International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

www.ijisae.org

1JISAE

ISSN:2147-6799 Original Research Paper

Enhancing Demand Forecasting Performance Using Deep Learning and
Time Series Data Augmentation Techniques

Jinseop Yun', Yejun Park? Doohee Chung**

Submitted: 14/08/2025 Revised: 25/09/2025 Accepted: 05/10/2025

Abstract: Accurately forecasting demand remains a persistent challenge for organizations, especially under conditions of high uncertainty
and data scarcity. While machine learning and deep learning methods have advanced beyond traditional statistical approaches, their
effectiveness is often constrained by limited data availability. To address this critical issue, this paper introduces an innovative and
systematic framework that integrates advanced time series data augmentation techniques, the Long Short-Term Memory (LSTM) deep
learning model, and Average Demand Interval-Coefficient of Variance (ADI-CV) methodology. The proposed framework leverages ADI-
CV to categorize time series patterns, enabling the application of tailored augmentation techniques such as Moving Block Bootstrap (MBB),
Time-Conditional GAN (T-CGAN), and Transformer-based Time-Series Conditional GAN (TTS-CGAN). These techniques ensure the
generation of synthetic data that accurately reflects temporal characteristics and market conditions, overcoming the traditional limitations
of data scarcity. Our experimental results demonstrate that the augmented time series data significantly enhances forecasting performance
across diverse and complex demand scenarios. This framework not only addresses the critical gap in demand forecasting methodologies
but also establishes a scalable and adaptable solution for enterprises operating in volatile and dynamic market environments. By offering
a robust tool to improve predictive accuracy and reliability, this study contributes a novel methodology with the potential to transform
business decision-making processes.
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time series models like ARIMA and SARIMA [5]. While these
methodologies are somewhat effective in predicting demand
patterns using historical data, they often require extensive manual
parameter tuning and significant domain knowledge, making them

1. Introduction

Accurate prediction of product sales and shipments has been a

significant challenge in corporate management. Precise demand
forecasting forms the basis for effective inventory management,
production planning, and promotional activities [1], enhancing a
company's productivity and profitability [2]. Scholars emphasize
that improving the accuracy of demand forecasting plays a critical
role in enhancing corporate competitiveness, especially amid
increasing market complexity and volatility. Accurate forecasts
enable companies to optimize production planning, reduce
inventory costs, and swiftly respond to fluctuating customer
demands in unpredictable markets [1,3,4].

Demand forecasting research has long relied on traditional
statistical methods, including regression models such as Linear
Regression, Lasso Regression, and Ridge Regression, as well as
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time-consuming and less adaptable to rapidly changing market
conditions.

To overcome these limitations, deep learning models have recently
been applied to demand forecasting. Deep Neural Networks
(DNNs), such as Multi-Layer Perceptrons (MLPs), have been used
to model complex patterns [6] but may struggle with sequential
data. Recurrent Neural Networks (RNNs) [7] address this by
capturing temporal dependencies, yet they can suffer from issues
like vanishing gradients. The Long Short-Term Memory (LSTM)
model, an advanced type of RNN, effectively mitigates these issues
and has shown excellent performance in solving complex demand
forecasting problems across various fields [8,9,10].

Recent research trends focus on developing hybrid models that
integrate various techniques to overcome the limitations of single
machine learning or deep learning models [11,12]. Representative
examples include combinations of LSTM with traditional time
series forecasting models, CNN-LSTM hybrid models, ensembles
of deep learning and machine learning techniques, and attention-
based models [13,14,15]. These models are gaining attention
because they can better capture spatiotemporal characteristics and
long-term and short-term data dependencies that existing models
could not.

However, these advancements have not addressed a fundamental
challenge in demand forecasting: data scarcity [16]. While hybrid
models have enhanced modeling capabilities, they remain heavily
dependent on the quality and quantity of input data, which limits
their effectiveness in scenarios with insufficient or inconsistent
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data [17]. This limitation underscores the need for innovative
solutions that focus not only on model sophistication but also on
improving the availability and diversity of training data.
According to [18], 52% of companies worldwide face significant
challenges in adopting Al solutions due to insufficient data. Since
machine learning is inherently data-intensive, data scarcity
imposes severe constraints on the application of machine learning-
based demand forecasting models. Insufficient data reduces
training opportunities for ML models, leading to diminished
performance and significantly impairing their ability to generalize
effectively in forecasting scenarios.

In this context, data augmentation techniques play a crucial role in
addressing these challenges. By supplementing insufficient data
and generating enriched and diverse datasets, data augmentation
mitigates the limitations of data scarcity and significantly enhances
forecasting performance. Resolving data scarcity opens up the
potential to apply machine learning forecasting models to the
remaining 50% of demand forecasting scenarios that were
previously inaccessible due to data limitations.

