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Abstract: The electronic and communication industries are rapidly growing in order to satisfy the demands of contemporary 

society, thanks to the emergence of 5G technologies including IoT. In this situation, improved microwave attenuating 

substances are necessary to protect electronics, communication equipment, and biological systems. This paper talks about 

some important attempts to create advanced materials that may effectively reduce microwave signals. The stable inorganic 

electride C12A7:e- with modified graphene interfaces (C12A7:e-/MG) offers a high-frequency EM response suitable for 

effective microwave absorption in the 5G bands. The structure and morphology-derived microwave absorption properties of 

C12A7:e- can be further improved by modifying the nature of carbon interfaces as it can offer better interfacial polarization 

and electrical conductivity. Among the class of ferrites, Magnetite has instilled a great interest in material scientists due to its 

excellent biocompatibility, easy control over size and morphology, and better thermal properties. This study investigates the 

high-frequency microwave absorption properties of C12A7:e- with highly graphitized carbon interfaces (C12A7:e-@G) and 

C12A7:e-@G incorporated with Magnetite nanoparticles (NPs) having different sizes and morphology. 

Keywords: electronic and communication, 5G technologies, microwave attenuating substances, microwave signals, inorganic 

electride, modified graphene interfaces, EM response, high-frequency microwave absorption properties, Magnetite 

nanoparticles 

Introduction 

The immense development in the application of 

high-frequency EM radiation for electronic and 

communication systems demands high-frequency 

microwave absorbers. The stable inorganic electride 

C12A7:e- with modified graphene interfaces 

(C12A7:e-/MG) offers a high-frequency EM 

response suitable for effective microwave 

absorption in the 5G bands. The structure and 

morphology-derived microwave absorption 

properties of C12A7:e- can be further improved by 

modifying the nature of carbon interfaces as it can 

offer better interfacial polarization and electrical 

conductivity. However, the increased conductivity 

results in poor impedance matching and can be 

compensated by incorporating magnetic materials. 

The magnetic part in the composite material can also 

enhance the microwave absorption by various 

magnetic losses and the polarization at the interfaces 

of different species in the composites (Jiao et al., 

2020; Lv et al., 2017). 

The magnetic losses come from different resonance 

mechanisms such as domain wall resonance, natural 

resonance, exchange resonance, and eddy current 

loss. Domain wall resonance occurs at lower 

frequencies, and hence other resonance mechanisms 

are possible in microwave frequencies (Shukla, 

2019). High-frequency stability of permeability is 

one of the criteria which needs to be satisfied by 

material to act as the magnetic counterpart in a 

microwave absorbing system. Snoek’s limit 

suggests that this condition is fulfilled by magnetic 

materials having high saturation magnetization 

(Ms). In spite of the fact that magnetic metals like 

iron, cobalt, and nickel, as well as their alloys, are 

capable of meeting this criterion, the high 

conductivity of these materials results in a reduction 

in permeability due to the elevated eddy current loss. 

As a result of its reduced Ms and Eddy current loss, 

ferrites have gained widespread acceptance as a 

potential replacement for magnetic metals. 

According to Liang et al.'s research from 2020, the 

magnetic characteristics of ferrites can be modified 

by altering the size and morphology of the material. 

This is because the size and morphology have a 

major influence on the surface area, anisotropy, and 

resonance frequency. 

Among the class of ferrites, Magnetite has instilled 

a great interest in material scientists due to its 
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excellent biocompatibility, easy control over size 

and morphology, and better thermal properties. 

Several studies have been reported based on the 

microwave absorption properties of Magnetite based 

composite materials, usually integrated with 

graphene, carbon nanotubes, semiconductors, metal-

organic framework (MOF) derived structures, 

MXenes, etc. This study investigates the high-

frequency microwave absorption properties of 

C12A7:e- with highly graphitized carbon interfaces 

(C12A7:e-@G) and C12A7:e-@G incorporated 

with Magnetite nanoparticles (NPs) having different 

sizes and morphology. 

