, parameter-effective fine-tuning
(e.g., LoRA, PEFT) re-tunes LLMs on structured data
domains and gives proven, push-button contract artifacts
that absorb into contemporary information frameworks
like Databricks or Snowflake [1]. The current
computerized contract writing is a process that solves an
old challenge of decreasing the human work and
increasing accuracy when formulating rules. On synthetic
and real-world datasets, experiments have demonstrated
more than 70 percent improvement in the amount of
manual work with correctness in generated contracts
being high [1].

But automation brings its first challenges in form of
model hallucinations, service or contract drift, and version
knot, indicating the usefulness of governance frameworks
that mediate between intent and runtime behaviour that
can be regulated. These drawbacks tend to be of even
higher concern in Al pipelines especially when certain
issues hidden in the data may subtly proliferate and
compromise the model performance [2].

Data Quality Risks

Trust in Al pipelines ultimately relies on the input quality
on which they consume, process and feed models. The
latent data issues or the data smells would be imprecise
values, schema mismatches, or add-ons that would raise
the chances of the Al system to fail [2].

These faults are generally parallel to the term of code
smells in the field of software engineering, but in practice
one may have trouble in detecting the faults with more
confidence than that of the underlying machine learning
preprocessing pipelines. A long list of 36 data smells
organized into three categories in terms of believability,
understandability, and consistency has been suggested [2],
which provides a systematic foundation of automated
quality promotion which could be formalized into
executable data contracts.

Besides internal data issues, Al pipelines can also be
underspecified; that is, the wvarious predictors train
similarly well but their expected performance in the real
world can and will differ [3]. This problem is not the
same as domain shift; this emerges since pipelines might
construct several viable models which vary in implicit
manners without being perceived by training.
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As an example, it is possible that in clinical risk
prediction or computer vision, underspecified models can
pass all wvalidation tests but show unpredictable
performance drop once deployed in the wild [3].
Executable data contracts, with some form of drift-aware
monitoring, would serve as an early warning system with
the behavioural limits hard coded in the form of real-
world performance measures.

Adaptive anomaly detection and correction systems, sub-
second latency processing and multi-cloud scale are
already integrated into real-time data pipeline
frameworks, including the Al-Enhanced Cloud Data
Pipeline (AECDP) [4]. Nevertheless, throughput and
availability are generally the emphasis of these systems
and not semantic integrity. With combinations of adaptive
resource management in AECDP style and executable
data contracts, it becomes possible to build self-correcting
pipelines that, besides being scalable, can be of high
semantic fidelity even as data landscape evolve.

The other important aspect in pipeline reliability is
traceability. The process of data preparation defined

formally, as proposed in [5], makes it possible to recreate
results, conduct compliance audit and apply forensic
recovery of errors. Such formal specifications can be used
as the basis of executable data contracts, which can
extend them into runtime validation and the automatic
rollback in response to violations of the contract. This
shift of change-based documentation to the dynamic
enforcement also fills the loop gap between operational
assurance and specification.

Executable Data Contracts

Executable data contracts are based on the blockchain
concept of smart contracts-self-enforcing programs that
implement business logic without involving any manual
effort [6][10]. Smart contracts are used in circumstances
where money flows, chain of supply, and legal contracts
are made and this may involve formal specification to
make sure of correctness [10]. Nevertheless, legacy smart
contracts work on deterministic data, but probabilistic,
noisy, and changing data must be dealt with in case of Al
data contracts.
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The analogy becomes reinforced by the recent progress in
relation extraction models that are driving Al-based smart
contract automation so that being passed as unstructured
text in law, it can be structured and become enforceable
business rules [6].

This change is comparable to shifting of the business-
level rules concerning the quality of data into business Al
pipeline execution validators. Further, the formal
verification tools on the smart contract literature [10]
might be used to develop formal semantics on data
contracts to ensure that schema and semantic regulations
can be verified to hold under all the runtime conditions.

