International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
IJISAE ENGINEERING

ISSN:2147-6799

www.ijisae.org Original Research Paper

Event-Driven Machine Learning Infrastructure: Performance
Benchmarking of Cloud Serverless Functions and Cloud Container-
Based Compute

Ishwar Bansal

Submitted: 02/01/2024 Revised: 15/02/2024 Accepted: 25/02/2024

Abstract: This paper assessed Cloud Container-Based Compute and Cloud Serverless Functions as serverless compute
platforms for running event-driven machine learning inference tasks. To mimic real-time event processing scenarios, both
platforms were benchmarked under the same settings using a common ML model and a variety of input payload sizes.
Measured and examined key performance indicators-including cold start delay, execution time, throughput, and cost-
efficiency. The findings showed that Cloud Serverless Functions had quicker execution times for smaller payloads and better
scalability under high concurrency, whereas Cloud Container-Based Compute had shorter cold start latency across all
resource configurations. While Cloud Container-Based Compute grew more affordable for bigger, long- running jobs, cost
study showed Cloud Serverless Functions was more affordable for lightweight, short-duration operations. The results
underlined the need of choosing compute platforms depending on particular workload needs since they showed important
trade-offs between performance and cost. This benchmarking study offers valuable insights for architects and developers
designing scalable, event-driven ML systems in cloud-native environments.

Keywords: Cloud Serverless Functions; Cloud Container-Based Compute; Serverless Computing;, Event-Driven
Architecture; Machine Learning Inference; Performance Benchmarking, Cold start; Execution Latency; Throughput, Cost
Analysis.

1. INTRODUCTION environment, Cloud Serverless Functions offers function-

based execution with little configuration and near-instant

The growing number of machine learning (ML) scaling. Though more people are using them, little

applications in real-time settings like fraud detection,
predictive maintenance, content moderation, and

comparative research has been done on how these
systems operate under different load scenarios on event-

recommendation systems has fueled the need for scalable, driven ML inference jobs.

responsive, and affordable computing backends. Where

inference queries are produced unpredictably and must be
completed with least latency, traditional infrastructure
approaches may fail to meet the dynamic and event-
driven character of modern ML workloads. Serverless
computing has developed as a fascinating paradigm in
reaction that fits the changing needs of ML inference
systems by providing autonomous scalability, event-
based invocation, and pay-as-you-go pricing structures.

Among the most notable serverless choices in the cloud
environment, Cloud Serverless Functions and Cloud
Container-Based Compute stand out for their event-
driven, flexible compute features. While Cloud
Container-Based ~ Compute lets container-based
applications with fine-grained control over resource
allocation and runtime

(Independent Researcher), USA
Aggarwalse@gmail.com, ORCID ID: 0009-0006-5865- 536X

Using a consistent machine learning inference workload
activated by simulated real-tinle events, this study sought
to benchmark the performance of Cloud Serverless
Functions and Cloud Container-Based Compute. Across
several resource configurations and input payload sizes,
key performance indicators including cold start latency,
warm execution time, throughput under concurrency, and
cost per inference were assessed. This study aimed to find
performance trade-offs and offer recommendations on
choosing the most suitable serverless compute platform
for various ML deployment situations by methodically
examining these aspects.

2. LITERATURE REVIEW

Sisak (2021) looked at cost-optimal deployment setups
for containerized event-driven systems on Cloud. The
study underlined the financial consequences of choosing
between Cloud Container-Based Compute and Cloud
Serverless Function, hence determining that the best
option was quite reliant on workload features as
task

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(17s),912-917 | 912

http://www.ijisae.org/
mailto:Aggarwalse@gmail.com

duration and invocation frequency. The results underlined
that whereas Cloud Serverless Function was beneficial
for short, occasional executions, Cloud Container-Based
Compute offered higher cost-efficiency for longer-
running workloads because of its fixed billing per second
approach.