 

Fig. 1 (a) Sol-gel synthesis of C12A7:e-@G and (b) microwave synthesis of Magnetite 

Literature Review 

Due to the remarkable progress made in 

telecommunications technology, older devices are 

being replaced by more complex and integrated 

devices. This, in turn, has resulted in an increased 

demand for superior EMI shielding and MAMs. 

Hunt for advanced functional electromagnetic 

interference shielding as well as microwave 

attenuating substances for a variety of uses is clearly 

evident in the research sector. Figure 2 (a) illustrates 

the number of articles on EMI shielding along with 

MAM between 2000 and 2022 (Scopus data 

collected using the keywords "EMI shielding" and 

"Microwave absorbing materials"). The pie chart in 

Fig 2 (b) along with (c) shows percentage of articles 

for each year. The significant increase in number of 

research articles every year demonstrates the 

growing impact of EMI and the current demand for 

more advanced EMI shielding materials. The most 

effective method for shielding a device from 

undesirable electromagnetic interference is to cover 

it with a protective substance. The present work on 

EMI- shielding substances mostly concentrates on 

the selection of materials, production strategies, 

domains of application, and multifunctionality. In 

addition, it takes into account the cost-effectiveness 

of the shielding substance as well as its compatibility 

with the environment. The advancements in EMI 

shielding materials begin with metallic shields and 

continue with the creation of new, improved 

functional materials. 

 

Fig. 2 (a) The number of articles on EMI shielding and MAM, (b) a pie chart displaying the proportion of 

articles on EMI shielding, and (c) a pie chart indicating the percentage of publications on MAM throughout the 

period between 2000 and 2022 
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Electrides generally are a relatively newer kinds of 

ionic solids. In these substances, electrons that are 

stuck in a chemical cavity are considered to be the 

smallest anions. Cavity-trapped electron is found in 

the same places as anions in ionic solids. It is neither 

localised on individual atoms or molecules, nor is it 

delocalised like electrons in metals. First electride 

synthesis was accomplished by solvating electrons 

of any alkali metal along with complexing metal 

cation with crown ethers and cryptands (Ellaboudy 

et al., 2002). This form of organic electride is 

unstable even at room temperature and will break 

down when it comes into contact with air and 

moisture. Mayenite electride, that is the reducing 

kind of mayenite (Khan et al., 2019), is initial 

inorganic electride that is stable at ambient 

temperature. In this electride, cage-trapped electrons 

along with counter cations occupy separate 

locations. Mayenite constitutes one of the 

transitional stages of the CaO-Al2O3 structure, that 

has an equilibrium of Ca12Al14O33. For many 

years, it has been recognized as an important 

component of calcium aluminate cement, which has 

the formula 12CaO·7Al2O3 (C12A7) in cement-

chemist notation. It is widely used for structural 

material applications. It comprises a cube group of 

I-43d, containing 12 cages with two formulae units 

in every single cell. It has a structure that resembles 

zeolite, with a positively charge cage structure, 

[Ca24Al28O64]4+, that is around 5 Å in size 

(Salasin et al., 2017). Two of C12A7 single-cell 

frames were joined using O2- ions, and those are 

commonly referred to simply as "extra structures" 

since they are not closely linked to the cages. The 

mass flow that happens between the inner cages and 

the exterior is regulated by the tiny "cage opening" 

of 0.1 nm (Matsuishi et al., 2003). C12A7 has a 

unique ability to selectively incorporate anions 

including OH–, O-, F–, O2-, S2–, Cl– as well as 

electrons as substitutes for O2−. This is an intriguing 

property because these anions are not typically 

found in traditional ceramic oxides (Dong et al., 

2013). Mayenite electride C12A7:e- is the name 

given to mayenite in which all of the clathrate O2− 

ions from crystallographic cages have been replaced 

by electrons. These electrons create a singlet 

bipolaron or diamagnetic pair (Matsuishi et al., 

2003) by coupling with each other 

antiferromagnetically. C12A7:e- has a lower work 

function that is similar to that of alkali metals, but it 

has a unique chemical and thermal stability because 

of its remarkable three-dimensionally connected 

positively charged sub-nanometre-sized cage 

arrangement (Toda et al., 2007). The electrons that 

are trapped in the cage can move throughout the 

crystal by jumping to nearby cages, which gives the 

material high conductivity. 

