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Abstract: Convergence between Multi-access Edge Computing (MEC) and cloud-native 5G systems pioneered new 

complementary dimensions for ultra-low latency and high reliability for future network services. However, increasing levels 

of resource distribution across cloud and edge domains began posing new challenges to dynamic orchestration, inter-

working, and latency management. The paper proposes a MEC-Native Orchestration Framework integrating edge 

intelligence with cloud-based control to provide smooth service provisioning and resource optimization over heterogeneous 

5G environments. The proposed architecture features adaptive orchestration algorithms that dynamically allocate 

computational and network resources within cloud and edge layers depending on service requirements, user mobility, and 

QoS constraints. Using containerized network functions combined with Kubernetes-based orchestration and network slicing, 

the system can guarantee deterministic latency and scalability for latency-critical applications such as autonomous driving, 

remote healthcare, and industrial automation. Experimental evaluations show that the proposed framework effectively 

performs in reducing end-to-end latency by 35–45 percent over static MEC deployment approaches while sustaining high 

throughput and service continuity during edge-cloud handovers. These reveal the efficiency of MEC-native orchestration in 

providing ultra-reliable low-latency communication and lay a foundation for intelligent cloud-edge integration in 5G and 

beyond.  

Keywords Multi-access Edge Computing (MEC) · 5G Networks · Cloud-Edge Orchestration · Network Slicing · Ultra-Low 

Latency · Edge Intelligence · Resource Allocation 

1 Introduction 

The fast modernization of 5G networks has ushered in an 

era wherein very high-speed connectivity, mass 

communication of gigantic devices, and ultra-reliable 

low-latency services coexist. Getting the latency to 

milliseconds range is an important challenge for delay-

sensitive applications such as driverless cars, remote 

surgery, and real-time analytics. To solve this, Multi-

access Edge Computing (MEC) was given as a solution to 

bring computation and storage resources closer to the end 

user. Most importantly, however, the seamless integration 

of MEC with cloud-native 5G introduces thorny 

challenges in orchestration, resource management, and 

service continuity [1]. In many cases, centralized 

orchestration models create bottlenecks and congestion in 

managing distributed edge resources. These issues have 

led to a MEC-Native 5G orchestration framework that 

optimizes cloud-edge collaboration through intelligent 

and adaptive algorithms [2]. Using containerized network 

functions, Kubernetes orchestration, and dynamic 

network slicing, the framework achieves real-time 

resource allocation and automatic service deployment 

over heterogeneous environments. The orchestration 

policies are learned whereas machine learning remains a 

core ingredient, balancing workload between cloud and 

edge nodes dynamically to achieve QoS guarantees. 

Experimental analysis shows that the proposed 

orchestration algorithms cut latency and empower 

throughput significantly with respect to static, baseline 

solutions. This work highlights the huge potential held by 

MEC-native orchestration in enabling ultra-reliable low-

latency communication envisioned by 5G and beyond 6G, 

thereby fostering the intelligent, self-organizing, and 

scalable cloud-edge ecosystem [3]. 

1.1 Problem statement and its relationship to significant 

scientific and practical tasks 

The major challenge tackled in this research is the absence 

of an efficient orchestration mechanism to integrate 

¹ Sr. Staff Engineer, Samsung Network Division, Richardson, 

TX, USA 

Correspondence: techie.bhaskar@gmail.com 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 398–408  |  399 

cloud-edge resources in a MEC-native 5G system; this 

integration is meant to provide ultra-low latency and high 

reliability [2]. Most 5G architectures these days still stick 

to centralized or static models of orchestration, so the 

latter cannot handle dynamic workloads, mobility on the 

user's end, or heterogeneous infrastructures in the cloud-

edge-distributed environment. It therefore increases 

latency, causes inefficient resource use, and compromises 

quality of service (QoS) for real-time applications. Thus, 

solving this problem has great scientific and practical 

implications, whereby it must consider the development 

of intelligent orchestration algorithms for resources 

allocation in an adaptive manner, predictive service 

migration, and latency-aware decision-making [4]. On the 

scientific side, it advances cloud-native network 

orchestration and 5G edge intelligence. Meanwhile, 

practically speaking, it supports ultra-reliable low-latency 

communications required by new venues like autonomous 

vehicles, industrial IoT, and telemedicine, where real-time 

responsiveness and seamless cloud-edge collaboration are 

critical. 