To address these challenges in demand forecasting, this study
highlights data augmentation as a hybrid approach that offers a
direct and effective solution. Unlike traditional methods of
information expansion, such as external data integration or transfer
learning, data augmentation directly tackles dataset limitations by
generating synthetic variations [19]. By enhancing the quantitative
and qualitative diversity of existing data, it enables models to
encounter a broader range of potential data patterns beyond what
is typically observed in real-world settings, thereby improving
model robustness and adaptability [20]. In the context of product
demand forecasting—which must adapt to challenges such as new
product launches, seasonal variability, and shifting market
trends— diversity learning through data augmentation is essential
[21].

This study distinguishes itself by presenting a novel approach that
integrates data augmentation techniques with deep learning models
to address the dual challenges of data scarcity and prediction
accuracy in demand forecasting scenarios. Unlike prior research,
which has predominantly focused on enhancing model complexity
or optimizing parameters, this study directly tackles the issue of
data scarcity by generating synthetic data, enabling robust learning
even in environments with limited data availability.

Data augmentation, however, more than merely
increasing the quantity of data; it requires a sophisticated design
that accounts for the unique characteristics of each dataset.
Randomly applied augmentation techniques can destabilize the
training process or degrade model performance. To mitigate these
risks, this study employs the Average Demand Interval-Coefficient
of Variance (ADI-CV) methodology, systematically analyzing the
variability and frequency of data to accurately select augmentation
techniques optimized for each demand pattern. By doing so, the
study maximizes the effectiveness of data augmentation,
improving both the predictive accuracy and robustness of the
models.

Therefore, this study introduces augmentation models tailored to
diverse demand patterns, optimizing the performance of LSTM-
based forecasting models. This approach not only addresses the
often-overlooked issue of data scarcity in previous research but
also presents a modeling framework with scalability and
adaptability to dynamic and volatile market environments.
Consequently, this study significantly enhances the accuracy and
reliability of demand forecasting while providing a robust
foundation for improving the quality of decision-making processes.

involves

2. Literature Review
2.1. Approaches to Demand Forecasting

In demand forecasting research, there is a notable emphasis on the
capability of deep learning models to produce highly accurate
predictions, even when working with univariate time series data
[22]. Unlike traditional statistical models, deep learning techniques
effectively capture complex nonlinear patterns and temporal
dependencies inherent in univariate data. Traditional models often
assume linearity and may struggle with the non-stationarity and
noise present in real-world demand data. In contrast, deep learning
models like LSTM can learn long-term dependencies and
nonlinear relationships without extensive manual parameter tuning
[23,24]. This advantage is particularly prominent in situations with
high data complexity and volatility, where capturing intricate
patterns in univariate time series is crucial for accurate forecasting.
Deep learning-based time series forecasting models began with the
MLP. However, MLPs lack recurrent structures, making them
ineffective at capturing temporal dependencies in time series data
[25]. To address this issue, RNNs were introduced, which learn
patterns in sequential data through recurrent connections [7].
Despite this advancement, RNNs face challenges in learning long-
term dependencies due to the vanishing and exploding gradient
problems during training [26]. To overcome these limitations, the
Gated Recurrent Unit (GRU) was developed, enhancing model
efficiency by regulating the flow of information with gating
mechanisms [27]. [28] demonstrated that GRUs effectively
process sequences of various lengths by sharing the same
parameters across time steps.

Finally, the LSTM network introduced additional gates and cell
states, allowing for more stable learning of long-term
dependencies [29]. [30] revealed that LSTM outperforms
traditional models such as ETS, ARIMA, SVM, and standard
RNNs in forecasting complex univariate time series data. This
progression from MLP to RNN, GRU, and LSTM has significantly
enhanced the ability to model complex and irregular time series
data [31].

Despite significant advancements in the application of deep
learning in demand forecasting, several critical limitations remain
in existing research. First, time series data used in demand
forecasting often exhibits diverse and complex patterns such as
seasonality, trends, and cyclicality. Accurately modeling these
patterns requires advanced statistical and domain knowledge as
well as sophisticated modeling techniques. Although deep learning
models capture complex nonlinear relationships by utilizing
layered architecture and nonlinear activation functions such as
ReLU, sigmoid, and tanh that enable them to model intricate
patterns in data, relying on a single predictive model may not
always yield satisfactory results when tackling intricate sales
forecasting problems due to the high complexity and variability
inherent in demand data [32].

