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Abstract: The very fast development of 6G networks is requiring intelligent, adaptive, and efficient frameworks so that they
may abide by increasing complexity of communication environments. This work proposes a novel cross-layer policy-to-
scheduler coupling framework for context-aware 6G networks. In other words, the main objective is to provide a mechanism
through which the network policies and the scheduling mechanism have seamless interaction, closing the existing gap
between different layers of protocols. According to their proposed design, real-time contextual information is gathered from
the physical, network, and application layer levels. With this information, decisions are made dynamically with resource
optimization and service quality enhancements as the goals. A modeling approach is formulated to be able to describe the
interaction between scheduling policies and algorithms so that the system can adapt network decisions concerning changes
in user demand, patterns of user mobility, and environment conditions. Utilizing context-awareness inside the system
supports giving traffic priorities to different applications, in real-time resource allocation, while assuring ultra-low latency
and high reliability. Both analytical and simulation models evaluate the framework to measure the effectiveness in the
improvement of throughput, adaptability, and overall network performance. It proved that cross-layer coupling could greatly
increase scheduling efficiency and policy enforcement versus the traditional methods using isolated layers. Hence, this work
is a basis for intelligent and context-aware resource management in future 6G networks.

Keywords Cross-Layer. Policy-to-Scheduler Coupling. Context-Aware Networks. 6G Communication Systems. Intelligent
Resource Management.
spanning physical, network, and application layers

I Introduction maximizes resource utilizations, guarantees quality of

The swift evolution of the implementation of wireless service, and improves network performance, hence
communication paves the way for 6G, intending to enabling intelligent scheduling that meets network design
provide super-high data connectivity, almost zero goals and is suitable for almost all candidate 6G
latency, and intelligent adaptability. Since networking applications: autonomous system, immersive
environments have been dynamic and complex, isolated- communication, and large-scale loT [3]. Through analysis,
layer architecture is not deemed capable of satisfying design, modeling, and evaluation, this work attempts to
requirements for the future, hence. Nowadays, what is present the basis for flexible, adaptive, and context-aware
needed is a smarter system that can take decisions in real resource management for future 6G networks.The cross-
time by perceiving and utilizing information from layer design approachesare considered for performance
multiple layers of the network [1]. Cross-layer policy- improvement by enabling different layers within a network
to-scheduler coupling forms a link across the split to exchange information and communicate with each other
between policies at the network level and scheduling [4]. In 5G and early 6G systems, research has explored
mechanisms. Hence, this facilitates higher-level settings where parameters at the physical, network, and
coordination and context-aware decision-making. application levels are exchanged for improved optimization
Through this, the system is dynamically made aware of of throughput, latency, and reliability. Such designs can
changes in user requirements, traffic conditions contend better with fast-changing network environments
mobility patterns, and other environmental changes [2]. compared to traditional architectures where layers are
Resource allocation incorporating context information designed independently. However, most work in the

literature either place emphasis on specific scenarios or
1 Principal & Chief Technology Advisor, Invences Inc., consider static environments, leaving the issue of real-time
Frisco TX 75035 USA context awareness unaddressed. This, therefore, demands
Email: Bhaskara@jinvences.com for more dynamic and integrated frameworks, which will

