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Abstract: This paper assessed Cloud Container-Based Compute and Cloud Serverless Functions as serverless compute 

platforms for running event-driven machine learning inference tasks. To mimic real-time event processing scenarios, both 

platforms were benchmarked under the same settings using a common ML model and a variety of input payload sizes. 

Measured and examined key performance indicators-including cold start delay, execution time, throughput, and cost-

efficiency. The findings showed that Cloud Serverless Functions had quicker execution times for smaller payloads and better 

scalability under high concurrency, whereas Cloud Container-Based Compute had shorter cold start latency across all 

resource configurations. While Cloud Container-Based Compute grew more affordable for bigger, long­ running jobs, cost 

study showed Cloud Serverless Functions was more affordable for lightweight, short-duration operations. The results 

underlined the need of choosing compute platforms depending on particular workload needs since they showed important 

trade-offs between performance and cost. This benchmarking study offers valuable insights for architects and developers 

designing scalable, event-driven ML systems in cloud-native environments. 

Keywords: Cloud Serverless Functions; Cloud Container-Based Compute; Serverless Computing; Event-Driven 

Architecture; Machine Learning Inference; Performance Benchmarking; Cold start; Execution Latency; Throughput; Cost 

Analysis. 

1. INTRODUCTION 

The growing number of machine learning (ML) 

applications in real-time settings like fraud detection, 

predictive maintenance, content moderation, and 

recommendation systems has fueled the need for scalable, 

responsive, and affordable computing backends. Where 

inference queries are produced unpredictably and must be 

completed with least latency, traditional infrastructure 

approaches may fail to meet the dynamic and event-

driven character of modern ML workloads. Serverless 

computing has developed as a fascinating paradigm in 

reaction that fits the changing needs of ML inference 

systems by providing autonomous scalability, event-

based invocation, and pay-as-you-go pricing structures. 

Among the most notable serverless choices in the cloud 

environment, Cloud Serverless Functions and Cloud 

Container-Based Compute stand out for their event-

driven, flexible compute features. While Cloud 

Container-Based Compute lets container-based 

applications with fine-grained control  over  resource  

allocation  and  runtime 
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environment, Cloud Serverless Functions offers function-

based execution with little configuration and near-instant 

scaling. Though more people are using them, little 

comparative research has been done on how these 

systems operate under different load scenarios on event-

driven ML inference jobs. 

Using a consistent machine learning inference workload 

activated by simulated real-tin1e events, this study sought 

to benchmark the performance of Cloud Serverless 

Functions and Cloud Container-Based Compute. Across 

several resource configurations and input payload sizes, 

key performance indicators including cold start latency, 

warm execution time, throughput under concurrency, and 

cost per inference were assessed. This study aimed to find 

performance trade-offs and offer recommendations on 

choosing the most suitable serverless compute platform 

for various ML deployment situations by methodically 

examining these aspects. 

2. LITERATURE REVIEW 

Sisak (2021) looked at cost-optimal deployment setups 

for containerized event-driven systems on Cloud. The 

study underlined the financial consequences of choosing 

between Cloud Container-Based Compute and Cloud 

Serverless Function, hence determining that the best 

option was quite reliant on workload features as 

task 
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duration and invocation frequency. The results underlined 

that whereas Cloud Serverless Function was beneficial 

for short, occasional executions, Cloud Container-Based 

Compute offered higher cost-efficiency for longer-

running workloads because of its fixed billing per second 

approach. 

Eismann (2023) concentrated on performance 

engineering of serverless applications and systems. His 

thesis included a methodical analysis of resource 

allocation tactics in serverless settings, concurrency 

control, and cold starts. The study showed that cold start 

behavior was a significant bottleneck in latency-sensitive 

applications and recommended design approaches to 

address it. It also underlined the need of benchmarking 

functions in realistic, event-driven contexts to evaluate 

their fitness for production-grade loads. 

Lekkala (2023) examined containerized and serverless 

systems especially with relation to data pipelines. The 

research discovered that whereas serverless alternatives 

such as Cloud Serverless Functions provided simplicity 

and fine-grained scaling, they created performance 

uncertainty under huge data volumes. Conversely, 

containerized services like Cloud Container-Based 

Compute were more appropriate for workloads needing 

pern1anent state, specialized dependencies, or greater 

memory allocations since they enabled better control over 

execution settings. 