To address this challenge, recent studies have increasingly
reported advanced hybrid models designed to overcome the
limitations of single deep learning models. These hybrid models
optimize prediction performance by integrating multiple processes
such as data preprocessing, parameter tuning, clustering, error
correction, and postprocessing into a cohesive framework. Such
models consistently outperform single models, as demonstrated by
various research efforts. For example, [33] introduced a hybrid
model combining Seasonal and Trend Decomposition using Loess
(STL) with a Duo-Attention Deep Learning Model (DADLM) for
tourism demand forecasting. This STL-DADLM model mitigated
overfitting and achieved higher accuracy compared to traditional
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models, showcasing the advantage of integrating decomposition
and deep learning techniques. Similarly, [34] proposed a (c, 1)-
LSTM+CNN model for power demand forecasting, where the (c,
1)-LSTM extracts temporal features, and the CNN generates
refined prediction profiles. This hybrid approach outperformed
ARIMA and other models, particularly excelling in short-term
forecasts with fine temporal granularity.

However, the second and third challenges remain unresolved by
hybrid models.

Second, deep learning models are at risk of overfitting the training
data, which can hinder the model's ability to generalize to new data
[35]. Overfitting is a major factor that can significantly reduce the
predictive performance of a model in real-world operational
environments. Hybrid models, while enhancing predictive
capabilities, may still suffer from overfitting, especially when they
become overly complex or when the amount of training data is
limited.

Third, deep learning models require a sufficient amount of data to
be effectively trained. The study by [17] demonstrated that data
scarcity is a major factor that diminishes the performance of LSTM
models, arguing that with sufficient data, these models could
outperform traditional forecasting methods. However, in real-
world scenarios, obtaining enough data is often challenging,
especially in the case of new products where data may be
nonexistent [36]. This issue critically limits the application scope
of deep learning models, making it difficult to generate accurate
forecasts for unique market conditions or niche products [37].
Hybrid models do not fundamentally solve the problem of data
scarcity, as they often require even more data to train the additional
components effectively.

Therefore, while hybrid models can address the first challenge by
enhancing the ability to model complex demand patterns, they do
not effectively resolve the issues of overfitting and data scarcity.
These limitations necessitate alternative approaches that can
mitigate overfitting and improve model performance even when
data is limited.

2.2. Data Scarcity and Time Series Data Augmentation

Data scarcity remains a significant challenge in the development
of deep learning models. While model-centric techniques like
dropout, batch normalization, and transfer learning help mitigate
overfitting and enhance generalization, they do not fundamentally
resolve limitations in data quantity and quality. The most effective
way to overcome these constraints is to increase data availability.
In this context, [19] emphasize that data augmentation is a
foundational and effective approach to overcome overfitting
caused by limited data. Data augmentation artificially enhances
dataset diversity by applying transformations to existing data,
creating new samples without additional data collection. Initially
starting with simple transformation techniques in the field of image
recognition, it has evolved into advanced, deep learning-based
methods such as style transfer and Generative Adversarial
Networks (GANs) [38,39]. This approach has established itself as
a powerful solution in various fields, addressing data scarcity and
improving model performance.

In the field of time series forecasting, there has been active
research on data augmentation to address challenges such as data
scarcity, imbalanced data distribution, and privacy concerns
[40,41,42]. [20] categorized time series data augmentation into
basic approaches (cropping, flipping, jittering) and advanced
techniques (decomposition, statistical generative models, machine
learning-based methods), each aiming to enhance prediction
accuracy.

A variety of methods have been proposed to augment time series
data effectively. Time Series Bootstrapping increases data
diversity by resampling the original data, thus helping to estimate
prediction uncertainties [43]. Dynamic Time Warping Barycentric
Averaging (DBA) combines multiple time series to create a
representative series that accounts for temporal variations [44].
Markov Chain Monte Carlo (MCMC) simulates realistic time
series by estimating parameters of probabilistic models [45], while
GRATIS generates synthetic data with diverse characteristics,
improving model performance [46]. Additionally, Variational
Auto-Encoders (VAE) and Generative Adversarial Networks
(GANSs) leverage deep learning to generate data that closely
resembles real time series, significantly expanding datasets
without manual collection [47, 48].

[49] demonstrated that RNN-based models trained on data
augmented with methods like MBB, DBA, and GRATIS
outperformed traditional univariate models. This suggests that data
augmentation can significantly enhance both the accuracy and
generalization capability of time series forecasting models in data-
scarce environments.

However, data augmentation does not always guarantee improved
predictive performance. The effectiveness of augmented data
depends on how well it captures the complexity and diversity of
the original dataset. If augmentation introduces distributional shifts
or adds unnecessary noise, it may hinder the model from learning
essential patterns and relationships [42]. For example, [50] tested
12 time series augmentation methods in classification tasks but
found that models like LSTM-FCN and MLP did not always
benefit from augmented data. This suggests that augmentation
needs to align closely with both data characteristics and model
architecture to be effective.