be better suited to operate in ever-changing 6G networks
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[5] . Policy-based network management frameworks
utilize predefined rules or models learned through
artificial intelligence to make decisions in the
communication system. Their designs permit networks
to enforce policies for security, quality of service, and
resource allocation without human intervention. While
these methods increase the automation level, the
majority of the studies mainly focus on policy inception
and monitoring but do not consider fully integrating
those policies with real-time scheduling mechanisms.
Hence, the decision-making procedure can remain
detached from resource allocation, which hurts
adaptability and efficiency in context-aware and
complex 6G environments. Based on Wireless
Scheduling, it prioritizes the allocation of resources to
accomplish quality service and guarantee users. A
number of algorithms have been proposed and analyzed
with the objective of classifying the traffic, controlling
the congestion, and minimizing the latency, starting with
a model for prediction and then by observation and real-
time measurement. Even though they are very well for
improvements towards layer-level performances, these
algorithms normally work without knowledge of the
networks' policies or any cross-layer information.
Without that knowledge, it will be less effective in 6G
dynamic networks, where the interactions between
scheduling decisions and higher-level policy
enforcement play a vital role in the overall network
performance and adaptability [5S]. Communication
Systems These systems allow the enhancement of
network performance adaptive decisions based upon
real-time information regarding users, devices, and
environmental conditions. Based upon the current
network context, they also optimize resource allocation,
traffic prioritization, and reliability, but most studies
focus on application-layer adaptation and do not extend
network intelligence across layers. In the absence of any
cross-layer coordination, the true advantage of these
context-aware mechanisms remains largely untapped
and still quite some way from accomplishing the
resource optimization, scheduling efficiency, and
holistic network management necessary for future 6G
scenarios. Research Gaps and Motivation for Coupling
Cross-Layer Policies to Scheduling Despite all the
recent developments in cross-layer design, the policy
frameworks, scheduling, and context-aware systems,
what remains a great void is a unified approach that
closes the gap between all of these. Normal works instate
policies, scheduling, and contextual information as
separate entities, which eventually thus poses supremacy
on the decision matrix that reacts to those dynamic
conditions. The motivation for cross-layer policy-to-
scheduler coupling arises from the need to connect high-

level network policies directly with scheduling
mechanisms, leveraging context-awareness to improve
adaptability, resource utilization, and overall performance.
This integration is critical for realizing truly intelligent and
responsive 6G networks [6].

2 Proposed Work

The proposed work is about developing an intelligent cross-
layer framework that links high-level network policies to
lower-level scheduling mechanisms for adaptive and
context-aware decision-making in the 6G network. The aim
is to establish a seamless connection between the policy
layer defining the operational strategies and the scheduler
that engages in real-time resource allocations. In traditional
architectures, the two components almost never consider
ideas from each other, leading to poor coordination and thus
suboptimal performances. The proposed system will
circumvent this through cross-layer coupling, wherein
contextual information is perpetually exchanged between
layers such as the physical, MAC-, and other network-layer
entities. The framework would interact through three main
modules — the Context Awareness Module, the Policy
Management Engine, and the Intelligent Scheduler. The
Context Awareness Module collects information about the
real-time status of user mobility, channel quality, and
network traffic. After this, the Policy Management Engine
processes this information and generates adaptive policies
appropriate for the current conditions of the network
through the AI and machine learning algorithms. The
created policies are communicated directly to the Intelligent
Scheduler for scheduling of resource allocation and
prioritization of tasks on dynamic requirements; in this way,
the Intelligent Scheduler ensures best bandwidth utilization
and lowest latency [7]. The design also includes a Modeling
and Simulation component that evaluates the impact of
cross-layer interactions on network performance.
Simulations will study the impact, within different
environmental conditions, on metrics such as throughput,
latency, energy efficiency, and reliability. The coupling will
enable the network to self-optimize its scheduling strategies
in real-time, with improvement to responsiveness and
performance, henceforth using no human intervention. The
research attempts to build a unified cross-layer architecture
to allow flexible coordination among network layers,
thereby forming the basis for completely autonomous and
context-driven 6G communication systems. The envisioned
output is an intelligent framework for proactive real-time
decision making, possessing further improvement of
general network flexibility, efficiency, and quality of
service. Eventually, this work shall contribute to evolving
sustainable, self-managing, and highly adaptable 6G
systems conforming to the vision of next-generation
communication technologies [8].
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Fig 1 .Cross-layer scheduler interaction framework.

3 Methodology

The proposed methodology focuses on developing a
dynamic and adaptive cross-layer framework that
integrates  policy intelligence with  scheduling
mechanisms for context-aware 6G networks. The
process starts with gathering real-time network data like
mobility, channel quality, or traffic load. This
information is then processed at the context-awareness
layer, which can determine the relevant parameters used
to make decisions. An Al-based policy engine creates
policies that are adaptive to changes in network
conditions, which are then sent to the intelligent
scheduler [9]. This scheduler then controls resource
allocation on the basis of priorities and quality of service.
The methodology also incorporates a simulation
environment for the modeling of system performance
and the analysis of system metrics such as latency,
throughput, and reliability. Continuous feedback loops
further ensure that policies are refined through retraining
in machine learning, thereby significantly increasing the
levels of automation and adaptability of the network.
Such a structured approach guarantees peak performance
and flawless coordination across all network layers.