The application of the data contracts in controlled spheres
like the sphere of healthcare or sphere of the money
circulation also highlights the intersection with privacy,
copyright and compliance requirements. Such frameworks
as PETLP [7] prove the idea that the safeguards of the
legislation could be integrated into ETL processes, which
ensures the consistency of GDPR and work with such
sensitive sets of data as social media records. The same
can be true of executable data contracts: privacy can be
constrained, retention policies enacted and jurisdiction
specific rules enforceable along with the quality and

International Journal of Intelligent Systems and Applications in Engineering

JISAE, 2025, 13(1), 504513 |506



schema validators, both technologically and legally
sound.

One such reference architecture that holds the DataBench
Big Data and Al Pipeline Framework [8] could be used to
enable executable data contracts as an extension thereof.
It is possible to guarantee an end-to-end data protection
by incorporating contract enforcement check points at the
four canonical stages of data acquisition, preparation,
analytics and action/interaction. Also, the benchmarking
tools of the DataBench observatory may be adapted to
track the contracts compliance degrees, emergence of
drifts and decreases of incidents metrics.

Future Integration Strategies

The comprehension of the underlying causes of pipeline
unreliability is a key issue to help develop effective
executable data contracts. Taxonomy of 41 factors that
influence quality in data pipelines [9] presents major areas
that can be linked to possible contract clauses, which are
data, infrastructure, life cycle management, development
and deployment, and processing.

As an example, one can note the most common data issue
because which is wrong data types that have been
revealed to cause 33 percent of data problems [9], where
they can be considered as hard constraints on schema-
level contracts. In the same manner, compatibility
problems which are noticed as another category of
problems independent of the traditional ingestion and
transformation errors might be coded as inter-system
interoperability scripts.

The Stack Overflow and GitHub mining in [9]
underscores the long-standing challenges that developers
continue to encounter when addressing integration and
ingestion thus recommending that executable data
contracts must add integration level validation and
automatic compatibility tests. These kinds of contracts
would serve as a further CI/CD gate that will not pass
non-conforming data to downstream models.

The combination of smart contract verification principles
[10] and pipeline-specific taxonomies [9] and data smell
detection [2] forward the defense-in-depth multi-layered

defence. Contracts ensure type-safety and field presence
at the schema level, illustrate anomaly and latent data
smells at the semantic level and drift and under
specification-induced instability at the behavioral level

[3].

It would require an entire executable data contract system
thus:

1. Automated Authoring on the basis of LLMs to deliver
contract generation [1].

2. Formal Semantics took motivation to Smart contract
Verification [10].

3. AECDP style of adptive monitoring + Runtime
Enforcement [4].

4. Compliance As per the privacy-by-design of PETLP
[7].

5. DataBench-style networks provide the basis of
Ecosystem Benchmarking [8].

Preliminary evidence indicates that such a system can
decrease the rate of incidents in the Al pipeline by 40-
70%, dramatically decrease diagnosis times, particularly
in large scale, multi-cloud, and multi team settings.

IV. RESULTS
Pipeline Incidents

Tests of executable data contracts showed that reliability
of Al pipelines improved quantifiably on simulated
testbeds, and in real enterprise datasets. We implemented
the pro- posed framework in three large enterprise-scale
settings: a financial fraud detection system, a healthcare
claims analytics platform and a real-time e- commerce
recommendation engine. The main KPIs were incident
rate, average mean-time-to-diagnose (MTTD) and data
contract compliance rate.

Table 1 illustrates improvements on average during a 6-
month observation period with regards to pre-contract and
post-contract deployment.

Table 1 — Reduction in Incidents

Environment Incident Rate Incident Rate Reduction MTTD MTTD Reduction
Vi Before After uctt Before After uctt

Fraud Detection 12.3 6.5 472 9.8 4.1 58.2

Healthcare 15.7 8.9 433 12.4 6.3 49.2

Claims

E-commerce 18.4 5.7 69.0 14.6 4.9 66.4

These findings validate the guess that schema, semantic
and quality run time enforcement lessen the occurrence of
failures. The greatest advantage happened in the e-

commerce recommendation engine since there was a
regular schema drift based on a dynamic catalog update.

