
IJISAE, 2024, 12(17s), 912-917 I 912 International Journal of Intelligent Systems and Applications in Engineering

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-6799 www.ijisae.org Original Research Paper

Event-Driven Machine Learning Infrastructure: Performance

Benchmarking of Cloud Serverless Functions and Cloud Container-

Based Compute

lshwar Bansal

Submitted: 02/01/2024 Revised: 15/02/2024 Accepted: 25/02/2024

Abstract: This paper assessed Cloud Container-Based Compute and Cloud Serverless Functions as serverless compute

platforms for running event-driven machine learning inference tasks. To mimic real-time event processing scenarios, both

platforms were benchmarked under the same settings using a common ML model and a variety of input payload sizes.

Measured and examined key performance indicators-including cold start delay, execution time, throughput, and cost-

efficiency. The findings showed that Cloud Serverless Functions had quicker execution times for smaller payloads and better

scalability under high concurrency, whereas Cloud Container-Based Compute had shorter cold start latency across all

resource configurations. While Cloud Container-Based Compute grew more affordable for bigger, long­ running jobs, cost

study showed Cloud Serverless Functions was more affordable for lightweight, short-duration operations. The results

underlined the need of choosing compute platforms depending on particular workload needs since they showed important

trade-offs between performance and cost. This benchmarking study offers valuable insights for architects and developers

designing scalable, event-driven ML systems in cloud-native environments.

Keywords: Cloud Serverless Functions; Cloud Container-Based Compute; Serverless Computing; Event-Driven

Architecture; Machine Learning Inference; Performance Benchmarking; Cold start; Execution Latency; Throughput; Cost

Analysis.

1. INTRODUCTION

The growing number of machine learning (ML)

applications in real-time settings like fraud detection,

predictive maintenance, content moderation, and

recommendation systems has fueled the need for scalable,

responsive, and affordable computing backends. Where

inference queries are produced unpredictably and must be

completed with least latency, traditional infrastructure

approaches may fail to meet the dynamic and event-

driven character of modern ML workloads. Serverless

computing has developed as a fascinating paradigm in

reaction that fits the changing needs of ML inference

systems by providing autonomous scalability, event-

based invocation, and pay-as-you-go pricing structures.

Among the most notable serverless choices in the cloud

environment, Cloud Serverless Functions and Cloud

Container-Based Compute stand out for their event-

driven, flexible compute features. While Cloud

Container-Based Compute lets container-based

applications with fine-grained control over resource

allocation and runtime

 (Independent Researcher), USA

Aggarwalse@gmail.com, ORCID ID: 0009-0006-5865- 536X

environment, Cloud Serverless Functions offers function-

based execution with little configuration and near-instant

scaling. Though more people are using them, little

comparative research has been done on how these

systems operate under different load scenarios on event-

driven ML inference jobs.

Using a consistent machine learning inference workload

activated by simulated real-tin1e events, this study sought

to benchmark the performance of Cloud Serverless

Functions and Cloud Container-Based Compute. Across

several resource configurations and input payload sizes,

key performance indicators including cold start latency,

warm execution time, throughput under concurrency, and

cost per inference were assessed. This study aimed to find

performance trade-offs and offer recommendations on

choosing the most suitable serverless compute platform

for various ML deployment situations by methodically

examining these aspects.

2. LITERATURE REVIEW

Sisak (2021) looked at cost-optimal deployment setups

for containerized event-driven systems on Cloud. The

study underlined the financial consequences of choosing

between Cloud Container-Based Compute and Cloud

Serverless Function, hence determining that the best

option was quite reliant on workload features as

task

http://www.ijisae.org/
mailto:Aggarwalse@gmail.com

IJISAE, 2024, 12(17s), 912-917 I 913 International Journal of Intelligent Systems and Applications in Engineering

duration and invocation frequency. The results underlined

that whereas Cloud Serverless Function was beneficial

for short, occasional executions, Cloud Container-Based

Compute offered higher cost-efficiency for longer-

running workloads because of its fixed billing per second

approach.