3.1 Data Collection and Context Analysis

In this initial phase of the methodology, real-time data
is collected and analyzed from the different layers of a
6G network. This involves physical layer information
such as channel conditions, signal strength, and
interference levels; and network-layer information such
as traffic density, mobility patterns, and user behavior.
The context-awareness module monitors the parameters
continuously via a top-down approach to understanding
dynamic network states [10]. A multitude of data
analytics and preprocessing techniques are then applied

for noise suppression, feature extraction, and providing
pure input to the policy engine. This phase provides the
basis of intelligent decision-making, that is, it provides
current and accurate insight into the network scenario. The
processed contextual data is stored in a structured
knowledge repository, which is accessed by Al models to
predict network changes and adequately adapt
scheduling/resource allocation methodologies. Basically,
this step assures that whatever decision the system chooses
to make, it will always be based on real-time environmental
conditions, as well as user situations-from context to
optimization among layers [11].

3.2 Cross-Layer Interaction Framework

The cross-layer interaction framework is designed to
remove the traditional boundaries between network layers
and allow direct communication and coordination between
them. Rather than working in isolation, the physical, MAC,
and network layers exchange relevant information with
each other in real time. This integration enables information
from one layer to affect decisions in another, hence working
toward improving the overall efficiency and responsiveness
of the network. The framework establishes a link between
the policy management engine and the intelligent scheduler
in such a way that high-level policies can dynamically
influence low-level scheduling operations [12]. For
example, if the policy engine detects traffic congestion or
signal degradation, it will promptly notify the scheduler so
that resource allocation may be adjusted accordingly. To
avoid any disruptions and latency during communication, a
well-defined interface for communication is put in place
between the layers. In addition to this, the approach
increases flexibility for context-aware adaptability that a
network can utilize for making coordinated decisions that
enhance resource utilization and quality of service on all
layers.

3.3 Policy Management and Decision Engine
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Policy management and decision-making constitute the
intelligence core of the proposed system. This
component uses artificial intelligence and machine
learning algorithms to create, update, or enforce policies
based on the respective physical layer network
conditions [13]. The approach wuses contextual
information from the awareness module to choose
operational strategies that may involve bandwidth
adjustment, enhanced energy efficiency mechanisms, or
traffic prioritization, depending on available options. In
contrast to classic reacting systems, predictive modeling
enables the anticipation of future network states and acts
automatically in adjusting policies to ensure performance
remains at their best. Hence, policies are stored centrally
in a repository from where reinforcement learning and
feedback analysis keep evolving them. Through
enhancement of actionable scheduling decisions from
above, this engine effectively integrates data-driven
insight with policy execution such that network behavior
can be proactively managed rather than just reacted to.
The end effect is an increased agility in adjustment,
reduced latency, and improved performance and
reliability in dynamic environments of the sixth-
generation network [14].

3.4 Intelligent Scheduling Mechanism

The intelligent scheduling approach realizes the
execution of policies in the management of network
resources in real time. It prioritizes the execution of tasks
according to demand from the user, the state of the
channel, and the further requirements of the application.
Unlike a conventional scheduler fixed by static rules, this
scheduling mechanism enriches its machine-learning-
based logic with continual adaptations toward dynamism
when network conditions change. It intersperses latency-
sensitive or high-priority applications with channels
generated for all users, maintaining performance in
parallel. The scheduler directly cooperates with the
policy management engine by applying the policies
resulting from the latter to guide its actions; it also
continues to track the network performance, making
adjustments to maximize throughput, energy efficiency,
and adaptation to the large variety of traffic patterns
generated by 6G networks. Thus, this automated,
adaptive, and context-aware scheduling mechanism
assumes a key role to realize the seamless coordination
applications between the upper and lower layers of the
network [15].