In demand forecasting, augmentation requires
techniques tailored to the specific demand patterns present in the
data. Understanding and decomposing data types before applying
augmentation can improve the relevance of augmented data. [51]
highlighted that traditional GAN-based augmentation performs
poorly with non-uniform data distributions. To address this, they
proposed a Decomposition-based Data Augmentation Scheme
(DAST), which separates data into daily-load, seasonal context,
and irregular components for targeted augmentation. This
approach significantly reduced forecasting errors in building load
predictions compared to conventional methods, illustrating the
importance of aligning augmentation strategies with data
characteristics.

In demand forecasting, domain-specific metrics like ADI and CV
are often used for data classification [52]. These metrics have also
been leveraged to apply tailored predictive models, as shown by
[53]. For example, [54] improved forecasting accuracy by
segmenting data according to demand patterns and applying
appropriate predictive models to each segment using a Dynamic
Weighting Strategy (DWS). However, research on applying
augmentation techniques based on demand patterns remains
limited, suggesting a need for further exploration.

successful

2.3. Ensembled approach for forecasting

This study employs ADI-CV analysis to classify demand patterns
for effective data augmentation. ADI measures the average interval
between demand occurrences, indicating the intermittent demand,
while CV reflects the variability in demand volume. By combining
these indicators, ADI-CV analysis enables segmentation based on
demand frequency and variability, providing a structured approach
to handling diverse demand patterns [52].

Previous research has highlighted the practical applications of
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ADI-CV analysis. For instance, [55] developed an optimization
strategy for managing spare parts with irregular demand patterns
using ADI-CV, and [56] optimized inventory policies by analyzing
demand frequency and variability to minimize costs. These studies
demonstrate the effectiveness of ADI-CV analysis in operational
decision-making, offering insights that can enhance efficiency in
corporate inventory and demand management.

In this study, ADI-CV analysis is utilized not only to classify
demand patterns but also as a foundation for selecting appropriate
data augmentation techniques. By aligning augmentation methods
with specific demand characteristics, this approach aims to
improve demand forecasting accuracy and model robustness
across varied demand scenarios.

In conclusion, this literature review confirms that properly
analyzing demand patterns and applying suitable data
augmentation techniques can enhance the performance of deep
learning models. Therefore, this paper applies the ADI-CV
methodology as a systematic tool for demand pattern analysis and
explores various augmentation techniques such as Moving Block
Bootstrap (MBB), Time-Conditional GAN (T-CGAN), and
Transformer Time-Series Conditional GAN (TTS-CGAN) to
address data scarcity issues. Through this, the study aims to
develop a hybrid model that combines these augmentation
techniques with the LSTM prediction model to improve
performance.

3. Methodology
3.1. Data Augmentation Model

Generative Adversarial Networks (GANs), introduced by [38],
have emerged as a powerful framework for generating synthetic
data by learning the underlying distribution of real datasets. GANs
consist of two neural networks, the generator and the discriminator
that are trained simultaneously through an adversarial process. The
generator creates synthetic data samples, while the discriminator
evaluates their authenticity, guiding the generator to produce data
that closely resembles the real data.

In the context of time series data, traditional GANSs face challenges
due to the sequential and temporal dependencies inherent in such
data. To address these issues, specialized GAN architectures have
been developed to handle time series data more effectively.

3.1.1. T-CGAN

T-CGAN is proposed as a methodology to generate new data in
cases where time series data is irregularly collected or insufficient
[57]. This model uses GAN architecture consisting of two
components: a Generator ( G ) and a Discriminator ( D ).
Specifically, it employs a Conditional Generative Adversarial
Network (CGAN) architecture, where the generator and
discriminator learn to generate and distinguish data based on given
conditions.

The Generator (G ) creates new data based on the provided
conditions, while the Discriminator (D) distinguishes whether the
data is real or generated. Through this process, the generator
progressively produces data that closely resembles real data to
deceive the discriminator. The generator is implemented using a
deconvolutional neural network, and the
implemented using CNN. By conditioning on the time information
that indicates the data collection points, T-CGAN generates time
series data that mimics the actual data distribution.

The model is primarily composed of three spaces: noise vector
space (Z), time information space (T), and data space (X). The
noise vector space (Z) includes noise vectors used as input values

discriminator is

for the model, sampled from a Gaussian distribution to generate
new time series data. The time information space (T) contains
information indicating the collection time of each data point, which
is provided as a condition to both the generator and the
discriminator. The data space (X) includes both the actual time
series data and the generated time series data. Through the
interaction of these spaces, the model generates data that mimics
the actual data distribution pgqeq (X, t) based on the given time
information condition.