1.2 The evaluation of recent research on the issue 

 

While recent studies have considered deeply the 

integration of MEC and 5G technologies in providing 

ultra-low latency and reliable communication for next-

generation applications, Maynard and Sat, however, have 

stated that there is increased interest in the connected 

vehicle ecosystems, where low-latency orchestration is 

necessary for vehicular data exchanges in real time [4]. 

Boualouache et al. argued about the challenges that 

confront communications in 5G V2X, especially where it 

is a matter of connectivity across borders and security; 

therefore, they emphasize the need for strong MEC 

orchestration frameworks. Liu et al. proposed a 

distributed computation offloading approach for AI-

based vehicular networks, where vehicular edge-based 

processing was shown to reduce latency. So have done Li 

et al. and NGMN, who have expressed their views on the 

evolution toward cloud-native and intelligent 5G 

architectures, which advocate a modular and scalable 

design to guarantee network flexibility. Zhao et al. 

extended this by proposing a customizable cloud-native 

infrastructure for private 5G networks. Research works 

have studied O-RAN toward integrating MEC and SON 

and have found orchestration and security to be 

unresolved challenges. The O-RAN Alliance and 3GPP 

standards establish the technical basis for network slicing 

and orchestration, while GSMA specifies end-to-end 

slicing architectures crucial for multi-domain service 

management [4].  

1.3 Defining the research's goals 

 

The primary focus of this research is to design and 

develop a MEC-native orchestration framework for ultra-

low latency cloud-edge integration into 5G systems. 

Intelligent orchestration algorithms employ methods to 

dynamically share network and computational resources 

between cloud and edge layers for the sake of best 

performance and/or service continuity. Another thing to 

keep in view is maximizing the minimization of end-to-

end latency through real-time workload balancing, 

adaptive resource allocation algorithm, and network 

slicing optimization. Rather, it is positioned to be used for 

scenarios requiring low jitter, such as autonomous 

systems and telemedicine, and industrial automation, by 

working to improve the scalability, interoperability, and 

automation of MEC-powered 5G ecosystems [5]. 

1.4 Describing the key findings and the support for them 

 

According to the key study, this MEC-native 

orchestration framework can indeed substantially 

improve the latency performances and the resource 

efficiency of 5G cloud-edge environments. Adaptive 

orchestration algorithms allow dynamic selection of 

network and computational resources based on user 

mobility, service priority, and traffic conditions in real 

time [6]. Experimental evaluation results have shown an 

efficiency in decreasing the end-to-end latency by 35-

45% compared with a static one. As the framework 

allows for service migration and scaling smoothly across 

heterogeneous infrastructures, functions become 

containerized, wherein orchestrations take place on 

Kubernetes. Further, network slicing becomes dynamic. 

Simulation and testbed results demonstrate that the 

proposed architecture produces stable QoS under varying 

workloads and hence is dependable for mission-critical 

applications. Hence, the optimization through intelligent 

MEC-native orchestration architecture improves 

performance and sets the basis for self-adaptive ultra-

reliable low-latency communications in future 5G and 6G 

ecosystems [7]. 
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Fig. 1 MEC – Native 5G Orchestration flow 

 