Eismann (2023) concentrated on performance
engineering of serverless applications and systems. His
thesis included a methodical analysis of resource
allocation tactics in serverless settings, concurrency
control, and cold starts. The study showed that cold start
behavior was a significant bottleneck in latency-sensitive
applications and recommended design approaches to
address it. It also underlined the need of benchmarking
functions in realistic, event-driven contexts to evaluate
their fitness for production-grade loads.

Lekkala (2023) examined containerized and serverless
systems especially with relation to data pipelines. The
research discovered that whereas serverless alternatives
such as Cloud Serverless Functions provided simplicity
and fine-grained scaling, they created performance
uncertainty under huge data volumes. Conversely,
containerized services like Cloud Container-Based
Compute were more appropriate for workloads needing
pernlanent state, specialized dependencies, or greater
memory allocations since they enabled better control over
execution settings.

Arafath (2022) conducted a comparative study between
microservices and serverless architectures in the cloud.
The study showed that serverless systems enabled agile
deployment processes and lowered infrastructure
management burden. However, it also noted limitations
related to cold starts, limited execution duration, and
debugging complexity. The research backed hybrid
architecture strategies combining containerized
microservices with serverless functions to maximize the
benefits of both paradigms.

Scotton (2021) suggested an engineering framework for
scalable ML operations stressing the significance of
serverless backends in facilitating real-time inference and
elastic scaling. The system included automatic retraining
pipelines, model versioning, and serverless triggers. The
research found that event-driven serverless computing
was essential for lowering operational complexity and
improving the reactivity of ML systems.

RESEARCH METHODOLOGY

2.1. Research Design

The main goal of this paper was to compare how well
Cloud Serverless Functions and Cloud Container-Based
Compute handled event-driven machine learning
inference tasks. A quantitative, experimental research
strategy was used to guarantee a methodical and impartial
comparison between the two serverless compute
platforms. To evaluate different performance measures
including cold start delay, execution time, throughput,
and cost-efficiency, both systems were under the same
workloads, setups, and event triggers. The approach
allowed a controlled testing environment to mimic actual
deployment situations for ML inference jobs activated by
dynamic events.

2.2. Experimental Environment

All studies were run in the cloud environment,
specifically using the east data center. This area was
chosen because of its popularity and low latency
availability zones, which helped to reduce the effect of
regional performance differences. Pre-trained on the
CIFAR- 10 dataset, MobileNetV2 was the machine
learning inference model employed in the study. Its
lightweight character and applicability to real-time
classification tasks helped the model to be chosen.
Simulated events, simulating practical triggers like file
uploads and HTTP requests, were used to launch inference
tasks. While Cloud Container-Based Compute jobs were
started using Cloud Event Bridge and Cloud Container
Orchestration Service run task commands, Cloud
Serverless Functions was activated through Cloud API
Gateway and Cloud Storage event alerts.

2.3. Resource Configuration

Three computing setups were chosen across both systems
to provide fair testing and preserve consistency. These
setups had 512MB memory with

0.25 vCPU, 1024MB memory with 0.5 vCPU, and
2048MB memory with 1 vCPU. These levels reflected
typical deployment choices from low- resource to high-
resource allocations. While Cloud Container-Based
Compute containers were launched using Cloud
Container Orchestration Service with matching CPU and
memory requirements, container-based deployment with
bespoke runtime and memory tuning was used for Cloud
Serverless Functions. Every setup was evaluated under
the same event circumstances and payload sizes.

2.4. Benchmarking Metrics

Five main measures served as the basis of the
performance assessment. First, cold start time was

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(17s),912-917 | 913

assessed to quantify the time lag connected with starting
new container instances upon event arrival. For latency-
sensitive applications, this was especially important.
Warm container invocations were second recorded for
execution delay to assess real-time responsiveness. Third,
reflecting each platform's scalability, throughput was
computed from the number of successful inferences
processed per second under concurrent event loads.
Fourth, a cost study was done to identify the financial
consequences of running 1,000 inference queries under
every setup. At last, platform appropriateness was
evaluated considering use case features, hence balancing
performance and cost factors.