The objective function is as follows:

mGin max V(D,G) = Ex_p, ollogD (x | )] + Ezp, 2 [log (1 -D(G(zI t)))] (€))

The model operates with the goal of enabling the discriminator
model D to accurately distinguish between real and generated data,
while the generator model strives to deceive the discriminator by
producing data indistinguishable from the real data. Here,t = <
t1, - ,ty2is an ordered vector of timestamps randomly sampled
from T. The model can also generate new time series
corresponding to timestamps that do not present in the training set.
The generator network takes noise vectors and timestamps as
inputs to generate time series data similar to real data. This is
accomplished using four transposed convolutional layers. Each
layer applies ReLU activation functions and batch normalization,
except for the last layer, to maximize learning efficiency and
stability of the network. The generator network is defined as
follows:

G:(Z,T)-» X 2)

The discriminator network receives real data and generated data
along with their corresponding timestamps as inputs to determine
whether the data is real or generated. This network is composed of
two convolutional layers, max-pooling layers, and a final fully
connected layer that makes the final discrimination decision. The
discriminator network is defined by the following function:

D:(X,T) - [0,1] 3

3.1.2. TTS-CGAN

TTS-CGAN [58] is also an effective augmentation technique
designed to address the problem of insufficient time series data.
Traditional GAN models were limited to generating data for a
single label, but TTS-CGAN introduces a label embedding
strategy to generate conditional time series data that incorporates
label information. By incorporating a transformer-based GAN
structure, TTS-CGAN captures complex temporal patterns such as
long-term dependencies, enabling the generation of highly
accurate data.

This model also consists of two main components: the generator
and the discriminator. The generator starts with a random vector
from the latent space and uses a multi-head self-attention
mechanism and GELU activation function within an MLP to
transform it into a sequence that matches the length of the time
series data but with many hidden dimensions. The discriminator
distinguishes between generated data and real data, leveraging a
transformer encoder to learn the temporal order and patterns of the
data.

TTS-CGAN operates by integrating conditional information into
the traditional GAN framework. It combines Adversarial Loss and
Categorical Loss to train the model so that the generated data is
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indistinguishable from real data while accurately reflecting the
target category labels. Additionally, to assess the similarity
between generated and real data, it introduces the Wavelet
Coherence Similarity metric, which maximizes the variance
between classes and minimizes the variance within classes. This
metric quantitatively evaluates the similarity between actual
signals and generated signals, ensuring that the generated data
accurately reflects the characteristics of the original data.

Lagy = EN108 Dagy (D] + E [log (1 = Duay (62 )] ()
Lys = E[- log Dy (¢ | x)] (5)

|S(Cc(a,b) - C,(a, b))

$UC(a b)) - S ([cy(a b))

ucoh =

(6)

3.1.3. MBB

Bootstrap is a critical method in statistical inference for estimating
the distribution of statistics without relying on parametric
assumptions [59]. MBB is a bootstrap method tailored for time
series data, designed to preserve the time dependence structure of
the original time series by maintaining the order of data within the
same block [60]. Bootstrap-based data augmentation techniques
that generate time series similar to the original dataset distribution
have proven effective in improving model accuracy [49].

The core of MBB is to generate new samples that reflect the
autocorrelation within the time series data. According to [61], the
process of selecting blocks of consecutive observations and the
length of these blocks directly affect the accuracy of bootstrap
estimates. Therefore, the appropriate block length should be
determined by balancing the autocorrelation characteristics of the
data and the accuracy of the estimates obtained through
resampling. The mechanism of MBB is as follows [43]:

Original time-series data Bootstrapped Time-series Data

STalalwal %]
Decomposed seasonality | trend portion Decomposed seasinality | trend portion

+ . : +

L

Add back seasonaiity and trens I n

IF | wTalwl sl %] [l

B DR N L L

Remainder after decomposition \ / Bootstrapped remainder part

|
o |
— —

Blocked remainders

Fig. 1. MBB Architecture

Decomposition: Decomposing data D, into trend T, seasonality S,
, and residual R, components is essential for clearly understanding
the fundamental structure of the data. Decomposition using STL
flexibly captures the nonlinear trends and seasonal variations
within the data. This decomposition process reduces the
complexity of the data for future analysis and provides a
foundation for evaluating the influence of each component
separately.

D, =T, +S; +R;, 7

Block Generation: Generating blocks of consecutive observations
from the residual R; is the central step of MBB. The block length
1 should adequately reflect the autocorrelation properties of the
data. According to Bergmeir's suggestion, the block length can be
adjusted based on the data type and the analysis purpose [43]. This
process plays a crucial role in ensuring the diversity and reliability

of the bootstrap samples.