Eismann (2023) concentrated on performance

engineering of serverless applications and systems. His

thesis included a methodical analysis of resource

allocation tactics in serverless settings, concurrency

control, and cold starts. The study showed that cold start

behavior was a significant bottleneck in latency-sensitive

applications and recommended design approaches to

address it. It also underlined the need of benchmarking

functions in realistic, event-driven contexts to evaluate

their fitness for production-grade loads.

Lekkala (2023) examined containerized and serverless

systems especially with relation to data pipelines. The

research discovered that whereas serverless alternatives

such as Cloud Serverless Functions provided simplicity

and fine-grained scaling, they created performance

uncertainty under huge data volumes. Conversely,

containerized services like Cloud Container-Based

Compute were more appropriate for workloads needing

pern1anent state, specialized dependencies, or greater

memory allocations since they enabled better control over

execution settings.

Arafath (2022) conducted a comparative study between

microservices and serverless architectures in the cloud.

The study showed that serverless systems enabled agile

deployment processes and lowered infrastructure

management burden. However, it also noted limitations

related to cold starts, limited execution duration, and

debugging complexity. The research backed hybrid

architecture strategies combining containerized

microservices with serverless functions to maximize the

benefits of both paradigms.

Scotton (2021) suggested an engineering framework for

scalable ML operations stressing the significance of

serverless backends in facilitating real-time inference and

elastic scaling. The system included automatic retraining

pipelines, model versioning, and serverless triggers. The

research found that event-driven serverless computing

was essential for lowering operational complexity and

improving the reactivity of ML systems.

RESEARCH METHODOLOGY

2.1. Research Design

The main goal of this paper was to compare how well

Cloud Serverless Functions and Cloud Container-Based

Compute handled event-driven machine learning

inference tasks. A quantitative, experimental research

strategy was used to guarantee a methodical and impartial

comparison between the two serverless compute

platforms. To evaluate different performance measures

including cold start delay, execution time, throughput,

and cost-efficiency, both systems were under the same

workloads, setups, and event triggers. The approach

allowed a controlled testing environment to mimic actual

deployment situations for ML inference jobs activated by

dynamic events.

2.2. Experimental Environment

All studies were run in the cloud environment,

specifically using the east data center. This area was

chosen because of its popularity and low latency

availability zones, which helped to reduce the effect of

regional performance differences. Pre-trained on the

CIFAR- 10 dataset, MobileNetV2 was the machine

learning inference model employed in the study. Its

lightweight character and applicability to real-time

classification tasks helped the model to be chosen.

Simulated events, simulating practical triggers like file

uploads and HTTP requests, were used to launch inference

tasks. While Cloud Container-Based Compute jobs were

started using Cloud Event Bridge and Cloud Container

Orchestration Service run task commands, Cloud

Serverless Functions was activated through Cloud API

Gateway and Cloud Storage event alerts.

2.3. Resource Configuration

Three computing setups were chosen across both systems

to provide fair testing and preserve consistency. These

setups had 512MB memory with

0.25 vCPU, 1024MB memory with 0.5 vCPU, and

2048MB memory with 1 vCPU. These levels reflected

typical deployment choices from low­ resource to high-

resource allocations. While Cloud Container-Based

Compute containers were launched using Cloud

Container Orchestration Service with matching CPU and

memory requirements, container-based deployment with

bespoke runtime and memory tuning was used for Cloud

Serverless Functions. Every setup was evaluated under

the same event circumstances and payload sizes.

2.4. Benchmarking Metrics

Five main measures served as the basis of the

performance assessment. First, cold start time was

IJISAE, 2024, 12(17s), 912-917 I 914 International Journal of Intelligent Systems and Applications in Engineering

assessed to quantify the time lag connected with starting

new container instances upon event arrival. For latency-

sensitive applications, this was especially important.

Warm container invocations were second recorded for

execution delay to assess real-time responsiveness. Third,

reflecting each platform's scalability, throughput was

computed from the number of successful inferences

processed per second under concurrent event loads.

Fourth, a cost study was done to identify the financial

consequences of running 1,000 inference queries under

every setup. At last, platform appropriateness was

evaluated considering use case features, hence balancing

performance and cost factors.