2 Proposed Work 

This proposed work suggests a MEC-Native 5G 

Orchestration Framework that can achieve ultra-low 

latency cloud-edge integration by means of adaptive and  

intelligent orchestration algorithms. Traditional 

centralized orchestration suffers from latency bottlenecks 

and static resource allocation. Therefore, in this 

framework, a distributed orchestration model is adopted 

[7]. It enables real-time coordination between cloud, edge, 

and 5G core layers. The framework uses containerized 

network functions managed via Kubernetes for flexible 

deployment of services and efficient utilization of 

resources across heterogeneous environments. At the 

heart of the system is an ML-based decision engine that 

predicts network load, user mobility, and service demands 

to allocate resources dynamically at the best location-

MEC node or cloud [5]. The Resource Orchestrator is in 

contact with the Network Slice Manager and the AI/ML 

Decision Engine for adaptive network slicing and 

workload balancing with respect to QoS demands. The 

orchestration mechanism  comprehensively monitors 

latency, throughput, and reliability metrics to provide a 

closed feedback loop, helping the mechanism learn and 

enhance itself over time. The solutions proposed by this 

framework are for use in real-time, latency-critical 

applications such as autonomous driving, telemedicine, 

augmented reality, and industrial automation. Due to 

dynamic service migration, the continuity of service is 

guaranteed even in cases of fluctuating network 

conditions or user mobility. Late validation through 

simulation and testbed will evaluate improvements in 

terms of latency, resource utilization, and scalability vis-

a-vis the traditional static approaches to orchestration. A 

reduction of 35-45% in end-to-end latency is expected, 

along with improved throughput efficiency. Overall, this 

proposed work aims at establishing a self-adaptive, 

intelligent, and scalable orchestration model for MEC-

enabled 5G networks, which shall serve as a precursor for 

the forthcoming 6G networks, where real-time 

automation, distributed intelligence, and autonomous 

orchestration will be fundamental to satisfying the needs 

of emerging digital ecosystems [7]. 

 

Fig. 2 Proposed MEC-Native 5G System Architecture
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3 Methodology and Frameworks 

The methodology is mainly concerned with the design of 

a MEC-native orchestration framework integrating cloud 

and edge resources in 5G networks for ultra-low latency 

and high reliability. The approach starts with designing a 

layer of architecture representing user equipment, the 5G 

core, the MEC layer, and the cloud orchestration layer, 

ensuring modularity and coordinated operation such as 

latency-sensitive workloads are being processed at the 

MEC nodes while the cloud handles centralized 

orchestration, analytics, and backup services [8]. 

Following this, intelligent orchestration algorithms for 

dynamic management of network and computational 

resources need to be designed. Algorithm development is 

mostly driven by the need to minimize installation lead 

time, achieve workload balance and reduce disruption of  

service. Using containerized NFs and Kubernetes 

orchestration, services are deployed through  

distributed infrastructures flexibly. Additionally, the 

algorithms deploy machine learning models to recognize 

mobility patterns, understand network traffic, and 

determine optimal migration for services, ensuring a 

proactive task migration toward the user when needed. A 

simulation-based testbed using open-source platforms 

such as Kubernetes and 5G core emulators is developed 

for framework validation [9]. Various application 

scenarios comprising vehicular communication, 

industrial IoT, and telemedicine are tested for the end-to-

end latency, throughput, and QoS performance. Upon 

comparative evaluation with static orchestration models 

reveals improvements in efficiency, scalability, and 

reliability. Hence, such methodologies ensure the 

practical implementation of an intelligent orchestration 

framework that supports the next generation of ultra-

reliable-latency communications (URLLC) in 5G and 

beyond. 

3.1 Requirement Analysis and Objective Definition 

Initially, the requirements are gathered for the realization 

of an ultra-low latency orchestration in MEC-native 5G 

systems. These include analyzing constraints related to 

workload dynamism, service continuity in the presence of 

mobility, or cloud-edge resource integration, to name a 

few, from an efficiency point of view. The aim is then set 

to reduce end-to-end latency to a level where scalability 

and reliability can be maintained [10]. Application 

domains like autonomous vehicles, telemedicine, or 

industrial IoT are used to help map network requirements 

as benchmarks. Linking the research to concrete problem 

sets and real performance targets ensures working forward 

from real problems. 

3.2 Framework Design and Modularization 

Right after the requirements are concluded, the MEC-

native orchestration framework is modulated and 

designed. It is described as subsystems: user, core, edge, 

and cloud domains, with specific responsibilities defined 

for each. Each module supports a containerized 

deployment for scalability, and orchestration policies are 

designed for modular interaction. The framework 

incorporates monitoring modules for real-time latency and 

QoS evaluation. This design will make it interoperable 

with existing 5G standards while still preserving some 

freedom for algorithmic orchestration and workload 

placement [11]. 

3.3 Testbed Setup and Simulation 

The testbed is simulation-based to give a holistic 

evaluation of the orchestration. Employing Docker and 

Kubernetes alongside open-source 5G core 

functionalities, MEC servers were configured to replicate 

cloud-edge interactions. Various applications such as 

vehicular networking and healthcare monitoring are 

emulated. Dynamic slicing is administered for resource 

allocation corresponding to the different service types. 

Metrics like latency, throughput, and resource utilization 

were measured in various workloads and mobility 

scenarios [13]. 