Sample Extraction and Recombination: Randomly extracting the
reconstructed residual blocks and adding them to the existing trend
and seasonality generates new synthetic time series data. This
process is crucial for creating new data samples while maintaining
the statistical characteristics of the original data. By applying the
resampling principle that preserves the temporal structure of the
data, this step contributes to enhancing the reliability of the
analysis.

Dt* = Tt + St + Rt* (8)

Estimation Calculation: Estimating the statistics or model
parameters of interest from the reconstructed data D."involves
utilizing the samples obtained through the MBB approach to derive
the statistical estimate distribution of the analysis target. Through
this iterative process, confidence intervals, standard errors, and
other evaluation metrics of the estimates can be assessed. This step
verifies the reliability and predictive power of the model,
effectively managing the uncertainty and variability of the data.

3.2. Demand Pattern Analysis: ADI/CV

In this study, ADI and CV are applied to distinguish demand
patterns. ADI measures the average interval between demand
occurrences for an item or service within a specific period,
indicating demand frequency. CV assesses the variability in
demand, reflecting its stability and predictability. These two
indicators quantify the diversity in demand intervals and sizes,
categorizing product demand patterns into four types: Smooth,
Intermittent, Lumpy, and Erratic [62].

ADI represents the average time interval between consecutive
demands. By calculating ADI, the frequency of demand
occurrence can be understood, providing crucial information for
inventory management and demand forecasting. A high ADI
indicates long intervals between demand occurrences, which may
suggest an irregular demand pattern. Here, the time interval
between the i-th and i + 1-th demands is t;, and N is the total
number of demand occurrences within the measurement period.

N
_ =t

ADI = 9)

CV is the value obtained by dividing the standard deviation ¢ by
the mean demand p, representing the relative variability of
demand. A high CV indicates a wide variation in demand sizes,
which can complicate demand forecasting and inventory
management for the product. Here, Dy is the size of the i-th

demand, and D is the average demand size.
§V=1( Di - D)2 N
_ N 2= Dy
cv=X_— N hereD = (10)

D N

Combining ADI and CV allows for a precise understanding of
demand patterns for products. For instance, when both ADI and
CV values are high, it indicates that demand is highly irregular and
difficult to predict. The study by [52] established threshold values
of CV 0.49 and ADI 1.32 to categorize demand patterns. Based on
these thresholds, the four classified demand patterns are as follows:
When ADI is less than 1.32 and CV is also less than 0.49, a Smooth
demand pattern is observed, indicating a regular and predictable
demand pattern. Conversely, when ADI increases to 1.32 or more
while CV remains below 0.49, an Intermittent demand pattern is

observed, characterized by infrequent but stable demand
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quantities. When ADI is less than 1.32 and CV exceeds 0.49, a
Lumpy demand pattern emerges, where the occurrence frequency
is irregular, and the demand size is highly variable. Lastly, when
both ADI and CV exhibit high values, an Erratic demand pattern is
observed, making it difficult to predict and requiring considerable
flexibility and caution in inventory management.

Table 1. Classification of Demand pattern in terms of ADI-CV
ADI Cv Demand Pattern

0.0 <ADI<1.32 0.0<CV<049 Smooth x[’
1.32 <=ADI 0.0<CV <049 Intermittent
0.0 <ADI<1.32 0.49<=CV Lumpy
1.32 <= ADI 0.49<=CV Erratic
3.3.LSTM

To address the complexities inherent in demand forecasting, this
study employs the LSTM model, a specialized Recurrent Neural
Network (RNN) architecture proposed by [29]. The LSTM model
is chosen due to its ability to capture long-term dependencies
within time series data, a characteristic essential for demand
forecasting. Unlike traditional RNNs, LSTM mitigates the gradient
vanishing issue, enabling effective learning over extended
temporal sequences [63,64].

The main components of the LSTM model are the hidden state and
cell state. The hidden state processes short-term information, while
the cell state stores long-term information. These states manage the
flow of short-term and long-term information, constituting the core
mechanism that determines the model's performance. LSTM
operates through three main gates: input gate, forget gate, and
output gate.

Input Gate decides whether new information should be added to
the memory cell by considering the current input and previous
hidden state. Forget Gate removes unnecessary information using
the previous cell state and current input. Output Gate determines
the output information based on the current cell state, adjusting it
to generate the final output.

This structure of LSTM effectively reflects the characteristics of
time series data, which occurs sequentially over time and has
strong dependencies between time points. Time series data
includes both short-term fluctuations and long-term trends,
requiring a model capable of handling these aspects.

LSTM stores long-term information through the cell state,
updating or maintaining it as needed. This mechanism is highly
effective for learning long-term patterns in time series data.
Additionally, the input gate and forget gate help remove
unnecessary short-term fluctuations and selectively remember
important information, aiding the model in learning key data
characteristics.