2.5. Data Collection Procedure

Every test was run 30 times per configuration to

guarantee accuracy and reproducibility. Load simulation

and response time monitoring were done using custom

Python scripts, Cloud Distributed Tracing Service for

latency tracing, and Cloud Monitoring Service for logs

and metrics. The testing scripts ran and parallelized calls

at different degrees of concurrency using the Boto3 SDK

and Locust framework. For statistical analysis,

performance logs were timestamped and compiled. To

investigate platform behavior under various data transport

and processing situations, the studies simulated three

payload sizes-small (50KB), medium (500KB), and big

(2MB).

2.6. Data Analysis Approach

Trends and performance variations between Cloud

Serverless Functions and Cloud Container-Based

Compute were found by averaging and organizing the

data gathered from every benchmarking run. Summarized

in tables, the findings revealed typical cold start

durations,

execution latencies, throughput numbers, and anticipated

expendiu1res for every setup. These total figures guided

observation interpretation; emphasis was placed on the

trade-offs between expense and performance. Visual

analysis techniques were also used to represent platform

behaviors under different workload sizes and compute

allocations.

3. RESULTS AND DISCUSSION

The empirical findings from the performance

benchmarking of Cloud Serverless Functions and Cloud

Container-Based Compute in running event-driven

machine learning inference tasks were reported in this

part. Identical conditions governed testing on each

platform; the resulting data was examined to provide

insights on execution delay, cold start behavior,

throughput, scalability, and cost-efficiency. The

discussion provided a comparative interpretation of the

results and identified key trade-offs involved in selecting

a serverless computing backend for machine learning

applications.

3.1. Cold Start Performance

Cold starts occurred when the serverless platform needed

to provision a new container instance for processing an

event. This behavior was particularly critical for low-

latency applications.

Table 1: Average Cold Start Time (ms)

900

800

700

600

500

400

300

200

100

0

512MB / 0.25 vCPU 1024MB / 0.5 vCPU 2048MB / I vCPU

■ Cloud Serverless Functions ■Cloud Container-Based Compute

Figure 1: Average Cold Sta11 Time (ms)

Configuration

(Memory/CPU)

Cloud

Serverless

Function

Cloud

Container-

Based

Compute

512MB I 0.25 vCPU 820ms 520ms

1024MB I 0.5 vCPU 690ms 480ms

2048MB I I vCPU 590 ms 430ms

IJISAE, 2024, 12(17s), 912-917 I 915 International Journal of Intelligent Systems and Applications in Engineering

I

Across all evaluated resource settings, Table 1 reveals

that Cloud Container-Based Compute regularly had lower

average cold start times than Cloud Serverless Functions.

Specifically, Cloud Container-Based Compute cold start

latency varied from

520 ms at 512MB/0.25 vCPU to 430 ms at

2048MB/l vCPU, whereas Cloud Serverless Function's

cold start delays were higher, starting at 820 ms and

increasing to 590 ms with more resources. This implies

that container-based design gains from a more persistent

runtime environment, which leads to quicker startup

times. Though Cloud Serverless Function's cold start

latency got better with more RAM allocation­ probably

because of more CPU availability-it was still slower than

Cloud Container-Based Compute, suggesting that Cloud

Container-Based Compute would be more appropriate

for latency-sensitive apps needing fast initiation.

3.2. Execution Latency (Warm Invocations)

This metric reflected the total time taken to execute an

event-driven ML inference request once the container

was already warm.

Table 2: Average Execution Latency (ms) -

Warm Starts

Payload Size Cloud

Serverless

Function

Cloud

Container-

Based

Compute

Small (50KB) 150 ms 160ms

Medium

(500KB)

310 ms 290ms

Large (2MB) 720ms 670ms

800

700

600

500

400

300

200

100

0

I
Small (50KB)

Medium (500KB)

Large (2MB)