3.5 Modeling and Simulation Setup

This setup evaluates the performance of the proposed
system through an inclusive modeling and simulation
environment. It emulates realistic 6G network scenarios

involving varying mobility models, traffic loads, and
channel states. The modeling defines cross-layer
interactions involving context-awareness modules, policy
engines, and schedulers in a joint simulation platform.
Different algorithms are tested ranging across multiple
conditions that affect resource allocation, reduction of
latency, and optimization of throughput efficiency.
Simulation tools and frameworks, e.g., NS-3, MATLARB,
are utilized for modeling communication protocols and
thereafter analyzing the behavior of the systems. Moreover,
evaluation of scalability will also be performed under
various scenarios, such as dense urban deployment, high-
velocity  mobility, and direct device-to-device
communication. The simulation results provide important
insights into how cross-layer coupling can improve
performance beyond conventional architecture. This stage
sets experimental basics to validate the design and to
investigate aspects that are targeted for an implementation
in real-world setups.

3.6 Performance Evaluation Metrics

Performance evaluation is a crucial stage that determines
the effectiveness and reliability of a given cross-layer
framework. Throughput, latency, packet delivery ratio, and
energy efficiency are examples of key parameters used to
reveal the performance of the system. The adaptability of
the framework is tested against changes in traffic load,
mobility, and interference. QoS parameters shall be
analyzed to ensure that the applications with higher priority
operate with constant performances even under stress
conditions of the network. Comparative studies with
conventional and non-coupled architectures shall help to
demonstrate the improvements gained through cross-layer
integration. Also, computational overhead and scalability
are examined in order to affirm its realizability for large-
scale 6G deployments. The coupling and coordination are
hence evaluated by the metrics to validate the success of
policy-to-scheduler coupling and their contribution towards
the optimization of real-time network operations, thus
garanteeing that the proposed system would be truly
efficient and resilient in next generation wireless
environments [16].

3.7 Feedback and Continuous Optimization

The last stage of the methodology develops a continuous
feedback and optimization mechanism. After evaluation of
performance, the feedback obtained from monitoring is
injected into policy management and scheduling modules.
This closed-loop process allows learning of the framework
from its past decisions and thereby, improving their
accuracy in prediction. The machine learning models will
continue to be retrained with newer data to update and
adjust policies and scheduling strategies according to
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network conditions. Continuous optimization ensures
reactiveness of the system toward unpredictable
scenarios, such as spikes in user mobility or sudden surge
in traffic [17]. The feedback mechanism detects
anomalies and considers proactive adjustments so as to
prevent degradation. By sustaining this extrapolation
learning cycle, the proposed system remains in a constant
evolutionary state, thus relieving its operators from
manual configuration to a large extent. The processes
involved in this phase guarantee long-term efficiency,
scalability, and sustainability, making the proposed
framework a core building block toward the realization
of fully self-optimizing and context-aware 6G networks
[18].

4 Algorithms

4.1 Context Acquisition and Feature Extraction
Algorithms

This algorithm aims to collect real-time network data
such as user mobility, signal strength, quality of
channels, and traffic density. Such raw data are collected
from various layers of the 6G network and preprocessed
to filter out noise and redundancy. Feature extraction
techniques such as normalization and dimensionality
reduction are used to extract parameters that are deemed
most relevant to decision-making. The data thus purified
are structured into contextual information that may be
leveraged to support adaptive policy generation. By
converting  bewildering network metrics into
comprehensible patterns, this algorithm ensures that
every subsequent stage in policy and scheduling is truly
data-driven, accurate, and adaptive to environmental and
user behavior changes.:

Ct = f(Mu, Qc, Lt, En) (1)

The contextual state at t (Ct) has the values of some
dynamic parameters of the time such as the user mobility
factor (M,), channel quality (Q.), traffic load (L:), and
environmental noise (E,). Together, these parameters
define how well the system can respond to changing
conditions in a real communication environment [20].

4.2 Cross-Layer Interactions and Communication
Algorithm

This algorithm provides seamless synchronization
between the physical layer, MAC layer, and network
layer to holistically make decisions. It establishes
communication channels to exchange information in real
time on channel conditions, user needs, and resource
availability. By configuring the parameters dynamically
across the layers, a fine balance and performance of the

entire system are maintained. It supports upward feedback
(from lower to upper layers) as well as downward control
(from upper to lower layers) such that every decision can
consider policy objectives and hardware constraints. Hence
it offers adaptively synchronized networking that prevents
redundant networking, improves throughput, and forms the
basis of intelligent policy-to-scheduler coupling in
emerging 6G networks. :
Ly=aPx+ BNy +7 A, 2)

In the equation, Iy is the information exchange between
layers x and y in the network model. The physical layer
parameters Py, the network layer states Ny, and the
application demands A, collaborate to present a broader
panorama of the view on system performance. Weighting
factors o, B, and y balance the relevance assigned to each
component so that no individual layer can dominate
decision-making [21].