By managing information flow through its gates, the LSTM model
effectively captures the dynamic and sequential nature of demand
forecasting data. This architecture enables it to learn complex
temporal patterns, making it highly suitable for predicting future
demand based on historical trends. Consequently, the LSTM
model offers a robust framework for handling time-dependent
patterns, supporting accurate long-term demand predictions.
LSTM’s ability to retain crucial historical
information over extended periods while filtering out irrelevant
data makes it an optimal model for time series forecasting. These
attributes its predictive accuracy and reliability,
establishing it as a powerful tool for learning long-term
dependencies in demand forecasting applications.

In summary,

enhance

Fig. 2. LSTM Architecture

4. Demand Forecasting Model Combined with
Data Augmentation Techniques

This study proposes a hybrid model that combines data
augmentation techniques and deep learning models to achieve
accurate product demand forecasting in situations with limited
data. The framework explaining the procedure for this model is
shown in Figure 3.

4.1. Identifying Demand Pattern through ADI/CV Analysis

We calculated the ADI and CV to analyze the frequency and
variability of demand for each product. Based on these metrics,
products were classified into one of four demand patterns:
‘Smooth,” ‘Erratic”, “Intermittent,” or ‘Lumpy.’

4.2. Data Augmentation through various Models

Subsequently, data with similar patterns to the actual ones is
generated for each demand pattern using various augmentation
models. The generated data undergoes a normalization process and
is pooled together with the existing data for model training.

4.3. Training LSTM for each Demand Pattern

We trained the time series prediction model using LSTM on the
pooled data, which includes both the augmented and original data
generated for each demand pattern. Hyperparameter tuning is the
process of adjusting the model's hyperparameter values to optimize
its performance. For a base learning model like LSTM, it is
essential to set various hyperparameters appropriately, such as
LSTM cell dimensions, the number of epochs, hidden layers, mini-
batch size, and normalization layers. Therefore, we used Keras-
Tuner to test multiple hyperparameter combinations and
automatically determine the optimal values.
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Fig. 3. Experiment framework
4.4. Demand Forecasting with Trained Model

In the demand forecasting stage, use the trained LSTM model to
predict the future demand for each item. Evaluate the model's
performance across the entire dataset and for each demand pattern
and identify the most suitable prediction model for each pattern.

4.5. Selecting  Optimal Model

Combination

Augmentation-Forecast

In the optimal combination selection process, compare and analyze
the predictive performance of various data augmentation
techniques and prediction model combinations. Determine the
most effective data augmentation-prediction model combination
for each demand pattern. Use performance evaluation metrics such
as nRMSE (Normalized Root Mean Square Error), nMAE
(Normalized Mean Absolute Error), and sSMAPE (Symmetric
Mean Absolute Percentage Error) to analyze the performance of
each combination. Select the model combination with the highest
performance for each demand pattern as the optimal model.

5. Data

The data analyzed in this study consists of weekly demand data
spanning a total of 243 weeks, from the first week of 2019 to the
fourth week of August 2023, from a global pharmaceutical
company. Out of 369 products, 168 items were identified as the
target for prediction. Initially, 248 items with confirmed demand
variability were selected through ADI/CV analysis. Subsequently,
the distribution of shipment frequencies was examined to select the
final items for the model. The distribution based on shipment
frequencies showed that 40 items (approximately 16.12%) were
fewer than 5 shipments, and 55 items (approximately 24.38%)
were fewer than 10 shipments. The items used for model training
were those with 40 or more shipments, totaling 168 items
(approximately 67.74%). The average delivery quantity for these
items was 4288.92, with a minimum value of 0.0 and a maximum
value of 704,100.0, showing a wide range.

# of tems

weeks

Fig. 4. Weekly data distribution

A descriptive statistical analysis was conducted on the weekly
demand data. The analysis was based on the entire dataset from the
first week of 2019 to the fourth week of August 2023,
encompassing a total of 179,292 records.

2000

frequency

L

Fig. 5. Data distribution based on shipment frequencies

160000 - 50000 306000 500000 G060 766000

shipment

The first quartile (Q1) of the demand data is 0, indicating that at
least 25% of the data points are 0. The median (50th percentile) is
72, while the mean demand is approximately 4,289, significantly
higher than the median. This suggests that extreme demand values
are substantially elevating the mean. The third quartile (Q3) is
1,000, indicating that most data points have lower demand than the
mean. The interquartile range (IQR) is 1,000, which is smaller than
the mean, indicating that the data is highly clustered around the
median with low variability. The maximum demand value is
704,100, showing a highly skewed distribution.