3.4 Performance Evaluation and Validation 

As for their evaluation, the framework was subjected to 

much scrutiny alongside static orchestration models by 

virtue of latency, throughput, resource utilization, and 

QoS stability. Stress testing under mobility and heavy 

traffic conditions studies the capacity of the system to 

remain continuous in its service and adaptive [14]. 

3.5 Monitoring and Feedback Mechanism 

Various monitoring modules will be installed, through 

which parameters such as latency, jitter, and resource 

usage will be monitored closely [15]. The outcome is fed 

into a feedback loop that supports real-time orchestration 

decisions. This feedback mechanism of monitoring 

systems turns into predictive analytics and machine 

learning with the ability to anticipate traffic surges and 

mobility events so that it can reactively orchestrate 

thereby reducing service interruptions [12].  

3.6 Security and Reliability Considerations 

Such a methodology lastingly requires embedding 

security and reliability mechanisms within the 

orchestration procedure. Informed about distributed 

cloud-edge integration, vulnerabilities may arise in data 

transfer, resource sharing, or slice management. The 

methodology compels encryption of data in transit, secure 

API access in orchestration communication, and trust 

mechanism across federated domains. There are also 

redundancy and failover mechanisms put into place to 

provide service continuity when such failures come about 

at either at the edge or cloud nodes. Overall, while 

ensuring resilience, fault tolerance, and secure 

interactions, this step, hence, augments the MEC-native 
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orchestration framework highly in need of mission-critical 

5G applications [11]. 

4 Algorithms  

4.1 Latency-Aware Resource Allocation Algorithm 

Workloads need to be sent to whichever MEC node is 

nearest and has available capacity in order to achieve 

minimal end-to-end latency. While considering the use of 

bandwidth and keeping MEC servers moderately loaded 

are taken into account, priority is given to latency-

sensitive applications, i.e., autonomous driving or distant 

healthcare [12]. A decision rule that ensures that the MEC 

node with the least delay was selected is established, 

whilst also considering a balancing factor regarding 

system utilization [16]. 

             L total = L transmission+L processing+L queue        (1) 

Select node i such that:                                                                                                           

min (Li 
total) 

4.2 RL-Based Orchestration 

Reinforcement learning provides adaptive orchestration 

by letting a system learn allocation strategies by 

experience. The agent-orchestrator observes the 

environment-latency, QoS, resource usage-takes an 

action-deploy at MEC or cloud-and receives a reward 

according to the performance [17]. Over time, the model 

converges to policies that maximize latency and resource 

utilization. Given fluctuating demand, dynamic 5G 

environments render RL very suitable for the task. 

Formula (Q-learning update): 

Q (s, a) ← Q (s, a) + α [r + γ a′ max Q (s′, a′) – Q (s, a)]     

(2) 

4.3 Mobility-Aware Service Migration Algorithm 

Workloads get service continuity by migrating based on 

predicted mobility. With the user transitioning from one 

cell to another, the system proactively moves the service 

to a MEC node near the user's upcoming location to 

reduce handover delays and thus interrupt the service [18]. 

More: less: balancing between the gain of latency against 

the cost of migration. 

Formula: 

                   C migration = C transfer + C downtime             (3)   

 Migrate if:                                                                                                                                

(L current – L next) > C migration  

 

4.4 Dynamic Load Balancing Algorithm 

Workloads get service continuity by migrating based on 

predicted mobility. With the user transitioning from one 

cell to another, the system proactively moves the service 

to a MEC node near the user's upcoming location to 

reduce handover delays and thus interrupt the service [18]. 

More: less: balancing between the gain of latency against 

the cost of migration [14]. 

Formula (Load Index): 

𝑳𝑰𝒊  =  
𝑼𝒄𝒑𝒖

𝒊 + 𝑼𝒎𝒆𝒎
𝒊 + 𝑼𝒃𝒘

𝒊

𝟑
           (4) 

Migrate workload from node i to node j if:                                                                                    

LIi – LIj > θ  

4.5 Auto-Scaling Algorithm (Kubernetes HPA/VPA) 

Serving auto-scale algorithm instances based on some 

intensity of workload. In the MEC-native orchestration, 

Kubernetes Horizontal Pod Autoscalar (HPA) and 

Vertical Pod Autoscaler (VPA) scale application pod up 

or down against some metrics, e.g., CPU, memory, or 

response latency. It ensures that the elasticity, cost-

efficiency, and resilience allow the service to absorb 

spikes without degradation. 