Below is an example of Python validation code, as would
be run in actual contracts:

1. from jsonschema import validate
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import json
contract_schema = {
"type": "object",
"properties": {
"user_id": {"type": "string"},

n.n "nn

2 ® Nk owD

"purchase amount": {"type": "number", "minimum": 0
p _ yp

}s
"required": ["user_id", "purchase_amount"]
10. }
11.
12. # Validate incoming payload
13. def enforce contract(payload):
14.  validate(instance=payload, schema=contract schema)
15. enforce contract({"user id": "U123", "purchase _amount": 59.99})

This kind of schema- level enforcement would be built in to ingestion levels that forbid incompatible information to get

to transformation levels.

Validation Time per Contract

457t

Time (sec)
w
o
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Drift-Aware Thresholds

Drift-aware monitoring was one of the necessary
attributes of the offered system. It is also on our part that
we have incorporated population stability index (PSI) and
Kolmogorov Smirnov (KS) tests such that there is
automatic contract revalidation or roll back.

Adding drift thresholds in experiments resulted in less of
an impairment to underspecified models [3]. In the
absence of drift-aware contracts, the models had an
average decrease of AUC of 0.07 after three months.
Included in contracts, this decline was only restricted up
to 0.02.
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Table 2 — Model Stability Metrics

Model/Application | AUC Without Contracts | AUC With Contracts | Improvement
Fraud Detection 0.08 0.03 62.5
Claims Prediction 0.06 0.02 66.7
Product Ranking 0.07 0.02 71.4

At run time, it employing a small fragment of minimalistic drift detection in the enforcement layer:

import numpy as np

return psi

A S AT G T o

actual perc, = np.histogram(actual, bins=bins)

actual perc = actual perc / np.sum(actual perc)

# Trigger revalidation if PSI > 0.25

def population_stability index(expected, actual, bins=10):

expected perc, = np.histogram(expected, bins=bins)

expected perc = expected perc / np.sum(expected_perc)

10. if population_stability index(train_data, live data) > 0.25:

11.  rollback model()

psi = np.sum((actual_perc - expected_perc) * np.log(actual perc / expected perc))

Combined with such drift-aware checks, this automation facilitated the possibility of automated rollbacks that did not
require any human interaction thus maintaining the continuity of the service.

Contract ID

Uptime Across Contracts

60

Uptime (%)

100
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Versioned Contract Registry

There was a need to be able audit the contracts and to
trace contracts by means of versioning. Any update in a
data contract such as schema update, threshold tuning or
semantic rule change was recorded in a contract registry

where they were assigned version labels, deployment

Table 3 — Contract Compliance

time, and rollback IDs.

Environment

Compliance Rate

Rollbacks | Major Causes

Fraud Detection 97.4 1 Field removal
Healthcare Claims | 95.1 2 Null value
E-commerce 92.8 3 Feature drift

After a year, the compliances rate (per cent of incoming
data meeting contract checks) and rate of rollback in the
version-controlled contract mechanism were analysed.

At e-commerce setting, the maximum rollback frequency was recorded, which shows volatility of data structure and
continuously changing product taxonomy at this setting.

Compliance Score vs Execution Cost

0.181

016

0.14

012

Execution Cost ($)

0.10

0.081

0.06

82.5 85.0

87.5 90.0

92.5 95.0 97.5
Compliance Score

An example of the contract registry managements API is depicted below:

100.0

—

class ContractRegistry:
def init (self):
self.contracts = {}

def register _contract(self, versio

def get contract(self, version):

registry = ContractRegistry()

¥ ® Nk wDd

n, schema, rules):

return self.contracts.get(version)

self.contracts[version] = {"schema": schema, "rules": rules}

registry.register _contract("v1.0", contract schema, {"max_null ratio": 0.05})
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This allowed instant rollback to earlier versions of
contracts and that was a real-life saver since schemas
wildly changed in a manner incompatible with
downstream expectations of the models.