Arafath (2022) conducted a comparative study between 

microservices and serverless architectures in the cloud. 

The study showed that serverless systems enabled agile 

deployment processes and lowered infrastructure 

management burden. However, it also noted limitations 

related to cold starts, limited execution duration, and 

debugging complexity. The research backed hybrid 

architecture strategies combining containerized 

microservices with serverless functions to maximize the 

benefits of both paradigms. 

Scotton (2021) suggested an engineering framework for 

scalable ML operations stressing the significance of 

serverless backends in facilitating real-time inference and 

elastic scaling. The system included automatic retraining 

pipelines, model versioning, and serverless triggers. The 

research found that event-driven serverless computing 

was essential for lowering operational complexity and 

improving the reactivity of ML systems. 

RESEARCH METHODOLOGY 

2.1. Research Design 

The main goal of this paper was to compare how well 

Cloud Serverless Functions and Cloud Container-Based 

Compute handled event-driven machine learning 

inference tasks. A quantitative, experimental research 

strategy was used to guarantee a methodical and impartial 

comparison between the two serverless compute 

platforms. To evaluate different performance measures 

including cold start delay, execution time, throughput, 

and cost-efficiency, both systems were under the same 

workloads, setups, and event triggers. The approach 

allowed a controlled testing environment to mimic actual 

deployment situations for ML inference jobs activated by 

dynamic events. 

2.2. Experimental Environment 

All studies were run in the cloud environment, 

specifically using the east data center. This area was 

chosen because of its popularity and low latency 

availability zones, which helped to reduce the effect of 

regional performance differences. Pre-trained on the 

CIFAR- 10 dataset, MobileNetV2 was the machine 

learning inference model employed in the study. Its 

lightweight character and applicability to real-time 

classification tasks helped the model to be chosen. 

Simulated events, simulating practical triggers like file 

uploads and HTTP requests, were used to launch inference 

tasks. While Cloud Container-Based Compute jobs were 

started using Cloud Event Bridge and Cloud Container 

Orchestration Service run task commands, Cloud 

Serverless Functions was activated through Cloud API 

Gateway and Cloud Storage event alerts. 

2.3. Resource Configuration 

Three computing setups were chosen across both systems 

to provide fair testing and preserve consistency. These 

setups had 512MB memory with 

0.25 vCPU, 1024MB memory with 0.5 vCPU, and 

2048MB memory with 1 vCPU. These levels reflected 

typical deployment choices from low­ resource to high-

resource allocations. While Cloud Container-Based 

Compute containers were launched using Cloud 

Container Orchestration Service with matching CPU and 

memory requirements, container-based deployment with 

bespoke runtime and memory tuning was used for Cloud 

Serverless Functions. Every setup was evaluated under 

the same event circumstances and payload sizes. 

2.4. Benchmarking Metrics 

Five main measures served as the basis of the 

performance assessment. First, cold start time was 
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assessed to quantify the time lag connected with starting 

new container instances upon event arrival. For latency-

sensitive applications, this was especially important. 

Warm container invocations were second recorded for 

execution delay to assess real-time responsiveness. Third, 

reflecting each platform's scalability, throughput was 

computed from the number of successful inferences 

processed per second under concurrent event loads. 

Fourth, a cost study was done to identify the financial 

consequences of running 1,000 inference queries under 

every setup. At last, platform appropriateness was 

evaluated considering use case features, hence balancing 

performance and cost factors. 

2.5. Data Collection Procedure 

Every test was run 30 times per configuration to 

guarantee accuracy and reproducibility. Load simulation 

and response time monitoring were done using custom 

Python scripts, Cloud Distributed Tracing Service for 

latency tracing, and Cloud Monitoring Service for logs 

and metrics. The testing scripts ran and parallelized calls 

at different degrees of concurrency using the Boto3 SDK 

and Locust framework. For statistical analysis, 

performance logs were timestamped and compiled. To 

investigate platform behavior under various data transport 

and processing situations, the studies simulated three 

payload sizes-small (50KB), medium (500KB), and big 

(2MB). 