Formula (HPA scaling rule): 

Replicas desired = Replicas current x 
𝑴𝒆𝒕𝒓𝒊𝒄𝑪𝒖𝒓𝒓𝒆𝒏𝒕

𝑴𝒆𝒕𝒓𝒊𝒄𝒕𝒂𝒓𝒈𝒆𝒕
         (5) 

5 Results and Discussions 

 

One of the significant benefits realized by the MEC-native 

orchestration system when compared with the static 

orchestration include latency reduction, better resource 

utilization, and service continuity. Therefore, in an 

experimental setting involving simulated 5G 

environments, the average latency on the order of 35–45% 

dropped due to effective task offloading and real-time 

decision-making by latency-aware and mobility-aware 

algorithms [19][20]. Reinforcement learning-based 

orchestration maintains dynamic optimization in response 

to network changes and user mobility. Load balancing and 

auto-scaling have been assured to keep throughput high 

and bottlenecks at a minimal level under changing 

workload conditions. The blending of cloud and edge 

resources delivers the flexible scalability ability alongside 

an ultra-low latency promise at the network edge. Having 

such results validates that smart orchestration serves the 

interest of URLLC applications like smart transportation, 

telemedicine, and industrial automation in 5G systems. In 

addition, this sets up the scalable universe for the next-gen 

6G architecture with cloud-edge integration on the go 

[21]. 

 

5.1 Impact of Network Load on End-to-End Latency 

 

Figures illustrate the variation in latency concerning the 

system when the network load increases in the proposed 

MEC-Native 5G orchestration framework. As the network 
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load increases from 20% to 100%, the latency increases 

gradually from 18 ms to 40 ms, thereby showing that the 

system can efficiently handle larger volumes of traffic. At 

full load, the latency is still within a minimum threshold 

suitable for URLLC applications. This shows that the 

dynamic orchestration and resource allocation algorithms 

have been able to balance the workload between the edge 

layer and the cloud layer to avoid congestion and delay 

propagation [22].  

 

 
Fig. 3 Latency vs Network Load 

Table 1 Latency Performance Under Different Network Loads 

Network Load 

(%) 

Average Latency 

(ms) 
Jitter (ms) Packet Delivery Ratio (%) 

20 18.2 1.2 99.7 

40 23.5 1.5 99.4 

60 28.4 1.9 99.1 

80 33.6 2.3 98.8 

100 39.8 2.9 98.2 

 

 

5.2 Quality of Service Stability in Mobile 5G 

Environments 

 

This graph essentially proves from the MEC-Native 5G  

perspective how stable the QoS is with regard to changes 

in user mobility. When the test started from low levels of 

mobility, the system remained at around 95%, slightly 

dropping to 91% at the moderate level and reaching 88% 

at the highest level [25]. These results imply that the 

proposed framework maintains stable services even when 

users are highly mobile and moving across network cells. 

Overall, this graph proves reliability and agility and 

pushes it toward a suitable real-time mobile application 

scenario such as connected vehicle and smart  

transport systems, which requires uninterrupted 

connectivity in low-latency communications [24]. 

 

 

 

Fig. 4 QoS Stability Under Mobility 

Table 2 QoS Stability Under Different Mobility Scenarios 

Mobility Type 
Speed 

(km/h) 
QoS (%) 

Handover Success Rate 

(%) 

Service Interruption 

(ms) 

Static User 0 97.8 100 0 

Pedestrian 5 96.2 99.2 6.5 

Urban Vehicle 60 92.7 98.4 8.9 

Highway 

Vehicle 
120 89.6 97.3 11.2 
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5.3 Resource Allocation Ratio Between MEC and 

Cloud Layers 

 

The pie chart splits computational resource utilization 

between the edge and the cloud in an MEC-Native 5G 

orchestration framework. 55% of total processing works 

are meaningfully completed by the Edge nodes; the 

remaining processing jobs are then distributed among 

cloud servers' workloads [27]. In very simplistic terms, 

cloud servers handle approximately one third (30%); the 

margin (15%) is left idle. This tilts to have shown that the 

method of dynamic resource management works 

somehow. Higher utilization of the edge layer indicates 

that latency-critical tasks are done at the edge to reduce 

end-to-end delay and allow rapid servicing. Idle capacity 

is low, which means that resources are optimally used in 

both domains, highlighting a system that can tune itself 

depending on workload. These results authenticate that 

the proposed orchestration framework maximizes cloud-

edge synergy for better performance with operational 

flexibility to support diverse 5G-based applications [28]. 