Incident Taxonomy

Implementation in a cross-organizational setting
demonstrated that executable data contracts enhanced the
operational strength of a local pipeline as well as
transformed the preponderance of incident forms. More
than 50 percent of the failures experienced in pre-contract
deployments would be occasioned by schema mismatches
and latent data smells [2], [9]. After activation of the
contract, the occurrence of such issues dropped to less

than 15%, with most issues occurring being external API
outage, or third-party systems failing, or beyond the
capability of enforcement of contract.

The analysis of incidents found that in all the

environments three patterns existed:

1. Decrease of the conflict of compatibility brought
by cross-system validation of contracts.

2. Less of semantic violation, since domain specific
rules were applied up stream.

3. The reduced time that is taken to resolve is due
to the absolute nature of logs of violations that
are created in the course of ingestion.

Error Rate Distribution
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Error Rate (%)
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The contract enforcement system was checked on the
scalability under the workload of synthetic, high load
volumes (up to 1M records/min). The average validation

throughput increased with the allocation of more compute
resources in a linear way showing that the architecture can
be used successfully by both real-time and batch

latency per record stayed below 2ms, the system processing workloads.
Table 4 — Scalability Benchmark

Records | Validation Latency | Throughput Scaling
100,000 1.8 100
500,000 1.9 99.2
1,000,000 | 2.0 98.7

This is a performance profile that implies an overhead
expense of contract enforcement is small by comparison
to average pipeline processing times at extreme volumes.
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Latency Trends
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V. CONCLUSION

It is an established fact in this research that Executable
Data Contracts have the potential of achieving significant
data quality assurance, operations efficiency and
regulatory considerations being achieved, particularly in
those heterogeneous data environments where data is
being deployed in large volumes. Proving results used
empirical testing to show high levels of reductions in
defect rates and latency, both quantifiable as well as
increases in end-to-end data integrity. The deployment of
EDCs in CI/CD processes did not only decrease the
amount of human intervention during quality controls, but
also included the possibility of business and compliance
rules being enforced proactively on data before it comes
into the critical systems.

In governance terms, EDCs were well suited to regulated
environments such that auditability and real-time
administration of polices was non-negotiable. Automation
in the EDC system makes validation to be repeatable and
verifiable giving the auditor definite evidence of
compliance that can be executed. It turns data governance
into a preventive activity instead of the reactive one thus
saving on the cost and complexity of remedying the
damage.

There are caveats tied to EDCs use. Organizations are to
be fine-tuned to engage initial mass developing,
integration, and change management activities. There is a
high reliance required in engineering, governance and
compliance departments to implement EDCs, which
further emphasizes the fact that EDCs are more of a
change of organizational direction than a technical
improvement. Besides, it is important to make enough
design of versioning and backwards compatibility so as

not to break downstream dependencies when contracts
change.

The maturity framework that is proposed in this paper
will have a more systematic process in the adoption
starting with pilot projects in non-critical systems
followed by a hybrid running of enforcement in mission-
critical pipelines and finally having a standardization of
the whole organization. Such a phased implementation
has the lowest risk of operations since it will guarantee a
stable ROI.

EDCs are one of the key innovations in the process of
operationalization of data management and quality
assurance. The use of them helps organizations to
implement trust in their data landscape and encourages
technical enforcement to keep consistency with business
and regulatory needs. Essentially, EDCs offer proactive,
future-proof and scalable solution to enterprises that have
greater data complexity, regulatory compliance and cross-
platform integration requirements. Taking a strategic,
iterative approach to moving toward an EDCs-based
model can help organizations change their reactivity in
data-quality management to an automated and enforceable
culture of continuous, automated and enforced trust.
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