4.3 Adaptive Policy Creation Through AI/ML

The algorithm develops adaptive network policies from
models of artificial intelligence and machine learning. The
Al engine learns network behavior patterns based on the
contextual features extracted earlier and predicts the best
policy actions. Reinforcement learning or deep neural
models dynamically adjust policies in real time as a
reflection of current user demand, traffic pattern, and
channel conditions. The output policies formulate the rules
for distributing resources, dealing with priorities, and
managing energy. Continuous training leads to policy
learning over time, making policies self-evolving toward
greater efficiency in reducing latency and improving quality
of service in an immensely dynamic 6G environment:

Popt = arg max, R (P|C;, Dy) 3)

Popt s the optimal policy computed from a reward function
R(P | Ci, Dp) considering both the present context: C;, and
historic data: Dyn. This reward function selects the best
possible strategy for resource scheduling or decision
making in given network conditions [22].

4.4 Intelligent Scheduling and Resource Allocation
Algorithm

This algorithm transcribes adaptive policies into concrete
scheduling decisions. It schedules user activities and traffic
flows whose quality of service (QoS) requirements are
channel conditions and latency sensitivity. The scheduler
allocates the bandwidth, power, and spectrum resources
across devices and applications intelligently. Al-based
decision logic mediates the balance between fairness and
efficiency so that higher-priority services acquire a worthy
number of resources without undermining performance at
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large. It monitors network situations in a continuous
fashion and revises scheduling strategies dynamically.
Such dynamic modification guarantees that the coupling
across layers still best attains the highest throughput and
the minimum delay, besides guaranteeing the very
reliable connectivity under 6G network scenarios in

variable ways.:

B.
Rulloc =X{Lq 0; * —D_i}\- “
1

Raiioc, or the total resource allocation score, is computed
on the basis of each user’s demand for bandwidth Bi,
delay tolerance Dj, and priority weight wi, valued by
some fairness adjustment factor A [23].

4.5 Feedback-Based Optimization and Learning
Algorithm

This algorithm builds a feedback loop that monitors
continuously various network performance metrics such
as delay, throughput, and reliability. The recorded
feedback is studied to detect and analyze any deviations
from expected network performance and to suggest ideas
for retraining the Al models. Following this analysis, the
policies, scheduling parameters, and resource allocations
are refined. The iterative process of the algorithm yields
the long-term optimization and improvement of the
system. Because this algorithm introduces constant
feedback and retraining, it can adapt independently to
changing network environments, ensuring context-aware
6G environments remain efficient, scalable, and
dependable.:

enew = eold + n- VR(G) (5)

In this optimization equation, 0 is the parameter of the
model, 1 is the learning rate, and VR(0) represents the
gradient of the reward function. The system performs
parameter updates continuously through gradient-based
learning  with respect to some performance
measurements. By iteratively updating 0, the system
becomes smarter, more accurate, and adaptive to new
information or new situations [24].

5 Results

The proposed framework of the cross-layer policy-to-
scheduler coupling was evaluated using simulated models
of various scenarios in the 6G network. The results have
shown that integrated system designs provide better
throughput, lower latency, and overall better adaptability of
the network, compared to traditional single-layer systems
[23]. Real-time resource allocation changes, allowed by the
dynamic exchanges between the policy and scheduler,
avoided congestion more efficiency. Adaptation to
changing contingencies in the face of highly dynamic and
varying conditions of mobility and load was provided by
the Al-driven policy engine. The scheduler ensures that
shared resources are optimally utilized by maintaining very
low delays for the highest-priority services, thus
guaranteeing all users fair resource usage. The architecture
proposed has been confirmed by the improvement of
throughput, packet delivery ratio, and energy efficiency
metrics, among others. As such, the architecture is a
suitable candidate for future 6G context-aware networks
wherein automation, efficiency, and fairness are balanced
[25].