2.5. Data Collection Procedure

Every test was run 30 times per configuration to
guarantee accuracy and reproducibility. Load simulation
and response time monitoring were done using custom
Python scripts, Cloud Distributed Tracing Service for
latency tracing, and Cloud Monitoring Service for logs
and metrics. The testing scripts ran and parallelized calls
at different degrees of concurrency using the Boto3 SDK
and Locust framework. For statistical analysis,
performance logs were timestamped and compiled. To
investigate platform behavior under various data transport
and processing situations, the studies simulated three
payload sizes-small (50KB), medium (500KB), and big
(2MB).

2.6. Data Analysis Approach

Trends and performance variations between Cloud
Serverless Functions and Cloud Container-Based
Compute were found by averaging and organizing the
data gathered from every benchmarking run. Summarized
in tables, the findings revealed typical cold start
durations,

900
800
700
600

S O O

512MB / 0.25 vCPU

execution latencies, throughput numbers, and anticipated
expendiulres for every setup. These total figures guided
observation interpretation; emphasis was placed on the
trade-offs between expense and performance. Visual
analysis techniques were also used to represent platform
behaviors under different workload sizes and compute
allocations.

3. RESULTS AND DISCUSSION

The empirical findings from the performance
benchmarking of Cloud Serverless Functions and Cloud
Container-Based Compute in running event-driven
machine learning inference tasks were reported in this
part. Identical conditions governed testing on each
platform; the resulting data was examined to provide
insights on execution delay, cold start behavior,
throughput, scalability, and cost-efficiency. The
discussion provided a comparative interpretation of the
results and identified key trade-offs involved in selecting
a serverless computing backend for machine learning
applications.

3.1. Cold Start Performance

Cold starts occurred when the serverless platform needed
to provision a new container instance for processing an
event. This behavior was particularly critical for low-
latency applications.

Table 1: Average Cold Start Time (ms)

Configuration Cloud Cloud
(Memory/CPU) Serverless | Container-

Function | Based
Compute

512MB/0.25 vCPU | 820ms 520ms

1024MB /0.5 vCPU | 690ms 480ms

2048MB / I vCPU 590 ms 430ms

500
40
30
20
100
0

1024MB/ 0.5 vCPU 2048MB /1 vCPU

m Cloud Serverless Functions BCloud Container-Based Compute

Figure 1: Average Cold Stall Time (ms)

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(17s),912-917 | 914

Across all evaluated resource settings, Table 1 reveals
that Cloud Container-Based Compute regularly had lower
average cold start times than Cloud Serverless Functions.
Specifically, Cloud Container-Based Compute cold start
latency varied from

520 ms at 512MB/0.25 vCPU to 430 ms at
2048MB/1 vCPU, whereas Cloud Serverless Function's
cold start delays were higher, startingat 820 msand
increasing to 590 ms with more resources. This implies
that container-based design gains from a more persistent
runtime environment, which leads to quicker startup
times. Though Cloud Serverless Function's cold start
latency got better with more RAM allocation- probably
because of more CPU availability-it was still slower than
Cloud Container-Based Compute, suggesting that Cloud
Container-Based Compute would be more appropriate
for latency-sensitive apps needing fast initiation.

800
700
600
500
400
300
200

100 I

Small (50KB)

Medium (500KB)

3.2. Execution Latency (Warm Invocations)

This metric reflected the total time taken to execute an
event-driven ML inference request once the container
was already warm.

Table 2: Average Execution Latency (ms) -
Warm Starts

Payload Size Cloud Cloud
Serverless Container-
Function Based

Compute

Small (50KB) 150 ms 160ms

Medium 310 ms 290ms

(500KB)

Large (2MB) 720ms 670ms

Large (2MB)

m Cloud Serverless Functions mCloud Container-Based C¢mpute

Figurn 2: Average Execution Latency (ms) - Warm Starts

With an average delay of 150 ms compared to Cloud
Container-Based Compute 160 ms, the statistics on
execution latency for warm invocations indicated that
Cloud Serverless Functions performed somewhat better
while managing tiny payloads. Though, as the payload
size rose to medium (500KB) and large (2MB), Cloud
Container-Based Compute started to beat Cloud
Serverless Function, indicating reduced execution
latencies of 290 ms and 670 ms correspondingly, whereas
Cloud Serverless Function's delay rose to 310 ms and 720
ms. This trend implied that while Cloud Container-Based
Compute containerized architecture provided more
consistent and efficient processing for bigger payloads,
probably because of superior 1/0 management and
resource allocation, Cloud Serverless Function’s
lightweight function invocation paradigm delivered
quicker reaction times for smaller inputs.