■ Cloud Serverless Functions ■Cloud Container-Based Compute

Figurn 2: Average Execution Latency (ms) - Warm Starts

With an average delay of 150 ms compared to Cloud

Container-Based Compute 160 ms, the statistics on

execution latency for warm invocations indicated that

Cloud Serverless Functions performed somewhat better

while managing tiny payloads. Though, as the payload

size rose to medium (500KB) and large (2MB), Cloud

Container-Based Compute started to beat Cloud

Serverless Function, indicating reduced execution

latencies of 290 ms and 670 ms correspondingly, whereas

Cloud Serverless Function's delay rose to 310 ms and 720

ms. This trend implied that while Cloud Container-Based

Compute containerized architecture provided more

consistent and efficient processing for bigger payloads,

probably because of superior 1/0 management and

resource allocation, Cloud Serverless Function’s

lightweight function invocation paradigm delivered

quicker reaction times for smaller inputs.

3.3. Throughput and Scalability

The platforms were evaluated for their ability to handle

concurrent invocations and maintain performance under

load.

Table 3: Max Throughput (Requests/sec)

Concurrent

Use1·s

Cloud

Serverless
Cloud

Container-

Based

Compute

50 48 req/s 45 req/s

100 92 req/s 87 req/s

200 178 req/s 165 req/s

IJISAE, 2024, 12(17s), 912-917 I 916 International Journal of Intelligent Systems and Applications in Engineering

II

200

180

160

140

120

100

80

60

40

20

0

I

50 100

■ Cloud Serverless ■ Cloud

Container-Based Compute

200

Figure 3: Max Throughput (Requests/sec)

The throughput findings under different concurrent user

loads showed that Cloud Serverless Functions regularly

processed more requests per second than Cloud

Container-Based Compute. Cloud Serverless Function

handled 48 requests per second at 50 concurrent users,

just exceeding Cloud Container-Based Compute 45

requests per second. With rising concurrency, this

performance difference grew; at 100 and 200 users,

respectively, Cloud Serverless Function reached 92 and

178 requests per second, whereas Cloud Container-Based

Compute managed 87 and 165 requests per second for the

same loads. These results suggested that while Cloud

Container-Based Compute task-based scaling was more

resource-intensive and somewhat slower, Cloud

Serverless Function's architecture let it scale more

aggressively and quickly by duplicating function

instances to satisfy demand. Therefore, Cloud Serverless

Function seemed more appropriate for tasks needing fast

elasticity and great concurrency.

3.4. Cost Analysis

Cost-effectiveness was evaluated based on 1,000

inference executions per configuration.

Table 4: Cost per 1,000 Requests (USO)

Configuration Cloud

Serverless

Cloud

Container-

Based Compute

512MB I 0.25

vCPU

0.36 0.44

1024MB I 0.5

vCPU

0.49 0.48

2048MB I 1

vCPU

0.72 0.65

Table 4 shows the price per thousand requests for

Cloud Container-Based Compute and Cloud Serverless

Functions under various resource settings.

Charging$0.36 to Compute $0.44, Functions was more

cost-effective at the lowest configuration (512MB / 0.25

vCPU). But, as the resource allocation rose to 1024MB /

0.5 vCPU, the prices for both systems became almost the

same, with Cloud Serverless Function costing $0.49 and

Cloud Container-Based Compute marginally lower at

$0.48. Cloud Container-Based Compute, at $0.65 per

1,000 requests, was more affordable at the top setup

(2048MB / 1 vCPU) than Cloud Serverless Function's

$0.72. These results indicated that while Cloud Serverless

Function's pay-per-invocation pricing model offered better

cost-efficiency for smaller and short-duration tasks, Cloud

Container-Based Compute pricing structure became more

advantageous for workloads requiring higher compute

resources and longer execution times. This underlined the

need of matching platform selection with certain workload

traits to maximize operational expenses.

CONCLUSION

For event-driven machine learning inference tasks, this

work offered a thorough performance benchmarking of

Cloud Serverless Functions and Cloud Container-Based

Compute. The findings showed that depending on the

workload features and deployment goals, each platform

had unique benefits. For latency-sensitive apps needing

fast container startup, Cloud Container-Based Compute

was a more appropriate option since it regularly beat

Cloud Serverless Functions in cold start times.