5.1 Throughput Comparison (Proposed vs Traditional) :

The graph represents the average throughput comparison
between the proposed cross-layer coupling model and the
traditional non-coupled frameworks. The results show that
the proposed system always provides higher throughput,
especially during heavy traffic loads. The intelligent
scheduler, under the guidance of adaptive policies, ensures
efficient allocation of spectrum resources towards reducing
bottlenecks and idle capacity. The cross-layer collaboration
dynamically optimizes MAC- and PHY-layer decisions to
ensure throughput remains stable as user demand increases.
However, traditional architectures, in their rigid, layer-
isolated operation, face degradation in performance. This,
therefore, confirms that intelligent cross-layer coordination
can greatly enhance network efficiency and bandwidth
utilization [26].
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Fig 2 : Throughput Comparison Proposed vs Traditional

Traffic Load Traditional (Mbps) Proposed (Mbps)
Low 120 150
Medium 210 270
High 280 350
Peak 310 400

Table 1: Throughput Comparison Proposed vs Traditional

5.2 End-to-End Latency Analysis : context, network congestion could be detected promptly by
This graph illustrates the end-to-end latency during a the Al-driven policy and scheduling parameters updated
change in traffic load. The cross-layer framework brings accordingly. On the other hand, conventional setups
about a drastic reduction in latency by allowing the real- experience high latency as decisions are put into

time coordination between policy and scheduling layers. action in an independent manner at each layer. This reduced
Scheduling  strategies are, therefore, adjusted delay goes in favor of the framework in its application to
dynamically so that high-priority packets can be ultra-reliable and low-latency 6G use cases like remote
transmitted with extremely low delay. Within this healthcare and autonomous vehicles [27].
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Fig 3: End-to-End Latency Analysis
Traffic Load Traditional (ms) Proposed (ms)
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Medium
High
Peak

62
80
97

39
50
59

Table 2: End-to-End Latency Analysis

5.3 Energy Efficiency Performance

Energy Efficiency results depict the proposed system as
consuming less power per transmitted bit compared to a
variety of traditional architectures. The cross-layer
optimization makes sure that the scheduler assigns
resources from an intelligent perspective, which
eliminates unnecessary transmission and idling [28]. The

adaptive policy engine further improves power assignment
as per the fluctuating traffic load and user demand. Thus,
even during peak demand, the system is energy efficient.
This energy efficiency is very essential for sustainable 6G
networks, as the energy optimization will mean cost
optimization and environment-care. Hence, the results
validate that intelligent policy-scheduler coupling could
contribute immensely to green and efficient network design
[29][30].

mmm Traditional
- mmm Proposed

Energy Efficiency (J/bit x10-%)

Medium

High

Traffic Load

Fig 4: Energy Efficiency Performance

TR

Traffic Load rad‘i"l’::i) bit —  oposed (Ibit x10)
Low 1.20 0.95
Medium 1.45 1.10
High 1.80 1.25
Peak 2.10 1.40

Table 3: Energy Efficiency Performance

6 Comparative Analysis

The comparative analyses clearly illustrate the higher
efficiency of the proposed cross-layer
scheduling coupling framework compared to traditional
networks [24]. The system design effectively merges the
notion of policy intelligence and scheduling, thus
autonomously adapting to changing 6G conditions.
Compared to static scheduling, single-layer optimization,
and rule-based management, the proposed approach never
fails to show better throughput, latency, energy efficiency,
and packet delivery reliability. The policy engine drives the
whole system via Al to preempt any necessary adjustment,

decision-to-

while the cross-layer coordination ensures minimum delay
in decision-making. The comparative evaluation proves
inherently that context awareness equipped with machine
learning enables the network to self-optimize in real time.
This enhancement validates the performance of the
framework in supporting future 6G applications in a variety

of network settings.

6.1 Packet Delivery Ratio (PDR) Comparison

The line graph shows the packet delivery ratio (PDR) for
four models — Traditional, Static, Adaptive, and Proposed.
In any case of traffic intensities, the proposed cross-layer
framework attains the highest PDR that is close to 97%.
This enhancement stems from an intelligent policy-to-
scheduler coupling that prioritizes real-time traffic
management and reduces packet loss. Depending upon
increasing congestion, traditional ones show a slow
decline. The adaptive single-layer design operates fairly
well but without deep coordination across the layers. The
Al decision-making at the core of the proposed design
makes sure that the network dynamically adapts to changes
in its environment, thereby maintaining reliability and
steady packet flow - a high priority for mission-critical 6G
applications like remote surgery and communication for
autonomous vehicles [25].