International Journal of Intelligent Systems and Applications in Engineering

3.3. Throughput and Scalability

The platforms were evaluated for their ability to handle
concurrent invocations and maintain performance under
load.

Table 3: Max Throughput (Requests/sec)

Concurrent Cloud Cloud
Usel s Serverless Container-
Based
Compute
50 48 req/s 45 req/s
100 92 req/s 87 req/s
200 178 req/s 165 req/s

IJISAE, 2024, 12(17s),912-917 | 915

200
180
160
140
120
100

80

60

40
20

50

m Cloud Serverless

100 200

m Cloud

Container-Based Compute

Figure 3: Max Throughput (Requests/sec)

The throughput findings under different concurrent user
loads showed that Cloud Serverless Functions regularly
processed more requests per second than Cloud
Container-Based Compute. Cloud Serverless Function
handled 48 requests per second at 50 concurrent users,
just exceeding Cloud Container-Based Compute 45
requests per second. With rising concurrency, this
performance difference grew; at 100 and 200 users,
respectively, Cloud Serverless Function reached 92 and
178 requests per second, whereas Cloud Container-Based
Compute managed 87 and 165 requests per second for the
same loads. These results suggested that while Cloud
Container-Based Compute task-based scaling was more
resource-intensive and somewhat slower, Cloud
Serverless Function's architecture let it scale more
aggressively and quickly by duplicating function
instances to satisfy demand. Therefore, Cloud Serverless
Function seemed more appropriate for tasks needing fast
elasticity and great concurrency.

34. Cost Analysis

Cost-effectiveness was evaluated based on 1,000
inference executions per configuration.

Table 4: Cost per 1,000 Requests (USO)

Configuration Cloud Cloud
Serverless Container-
Based Compute
512MB | 025 | 0.36 0.44
vCPU
1024MB 7 0.5 0.49 0.48
vCPU
2048MB I 1072 0.65
vCPU

Table 4 shows the price per thousand requests for
Cloud Container-Based Compute and Cloud Serverless
Functions under various resource settings.

International Journal of Intelligent Systems and Applications in Engineering

Charging$0.36 to Compute $0.44, Functions was more
cost-effective at the lowest configuration (512MB / 0.25
vCPU). But, as the resource allocation rose to 1024MB /
0.5 vCPU, the prices for both systems became almost the
same, with Cloud Serverless Function costing $0.49 and
Cloud Container-Based Compute marginally lower at
$0.48. Cloud Container-Based Compute, at $0.65 per
1,000 requests, was more affordable at the top setup
(2048MB / 1 vCPU) than Cloud Serverless Function's
$0.72. These results indicated that while Cloud Serverless
Function's pay-per-invocation pricing model offered better
cost-efficiency for smaller and short-duration tasks, Cloud
Container-Based Compute pricing structure became more
advantageous for workloads requiring higher compute
resources and longer execution times. This underlined the
need of matching platform selection with certain workload
traits to maximize operational expenses.