C12A7:e- has a number of applications due to its 

excellent electrical conductivity. These applications 

include activation alongside splitting of CO2 (Kim et 

al., 2006), wires circuit alongside electrodes 

(Hayashi et al., 2002), cathode material in 

fluorescent lamps (Watanabe et al., 2011), electron-

injection layer in OLEDs (Yanagi et al., 2009), as 

well as electron emitter (secondary) in a display 

panel (plasma) (Ono-Kuwahara et al., 2006). EMI 

shielding is one of areas where the qualities of 

ceramic (inherently conducting), C12A7:e-, could 

be quite useful. However, it has not been researched 

yet. 

 

Fig. 3 The chemical makeup of C12A7 and the process of replacing cage-trapped O2- ions with electrons 

undergoing reduction 

Along with electrical conductivity, the creation of 

interfaces and porosity in materials effectively 

brings together a number of dissipation processes 

(Ma et al., 2021). Although the porosity of a material 
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might decrease its electrical conductivity, porous 

substances may have additional methods of internal 

reflections including consequent absorption of EM 

radiations. Furthermore, many interfaces may 

generate interfacial polarization, which may further 

degrade electromagnetic signals and enhance 

microwave absorption. According to Khan et al. 

(2019), the molecule C12A7:e- can be made more 

structurally and electrically stable by applying a 

covering of reduced graphene oxide (rGO). As a 

result, this study generates and examines porosity-

induced C12A7:e- with graphene interfaces for the 

purpose of high-frequency microwave absorption 

and shielding. Impedance matching, which is the 

most important factor for microwave absorption, is 

examined at higher frequencies.  

Experimentation 

Materials 

Both Ca(NO3)2.4H2O (with a purity of at least 

99.0%) and Al(NO3)3.9H2O (with a purity of 98.0-

102.0%) were obtained from Sigma Aldrich, Japan, 

and Alfa Aesar, USA, respectively. The following 

substances were acquired from Merck life science 

private limited in Mumbai: ethylene glycol (EG, 

C2H6O2, 99.0%), citric acid (C6H8O7, 99.0-

102.0%), iron sulfate heptahydrate (FeSO4.7H2O), 

and sodium hydroxide (NaOH). A purchase of 

spherical magnetite nanoparticles with a particle size 

ranging from 50 to 100 nanometres (97%) was made 

from Sigma-Aldrich Company in the United States. 

All of the compounds were utilized in their original 

state, without any additional purification. 

Characterization Techniques 

Using a PerkinElmer STA 800 TG-DTA/DSC 

analyser, the thermal reactions that occurred during 

the synthesis of C12A7:e-@G were examined.  

For the purpose of analyzing the crystal structure 

and phases of the materials, X-ray diffraction (XRD) 

was performed using a Bruker D8 Advance 

diffractometer. The radiation used was Cu Kα 

radiation with a wavelength of 1.5406 Å, 40 kV, and 

40 mA. Spectra of the ultraviolet and visible 

spectrum were captured with a Jasco V-750 

spectrophotometer. The Raman spectra were 

captured using a LabRAM HR evolution 

spectrometer that was equipped with a DPSS laser 

source and had an excitation wavelength of 531 nm. 

Microscopy techniques such as field emission 

scanning electron microscopy (FESEM) with an 

FEI-Novanano SEM 455 (10 kV beam potential) and 

high-resolution transmission electron microscopy 

(HRTEM) with an FEI Tecnai G2, F30 (300 kV 

accelerating potential) were utilized in order to 

investigate the morphology of the material.  