2.6. Data Analysis Approach 

Trends and performance variations between Cloud 

Serverless Functions and Cloud Container-Based 

Compute were found by averaging and organizing the 

data gathered from every benchmarking run. Summarized 

in tables, the findings revealed  typical  cold  start 

durations, 

execution latencies, throughput numbers, and anticipated 

expendiu1res for every setup. These total figures guided 

observation interpretation; emphasis was placed on the 

trade-offs between expense and performance. Visual 

analysis techniques were also used to represent platform 

behaviors under different workload sizes and compute 

allocations. 

3. RESULTS AND DISCUSSION 

The empirical findings from the performance 

benchmarking of Cloud Serverless Functions and Cloud 

Container-Based Compute in running event-driven 

machine learning inference tasks were reported in this 

part. Identical conditions governed testing on each 

platform; the resulting data was examined to provide 

insights on execution delay, cold start behavior, 

throughput, scalability, and cost-efficiency. The 

discussion provided a comparative interpretation of the 

results and identified key trade-offs involved in selecting 

a serverless computing backend for machine learning 

applications. 

3.1. Cold Start Performance 

Cold starts occurred when the serverless platform needed 

to provision a new container instance for processing an 

event. This behavior was particularly critical for low-

latency applications. 

Table 1: Average Cold Start Time (ms) 
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Figure 1: Average Cold Sta11 Time (ms) 

Configuration 

(Memory/CPU) 

Cloud 

Serverless 

Function 

Cloud 

Container-

Based 

Compute 

512MB I 0.25 vCPU 820ms 520ms 

1024MB I 0.5 vCPU 690ms 480ms 

2048MB I I vCPU 590 ms 430ms 
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Across all evaluated resource settings, Table 1 reveals 

that Cloud Container-Based Compute regularly had lower 

average cold start times than Cloud Serverless Functions. 

Specifically, Cloud Container-Based Compute cold start 

latency varied from 

520 ms at 512MB/0.25 vCPU to 430 ms at 

2048MB/l vCPU, whereas Cloud Serverless Function's 

cold start delays were higher, starting at 820 ms and 

increasing to 590 ms with more resources. This implies 

that container-based design gains from a more persistent 

runtime environment, which leads to quicker startup 

times. Though Cloud Serverless Function's cold start 

latency got better with more RAM allocation­ probably 

because of more CPU availability-it was still slower than 

Cloud Container-Based Compute, suggesting that Cloud 

Container-Based Compute would be more appropriate 

for latency-sensitive apps needing fast initiation. 

3.2. Execution Latency (Warm Invocations) 

This metric reflected the total time taken to execute an 

event-driven ML inference request once the container 

was already warm. 

Table 2: Average Execution Latency (ms) - 

Warm Starts 
 

Payload Size Cloud 

Serverless 

Function 

Cloud 

Container-

Based 

Compute 

Small (50KB) 150 ms 160ms 

Medium 

(500KB) 

310 ms 290ms 

Large (2MB) 720ms 670ms 
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Figurn 2: Average Execution Latency (ms) - Warm Starts 

 

With an average delay of 150 ms compared to Cloud 

Container-Based Compute 160 ms, the statistics on 

execution latency for warm invocations indicated that 

Cloud Serverless Functions performed somewhat better 

while managing tiny payloads. Though, as the payload 

size rose to medium (500KB) and large (2MB), Cloud 

Container-Based Compute started to beat Cloud 

Serverless Function, indicating reduced execution 

latencies of 290 ms and 670 ms correspondingly, whereas 

Cloud Serverless Function's delay rose to 310 ms and 720 

ms. This trend implied that while Cloud Container-Based 

Compute containerized architecture provided more 

consistent and efficient processing for bigger payloads, 

probably because of superior 1/0 management and 

resource allocation, Cloud Serverless Function’s 

lightweight function invocation paradigm delivered 

quicker reaction times for smaller inputs. 

3.3. Throughput and Scalability 

The platforms were evaluated for their ability to handle 

concurrent invocations and maintain performance under 

load. 