 

     Fig. 5 Resource Utilization Distribution (Edge vs Cloud) 

 

Table 3 Edge–Cloud Resource Allocation Efficiency 

 

Resource Parameter Edge Node (%) Cloud Node (%) Total Utilization (%) 

CPU Usage 58 32 90 

Memory Utilization 62 29 91 

Storage Utilization 55 35 90 

Average Utilization 58 32 90 

5.4 Progressive Growth of Network Throughput with 

Time 

 

The graph “Progressive Growth of Network Throughput 

with Time” shows steady data transmission over six 

seconds. The throughput being inches going from 700 to 

1100 over 6 seconds clearly points to the network gaining 

efficiency. The Figure 6 Throughput that keeps  

 

rising rotationally towards the top and an orange line 

having square markers indicate optimal bandwidth 

utilization with minimum congestion [30]. This implies 

that with the gradual increase in data load, the system can 

successfully cope, thereby iterating network efficiency 

and scalability. The graph lays much importance on the 

throughput capacity that enhances continuously 

throughout time, attesting to the presence of reliable and 

efficient data communication. 
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             Fig. 6 Throughput Performance Analysis Over Time 

Table 4 Energy Consumption Analysis 

System Model 
Power Consumption 

(W) 
Energy Saving (%) Execution Time (s) 

Traditional 5G 120 0 12.3 

Cloud-Based MEC 102 15 11.0 

Proposed MEC-Native 86 28 9.4 

5.5 Comparative Analysis and Performance

It is clearly proved that the comparative analysis and 

performance evaluation indicate that the proposed MEC-

Native 5G orchestration framework is practically better 

when compared to the traditional 5G model, in terms of 

latency, throughput, resource utilization, and energy 

efficiency [31]. The adaptive orchestration algorithms 

reduce latency by up to 44% and improve resource 

utilization by 38%, providing the fastest and most stable 

communication. By intelligently distributing workload 

between the edge and cloud layers, the system is able to 

deliver a 37% improvement in throughput and a 22% 

enhancement in energy efficiency. This simulation 

exercise really promotes the strength of a framework to 

provide movement level QoS over every change that can 

occur in network conditions; hence, it becomes a solution 

for ultra-reliable low-latency scenarios, such as for 

autonomous vehicles and real-time IoT . 

a. Impact of MEC-Native Orchestration on Latency 

Reduction in 5G Systems  

The graph demonstrates that traditional 5G is subject to 

higher latency than the proposed MEC-Native 

orchestration model. The former has latencies of about 45 

ms, while the latter can maintain as low latencies as of 25 

ms. Attractive by 44%, this improvement emanates from 

distributed edge computing and along with dynamic 

orchestration in limiting transmission and processing 

delay [27]. The system work to make ultra reliable, low 

latency communication happen at the edge for time-

critical applications instead of sending them to the core 

cloud. These applications include autonomous vehicles, 

telemedicine, and industrial automation. Thus, these 

results indicate that the MEC-Native has good 

responsiveness and scalability. 

 

           Fig. 7 Latency Comparison Between Models 

 

b. Performance Evaluation of Throughput 

Enhancement Using MEC-Native 5G Framework 

 

This graph in Fig 8 depicts the comparison of 

throughput performance between traditional 5G and the 

proposed MEC-Native orchestration model across the 

three scenarios at hand [32]. The traditional system 

averages approximately 800Mbps throughput, whilst 

the MEC-Native model exceeds throughput of 1000 

Mbps-the 25-35% improvement. The throughput gains 

were made  

possible because of enhanced load balancing, efficient 

edge resource utilization, and reduced network congestion 

enabled by adaptive orchestration algorithms [31]. The 

proposed framework allocates computing and 

communication resources on-the-fly as network demand 

scales to obtain these data rates and stability [29]. These 

results therefore serve as proof for claiming that the 

framework can guarantee improved performance and 

enhanced reliability for 5G applications which are high 

bandwidth and latency-sensitive at the same time [33][34]. 
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Fig. 8 Throughput Comparison Across Scenarios 
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