In order to determine the amount of carbon present 

in C12A7:e-@G, a CHNS/O analyser from the 

PerkinElmer 2400 series II was utilized. Utilizing a 

two-probe approach and a Keithley 2400 source 

meter, the DC-electrical conductivity of the pellet 

was measured at room temperature during the 

measurement process. In order to conduct the 

surface elemental analysis, a Thermo Scientific 

ESCALAB X-ray Photoelectron Spectrometer (Al 

Kα 1486.6 eV) was utilized. A vibrating sample 

magnetometer (VSM) was utilized in the physical 

property measurement system developed by 

Quantum Design in the United States of America in 

order to record the M-H responses of magnetite 

nanoparticles at ambient temperature. Studies on 

microwave absorption in the frequency range of 5-

40 GHz were conducted with a coaxial airline of 2.4 

millimetres in diameter (𝛷in = 1.04 mm and 𝛷out = 

2.4 mm). 

Results & Discussion 

The minimum reflection losses (RL) achieved by the 

material are -22.9, -27.1, and -43.8 dB at 30.98 25.3, 

19.0 GHz. The microwave attenuation of the 

material can be further improved by increasing its 

electrical conductivity and modifying the interfaces. 

Here, this has been achieved by simply modifying 

the synthesis condition. This synthesis method 

resulted in providing a uniform coating of highly 

graphitized carbon over C12A7:e- which in turn led 

to an improved electrical conductivity.  



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 969–979 |  973 

 

Fig. 5.11 (a) real and (b) imaginary permittivity, (c) dielectric loss tangent and (d) attenuation constant of C20, 

C30 and C40 composites. 

Here, the microwave absorbing properties of 

C12A7:e-@G and Magnetite incorporated 

C12A7:e-@G composites are characterized in a 

wide frequency range from 5 to 40 GHz. Fig. 5.10 

shows the RL variation of C12A7:e-@G loaded 

paraffin wax composite with different filler loading 

of 20, 30, and 40 wt% (sample codes are C20, C30, 

and C40, respectively). The frequency and 

thickness-dependent variation of RL is studied for 

all composites, and the corresponding 3D and 2D 

contours are shown in Fig. 5.10. The composites 

exhibit multi-band microwave absorption at higher 

thicknesses. C12A7:e-@G also exhibits high-

frequency microwave absorption similar to 

C12A7:e-/MG discussed earlier. For a 2.5 mm thick 

C20 composite, the minimum RL is -38.2 dB at 27.7 

GHz frequency. It shifts to -22.8 dB at 21.4 GHz 

when the thickness is further increased to 3.0 mm. 

The minimum RL shows an increase with the 

increase in C12A7:e-@G loading. For C30 and C40 

composites having thickness 2.5 mm, the minimum 

RL are -27.2 dB and -15.4 dB resulting at 

frequencies 23.1 and 19.8 GHz frequencies, 

respectively. Also, for a thickness of 3.0 mm, the 

minimum RL are -18.8 and -14.6 dB at 18.5 and 16.8 

GHz for C30 and C40, respectively. The increase in 

the RL with C12A7:e-@G indicates the poor 

impedance matching resulted due to the increase in 

electrical conductivity of the composites (Shukla, 

2019). Even though higher conductivity resulted in 

poor impedance matching, it is an essential 

requirement to achieve better microwave 

attenuation. The variation in the microwave 

absorption among the composites can be better 

understood by the electromagnetic parameter 

analysis. 

Fig. 4 shows the real (ε’) and imaginary (ε”) 

permittivity, dielectric loss tangent, and attenuation 

constants (α) of the C20, C30, and C40 composites. 

The complex permittivity, loss tangent, and 

attenuation constant shows an increase with an 

increase in C12A7:e-@G concentration. This 

indicates the increase in electrical conductivity of 

the composite with the increase in the concentration 

of the conducting filler. The poor impedance 

matching observed for C30 and C40 composites 

compared to C20 can be attributed to this increase in 

permittivity due to the increased electrical 

conductivity. However, the high attenuation constant 

of the composites suggests that the composites are 

suitable for microwave absorption applications in 

the high-frequency region of the microwave 

spectrum. The main mechanisms responsible for the 

microwave absorption properties of C20, C30, and 

C40 composites originates from the electrical 

conduction losses due to the high electrical 

conductivity of the C12A7:e- and graphitic carbon 

interface and interfacial polarization losses resulting 

from the Maxwell-Wagner-Sillar (MWS) effect at 

the C12A7:e- and graphitic carbon interfaces. 
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Fig. 5 (a) complex permittivity (b) complex permeability (c) dielectric and magnetic loss tangents and (d) 

attenuation constants of CS(10), C1M(10), C7M(10) and C10M(10). 