CONCLUSION

For event-driven machine learning inference tasks, this
work offered a thorough performance benchmarking of
Cloud Serverless Functions and Cloud Container-Based
Compute. The findings showed that depending on the
workload features and deployment goals, each platform
had unique benefits. For latency-sensitive apps needing
fast container startup, Cloud Container-Based Compute
was a more appropriate option since it regularly beat
Cloud Serverless Functions in cold start times.
Conversely, Cloud Serverless Functions demonstrated
better execution latency for smaller payloads and
provided greater dynamic scalability under high
concurrency, stressing its effectiveness for lightweight,
burst-driven ML jobs. Throughput-wise, both systems
scaled well, but Cloud Serverless Function's stateless,
function-based design caused it to have a more aggressive
auto-scaling reaction. Cost studies showed that although
Cloud Serverless Functions was more affordable for low-
resource, short-lived workloads, Cloud Container-Based
Compute grew more cost-effective

for longer-running jobs at greater compute

IJISAE, 2024, 12(17s),912-917 | 916

allocations. The analysis found that individual workload
needs-especially with regard to payload size, latency
tolerance, concurrency levels, and cost sensitivity-should
drive choice between Cloud Serverless Functions and
Cloud Container-Based Compute. Using the best features
of both systems, a hybrid deployment approach might
potentially be considered to maximize performance and
cost in practical ML applications.

REFERENCES

[1) A. Rose, Performance Evaluation of Serverless
Object, Ph.D. dissertation, California State
University, Northridge, 2023.

[2) B. N. Y. Arafath, A comparative study between
microservices and serverless in the cloud, Master's
thesis, OsloMet- storbyuniversitetet, 2022.

[3) C. Lekkala, "Containerization vs. Serverless
Architectures for Data Pipelines," Serverless
Architectures for Data Pipelines, Feb. 1, 2023.

[4) D. M. Naranjo, S. Risco, G. Molt6, and 1. Blanquer,
"A serverless gateway for event- driven machine
learning inference in multiple clouds," Concurrency
and Computation: Practice and Experience, vol. 35,
no. 18, p. 6728, 2023.

[5) G. Kambala, "Cloud-Native Architectures: A
Comparative Analysis of Kubernetes and
Serverless Computing," 2023.

[6) I. Goswami, "Serverless Architecture for Machine
Learning," 2023.

[7) J. J. Paul, Distributed Serverless Architectures on
AWS, Berkeley, CA, 2023.

[8) L. Scotton, Engineering framework for scalable
machine learning operations, 2021.

[9) M. Rahman, "Serverless cloud computing: a
comparative analysis of performance, cost, and
developer expenences in container-level services,"
2023.

[IO]M. Sisak, Cost-optimal AWS Deployment
Configuration for Containerized Event-driven
Systems, Ph.D. dissertation, 2021.

[IN. Kodakandla, "Serverless Architectures: A
Comparative Study of Performance,
Scalability, and Cost m Cloud-native
Applications," Iconic Research and

Engineering Journals, vol. 5, no. 2, pp. 136-
150, 2021.

[12]P. Grzesik, D.R. Augustyn, L. Wycislik, and
D. Mrozek, "Serverless computing in omics data
analysis and integration,” Briefings in
Bioinformatics, vol. 23, no. 1, p. bbab349, 2022.

[13)S. Eismann, Performance Engineering of Serverless
Applications and Platforms, Ph.D. dissertation,
Universitat Wiirzburg, 2023.

[14]S. R. Gallardo, Serverless strategies and tools in the
cloud computing continuum, Ph.D. dissertation,
Universitat Politecnica de Valencia, 2023.

[IS)V. Naik, Machine Learning Using Serverless
Computing, 2021.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(17s),912-917 | 917

	1. INTRODUCTION
	2. LITERATURE REVIEW
	2.5. Data Collection Procedure
	2.6. Data Analysis Approach
	3. RESULTS AND DISCUSSION
	3.1. Cold Start Performance
	Table 1: Average Cold Start Time (ms)
	Figure 1: Average Cold Sta11 Time (ms)
	3.2. Execution Latency (Warm Invocations)
	Table 2: Average Execution Latency (ms) -
	Figurn 2: Average Execution Latency (ms) - Warm Starts
	3.3. Throughput and Scalability
	Table 3: Max Throughput (Requests/sec)
	Figure 3: Max Throughput (Requests/sec)
	3.4. Cost Analysis
	Table 4: Cost per 1,000 Requests (USO)
	CONCLUSION