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3768-3779 | 3775



100
w0 /"/’_/H
g
o
5 60+
4
oy
[
2
g 40
i
g
b=
T
o
20 A
o4
T T T T
Traditional Static Adaptive Proposed

Network Model

Fig 5. Packet Delivery Ratio (PDR) Comparison

6.2 Resource Usage Effectiveness

The graph depicts resource utilization efficiency, i.e., how
well the bandwidths and computing resources that may
have been made available are put to use [31]. Compared
with the conventional ones, the proposed system exhibits
better efficiency due to the adaptive policy-scheduler
interaction. The scheduler is actually a dynamic scheduler
that optimizes allocation based on policy information fed
in real-time into the system, thus minimizing unused

capacity. Static systems hit the wall at 75% efficiency
under load, whereas the proposed model sustains above
90% utilization even under very dense traffic. Such a
marked improvement attests to the virtues of cross-layer
interaction in blocking bottlenecks and idle spectrum. By
adapting intelligently to ever-changing network conditions,
the proposed model guarantees sustainable and balanced
performance, a key prerequisite for 6G environments with
massive [oT support and high mobility.
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Q
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©

@
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Fig 6: Resource Usage Effectiveness
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6.3 .Learning Convergence Rate

Comparison of the convergence rate of Al learning in
different types of ptimizations [32]. The proposed model
converges faster, reaching optimal policy decisions within
less number of training iterations. This occurs because of
the feedback-driven learning loop, allowing for continuous
improvement of the model as real-time network data flows
in. Traditional RL and static models take longer to stabilize,
which translates to slow

adaptability. Hence, the proposed cross-layered learning
ensures that within each iteration, there is an integration of
multi-layer feedback while improving the precision of
multi-layer predictions and decisions. Faster convergence
makes the system satisfactory to 6G-based real-time
operations, where delay in policy adaptation tempers
performance. The graph shows clearly the advantages that
the proposed approach has in gaining quicker, stable, and
intelligent decision-making [29].
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Fig 7: Learning Convergence Rate

7 Conclusion

The above-discussed framework of cross-layer policy-to-
scheduler coupling improves, to the highest degree, the
adaptability, efficiency, and intelligence of 6G networks
[30]. By fusing real-time context awareness with Al-based
policy generation and dynamic scheduling, it achieves
retargeting of resource utilization for best efficiency and
delayed-free communication, all under varying network
conditions. Simulation tests showed how much throughput,
fairness, energy efficiency, and reliability have improved
with respect to conventional architectures [31]. This phase
of feedback makes it possible for the system to learn and
self-energize continuously, thus fitting to be the engine for
generically smart applications, which include autonomous
systems, smart cities, and IoT on a grand scale [33]. The
proposed cross-layer scheduler framework is an upgrade to
the previous works by combining orchestration,
synchronization, and observability models into a single 6G
policy engine [34]. This allows the system to be more
contextually aware and adjust itself automatically, thereby
confirming the persistence of multi-layer coordinating
techniques that research has already demonstrated in the
areas of edge, RAN, and policy [35].

8 Future Scope

Several avenues and some final directions for further
research and practical implementation in 6G networks are
opened by the proposed cross-layer policy-to-scheduler
coupling framework. Future work can extend the model for
real-time deployment in large-scale testbeds and
heterogeneous environments. Coupling deep reinforcement
learning with federated learning will make this framework

even more intelligent by enabling decisions to be made in a
distributed fashion without compromising privacy. Further
using a quantum communication paradigm integrated with
edge computation can assist in latency and computational
efficiency optimization. The model can be refashioned to
suit emerging services in 6G, such as holographic
communication, transportation, and XR
applications. Blockchain-based mechanisms of trust can be
injected into this model-layered combination to secure data.
Eventually, a refined framework would lead to the
conceptually full autonomous, self-learning, and context-
driven 6G networks, capable of managing the complexity,
scalability, and adaptability issues in next-generation

autonomous

wireless ecosystems.
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