Conversely, Cloud Serverless Functions demonstrated

better execution latency for smaller payloads and

provided greater dynamic scalability under high

concurrency, stressing its effectiveness for lightweight,

burst-driven ML jobs. Throughput-wise, both systems

scaled well, but Cloud Serverless Function's stateless,

function-based design caused it to have a more aggressive

auto-scaling reaction. Cost studies showed that although

Cloud Serverless Functions was more affordable for low-

resource, short-lived workloads, Cloud Container-Based

Compute grew more cost-effective

for longer-running jobs at greater compute

IJISAE, 2024, 12(17s), 912-917 I 917 International Journal of Intelligent Systems and Applications in Engineering

allocations. The analysis found that individual workload

needs-especially with regard to payload size, latency

tolerance, concurrency levels, and cost sensitivity-should

drive choice between Cloud Serverless Functions and

Cloud Container-Based Compute. Using the best features

of both systems, a hybrid deployment approach might

potentially be considered to maximize performance and

cost in practical ML applications.

REFERENCES

[1) A. Rose, Performance Evaluation of Serverless

Object, Ph.D. dissertation, California State

University, Northridge, 2023.

[2) B. N. Y. Arafath, A comparative study between

microservices and serverless in the cloud, Master's

thesis, OsloMet­ storbyuniversitetet, 2022.

[3) C. Lekkala, "Containerization vs. Serverless

Architectures for Data Pipelines," Serverless

Architectures for Data Pipelines, Feb. 1, 2023.

[4) D. M. Naranjo, S. Risco, G. Molt6, and I. Blanquer,

"A serverless gateway for event­ driven machine

learning inference in multiple clouds," Concurrency

and Computation: Practice and Experience, vol. 35,

no. 18, p. e6728, 2023.

[5) G. Kambala, "Cloud-Native Architectures: A

Comparative Analysis of Kubernetes and

Serverless Computing," 2023.

[6) I. Goswami, "Serverless Architecture for Machine

Learning," 2023.

[7) J. J. Paul, Distributed Serverless Architectures on

AWS, Berkeley, CA, 2023.

[8) L. Scotton, Engineering framework for scalable

machine learning operations, 2021.

[9) M. Rahman, "Serverless cloud computing: a

comparative analysis of performance, cost, and

developer expenences in container-level services,"

2023.

[lO]M. Sisak, Cost-optimal AWS Deployment

Configuration for Containerized Event-driven

Systems, Ph.D. dissertation, 2021.

[ll]N. Kodakandla, "Serverless Architectures: A

Comparative Study of Performance,

Scalability, and Cost m Cloud-native

Applications," Iconic Research and

Engineering Journals, vol. 5, no. 2, pp. 136-

150, 2021.

[12]P. Grzesik, D.R. Augustyn, L. Wycislik, and

D. Mrozek, "Serverless computing in omics data

analysis and integration," Briefings in

Bioinformatics, vol. 23, no. 1, p. bbab349, 2022.

[13)S. Eismann, Performance Engineering of Serverless

Applications and Platforms, Ph.D. dissertation,

Universitat Wiirzburg, 2023.

[14]S. R. Gallardo, Serverless strategies and tools in the

cloud computing continuum, Ph.D. dissertation,

Universitat Politecnica de Valencia, 2023.

[lS)V. Naik, Machine Learning Using Serverless

Computing, 2021.

	1. INTRODUCTION
	2. LITERATURE REVIEW
	2.5. Data Collection Procedure
	2.6. Data Analysis Approach
	3. RESULTS AND DISCUSSION
	3.1. Cold Start Performance
	Table 1: Average Cold Start Time (ms)
	Figure 1: Average Cold Sta11 Time (ms)
	3.2. Execution Latency (Warm Invocations)
	Table 2: Average Execution Latency (ms) -
	Figurn 2: Average Execution Latency (ms) - Warm Starts
	3.3. Throughput and Scalability
	Table 3: Max Throughput (Requests/sec)
	Figure 3: Max Throughput (Requests/sec)
	3.4. Cost Analysis
	Table 4: Cost per 1,000 Requests (USO)
	CONCLUSION