Table 3: Max Throughput (Requests/sec) 
 

Concurrent 

Use1·s 

Cloud 

Serverless 
Cloud 

Container-

Based 

Compute 

50 48 req/s 45 req/s 

100 92 req/s 87 req/s 

200 178 req/s 165 req/s 
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Figure 3: Max Throughput (Requests/sec) 

The throughput findings under different concurrent user 

loads showed that Cloud Serverless Functions regularly 

processed more requests per second than Cloud 

Container-Based Compute. Cloud Serverless Function 

handled 48 requests per second at 50 concurrent users, 

just exceeding Cloud Container-Based Compute 45 

requests per second. With rising concurrency, this 

performance difference grew; at 100 and 200 users, 

respectively, Cloud Serverless Function reached 92 and 

178 requests per second, whereas Cloud Container-Based 

Compute managed 87 and 165 requests per second for the 

same loads. These results suggested that while Cloud 

Container-Based Compute task-based scaling was more 

resource-intensive and somewhat slower, Cloud 

Serverless Function's architecture let it scale more 

aggressively and quickly by duplicating function 

instances to satisfy demand. Therefore, Cloud Serverless 

Function seemed more appropriate for tasks needing fast 

elasticity and great concurrency. 

3.4. Cost Analysis 

Cost-effectiveness was evaluated based on 1,000 

inference executions per configuration. 

Table 4: Cost per 1,000 Requests (USO) 

 

Configuration Cloud 

Serverless 

Cloud 

Container-

Based Compute 

512MB I 0.25 

vCPU 

0.36 0.44 

1024MB I 0.5 

vCPU 

0.49 0.48 

2048MB I 1 

vCPU 

0.72 0.65 

 

Table 4 shows the price per thousand requests for 

Cloud Container-Based Compute and Cloud Serverless 

Functions under various resource settings.  

 

Charging$0.36 to Compute $0.44, Functions was more 

cost-effective at the lowest configuration (512MB / 0.25 

vCPU). But, as the resource allocation rose to 1024MB / 

0.5 vCPU, the prices for both systems became almost the 

same, with Cloud Serverless Function costing $0.49 and 

Cloud Container-Based Compute marginally lower at 

$0.48. Cloud Container-Based Compute, at $0.65 per 

1,000 requests, was more affordable at the top setup 

(2048MB / 1 vCPU) than Cloud Serverless Function's 

$0.72. These results indicated that while Cloud Serverless 

Function's pay-per-invocation pricing model offered better 

cost-efficiency for smaller and short-duration tasks, Cloud 

Container-Based Compute pricing structure became more 

advantageous for workloads requiring higher compute 

resources and longer execution times. This underlined the 

need of matching platform selection with certain workload 

traits to maximize operational expenses. 

CONCLUSION 

For event-driven machine learning inference tasks, this 

work offered a thorough performance benchmarking of 

Cloud Serverless Functions and Cloud Container-Based 

Compute. The findings showed that depending on the 

workload features and deployment goals, each platform 

had unique benefits. For latency-sensitive apps needing 

fast container startup, Cloud Container-Based Compute 

was a more appropriate option since it regularly beat 

Cloud Serverless Functions in cold start times. 

Conversely, Cloud Serverless Functions demonstrated 

better execution latency for smaller payloads and 

provided greater dynamic scalability under high 

concurrency, stressing its effectiveness for lightweight, 

burst-driven ML jobs. Throughput-wise, both systems 

scaled well, but Cloud Serverless Function's stateless, 

function-based design caused it to have a more aggressive 

auto-scaling reaction. Cost studies showed that although 

Cloud Serverless Functions was more affordable for low-

resource, short-lived workloads, Cloud Container-Based 

Compute grew more cost-effective 

for  longer-running  jobs  at  greater  compute 
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allocations. The analysis found that individual workload 

needs-especially with regard to payload size, latency 

tolerance, concurrency levels, and cost sensitivity-should 

drive choice between Cloud Serverless Functions and 

Cloud Container-Based Compute. Using the best features 

of both systems, a hybrid deployment approach might 

potentially be considered to maximize performance and 

cost in practical ML applications. 
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