Fig. 5 shows the complex permittivity, permeability, 

dielectric and magnetic loss tangents, and 

attenuation constant of the composites. The CS(10) 

composite exhibited a higher real permittivity 

compared to the other composites, while the real 

permeability of all the composites is in the same 

range. The dielectric loss of the C7M(10) composite 

is slightly higher than that of the rest of the 

composites, while the magnetic loss results from all 

the composites were similar. A comparable 

attenuation constant to that of C40 was observed for 

all the composites, with the CS(10) composite 

exhibiting the least attenuation constant. 

For the C7M(20) composite, the minimum RL 

observed are -22.4 and -40.1 dB resulting at 25.9 and 

21.7 GHz for 2.5 and 3.0 mm thickness, while for 

the C10M(20) composite, the RL is -27.4 dB at 22.6 

GHz for 2.5 mm and -39.7 dB at 18.2 GHz for 3 mm. 

The electromagnetic parameters of the composites 

are shown in Fig. 6. The magnetic properties are 

almost similar in all composites and are comparable 

to that of 10 wt% of Magnetite composites. 

However, the dielectric properties of the composites 

exhibited an increase from that of the composites 

with 10 wt% of Magnetite, which in turn resulted in 

a comparatively better attenuation constant. 

 

Fig. 5.15 (a) complex permittivity (b) complex permeability (c) dielectric and magnetic loss tangents and (d) 

attenuation constants of CS(20), C1M(20), C7M(20) and C10M(20). 
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Table 5.3 RL, minimum reflection frequency (fm), and EABW of the composites 

 

Composites 

Thickness: 3.0 mm Thickness: 2.5 mm 

RL 

(dB) 

fm 

(GHz) 

EABW 

(GHz) 

RL 

(dB) 

fm 

(GHz) 

EABW 

(GHz) 

C20 -22.7 21.3 5.8 -38.1 27.6 11.1 

C30 -18.7 

-16.7 

18.5 

33.9 

3.7 

4.8 

-27.1 23.0 5.1 

C40 -14.5 16.8 3.2 -15.3 19.9 5.5 

CS(10) -30.5 20.6 5.4 -25.4 25.8 8.6 

C1M(10) -40.0 21.3 5.5 -35.4 25.9 6.7 

C7M(10) -42.8 20.4 5.8 -31.4 25.4 7.3 

C10M(10) -37.6 20.3 4.3 -29.8 23.4 5.3 

CS(20) -30.0 20.9 6.0 -30.5 26.0 6.9 

C1M(20) -46.0 19.2 4.0 -44.6 23.1 4.9 

C7M(20) -40.0 21.6 5.5 -22.3 25.8 9.4 

C10M(20) -39.6 18.1 3.9 -27.3 22.5 4.6 

Table 5.3 compares the results of microwave 

absorption properties resulting from all the 

C12A7:e-@G/Magnetite/wax composites. The 

better microwave attenuation properties of 

C12A7:e-@G/Magnetite composites resulted from 

the individual contributions from the highly 

conducting C12A7:e-@G, magnetic Magnetite NPs, 

and their synergy. The high electrical conductivity of 

C12A7:e-@G arises from the cage-trapped electron 

anions and highly graphitized carbon interface. Even 

though the attenuation due to dipolar polarizations 

possible from the functional groups is negligible in 

C12A7:e-@G, additional enhancement is possible 

due to the increased conductivity resulting from the 

high graphitization degree of the carbon envelope. 

Moreover, the high-frequency EM responses are 

also possible from C12A7:e-@G due to the electron 

anions. Further, a significant effect of the MWS 

effect also contributes to microwave attenuation due 

to the various interfaces present in the material. 

In this case, the magnetic nanoparticles have a 

considerable impact on the impedance matching as 

well as microwave absorption properties of the 

composites. It is the numerous magnetic losses and 

the interface effect that are introduced by the 

magnetic particle that are responsible for the 

majority of the contribution in this case. The domain 

wall resonance and spin resonance are the two 

fundamental phenomena that are responsible for the 

magnetic loss that occurs in the material. Generally 

speaking, domain wall resonance takes place at 

lower frequencies, and the magnetic losses that 

occur in the microwave frequency band are caused 

by natural resonance, exchange resonance, and eddy 

current loss (Shukla, 2019; Zhao et al., 2017). 

However, the 7M and 10M particles will have Eddy 

current losses due to their unique flake-like and 

polyhedron-like morphology, which will provide 

sufficient area to induce Eddy voltage (Shukla, 

2019). This is despite the fact that the Eddy current 

loss that is caused by Magnetite NPs will be 

relatively low in comparison to that of the bulk 

particles. An additional factor that significantly adds 

to the magnetic losses that are linked with magnetite 

nanoparticles is the magnetic anisotropy that is 

caused by the anisotropic morphology. Particularly, 

the anisotropic effect has a substantial consequence 

in nanomaterials because it causes the breakage of 

some exchange bonds, which in turn will further 

influence the relaxation duration and frequency 

(Liang et al., 2020; Liang, et al., 2015). However, 

this is not the only occurrence of this impact. Pan et 

al. studied the dependence of shape anisotropy of 

Magnetite NPs and demonstrated that higher 
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electrical conductivity, better anti-reflection 

surfaces, and multiple scattering are closely related 

to the anisotropic cross- linked structures of 

Magnetite NPs (Pan et al., 2020). According to 

Liang et al. (2015), the magnetic anisotropy that is 

caused by the morphology can cause the 

permeability to become wider, and it can also cause 

the scattering of electromagnetic radiation to 

become more intense, which ultimately results in an 

increase in the microwave absorption. In this 

research, Liang and colleagues investigated the form 

anisotropy of superparamagnetic magnetite 

nanoparticles (NPs) with a variety of morphologies, 

including hexagonal-like, rod-like, triangle-like, and 

quadrilateral-like morphologies. The quadrilateral-

like nanoparticles were the ones that displayed the 

highest specific absorption rate (SAR) among all of 

them, and as a result, they were able to transform the 

microwave energy into heat energy (Liang et al., 

2020). 

Conclusion 

The nature of the carbon interface and the electrical 

conductivity has been modified by simply 

modifying the synthesis conditions. The mayenite 

electride with graphitic carbon interface (C12A7:e-

@G) exhibited high attenuation potential due to its 

unique structural and morphology derived 

properties. The impedance matching and microwave 

absorption of C12A7:e-@G are further improved by 

incorporating four types of Magnetite nanoparticles 

having various sizes and morphology. All the 

composites exhibit promising properties to act as 

potential candidates for microwave absorption 

applications owing to the high conductivity, suitable 

magnetic properties, and synergy among the 

materials. The tuned electromagnetic parameters 

arising from high electrical conductivity and 

effective polarization at different interfaces, as well 

as the magnetic losses from Magnetite contribute to 

the exceptional microwave attenuation preparties of 

the material. Among the composites, the C12A7:e-

@G/Magnetite composite with sphere-like 

morphology exhibited better impedance matching 

resulting in a minimum RL of -46.0 dB at 19.2 GHz 

with an EABW of 4.0 GHz for a thickness of 3 mm, 

which is ascribed to the smaller size of the 

nanoparticles having a maximum surface area 

facilitating interfacial and dipolar polarization. This 

study demonstrated the potential of C12A7:e-

@G/Magnetite composite, which can act as an 

alternative for the high-cost carbon nanostructures-

derived EM absorbers for high-frequency 

applications. Moreover, this ceramic material-based 

system can be further studied for widening the 

application possibilities to the harsh-environmental 

conditions. 
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