CV is approximately 5.11, indicating that the standard deviation is
much larger than the mean, signifying high variability in the data.
The skewness is about 11.89, showing that the demand distribution
is heavily skewed to the right, with most demand being low but
some extremely high. The kurtosis is around 196.43, indicating
that the demand distribution is much more peak than a normal
distribution, with many extreme values.

Table 2. Descriptive statistical analysis on weekly demand data

Number of Data Points 179,292
1st Quartile 0
Median 72
Mean 4289
3rd Quartile 1000
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Interquartile Range 1000

Maximum 704100
Coefficient of Variation 5.11
Skewness 11.89
Kurtosis 196.43

This statistical analysis provides crucial insights into the
fundamental characteristics of the data, which is important for the
modeling process. High skewness and kurtosis indicate the
possibility of extreme demand occurrences, and the high CV
implies significant demand variability. Therefore, it is essential to
design a model that can appropriately understand, reflect, and
predict these data characteristics and distributions.

6. Experimental Results
6.1. Demand Pattern

In this section, ADI and CV were utilized to analyze the demand
patterns of products. First, data was collected that measured the
demand quantity D I during the period t I for each item. By
calculating the average of these time intervals, the ADI was
derived. The axis in Figure 6 represents time, and the demand
occurring at specific points in time is indicated as D. Additionally,
to evaluate the variability in demand size, the standard deviation
of the demand quantities D_i(i=1,2,3,4,...,n) was calculated, and
this was divided by the mean demand to obtain CV.

|

timeline
Fig. 6. Example of demand occurrences between each interval
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Fig.7. Demand pattern analysis based on ADI-CV

Based on the demand occurrence times and quantities for 168
items, ADI and CV were calculated and plotted in Figure 7, with
ADI on the x-axis and CV on the y-axis. Using specific threshold
values, the items were categorized into four types: Smooth, Erratic,
Intermittent, and Lumpy. The classification resulted in 60 items
(35.71%) as Smooth, 60 items (35.71%) as Erratic, 16 items
(9.52%) as Intermittent, and 32 items (19.04%) as Lumpy.

Smooth items exhibit stable demand with a low CV of 0.12, slight
right skewness (0.77), and kurtosis of 1.82. They have an average
demand of 243 units and minimal zero-demand occurrences

(1.22%). Erratic items show high variability with a CV of 0.86,
high skewness (3.33), and kurtosis of 16.40, indicating extreme
fluctuations, with an average demand of 241 units and a low zero-
demand frequency of 2.45%. Intermittent items display irregular
demand, characterized by a CV of 0.34, right skewness (0.92), and
low kurtosis (0.03), with frequent zero demand (61.41%) and a
lower average demand of 113.9 units. Lumpy items exhibit
sporadic demand with a CV of 1.03, high skewness (2.07), and
kurtosis of 4.65, along with a substantial zero-demand frequency
0f' 44.95% and an average demand of 129.4 units.

This analysis provides critical insights for developing tailored
forecasting models that address the distinct characteristics of each
demand pattern.

6.2. Data Augmentation

In this section, we explain the process of identifying individual
product demand patterns through ADI-CV analysis and forming
clusters based on these patterns. For each cluster, we use t-SNE to
map the data into a 2D space, visually verifying the effectiveness
of data augmentation. Additionally, we quantitatively evaluate the
distribution differences between augmented data and original data
using the KL divergence metric and analyze the consistency of
model results through epistemic indicators. This allows us to
numerically confirm how accurately the augmented data mimics
the original data distribution. This section details the visual and
quantitative validation methods for data augmentation and
comprehensively analyzes the impact of data augmentation on
improving the accuracy and reliability of the demand forecasting
model.

Fig. 8. Comparison of distribution

We visually validated the effectiveness of data augmentation by
comparing the distributions of the original data (in red) and the data
generated through augmentation (in blue). The original data forms
distinct clusters according to the Smooth, Erratic, Intermittent, and
Lumpy patterns, and the augmented data closely mimics these
patterns. The distribution of the augmented data appears to be very
similar to that of the original data.

In this study, we used Kullback-Leibler Divergence (KL
divergence) to quantitatively assess how closely the augmented
data approximates the original data distribution. KL divergence is
an asymmetric measure that quantifies the difference between two
probability distributions, helping to determine how well the new
data generated by the augmentation technique retains the original
data distribution. The KL divergence between two probability
distributions P and Q is defined as follows:

KL(P 11 Q) = ) P(x)log (@) a1

Q)

In this equation, P(x) represents the probability distribution of the
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original data, while Q (x) represents the probability distribution of
the augmented data. A lower KL divergence value indicates that
the distribution Q (x) of the augmented data closely approximates
the distribution P(x) of the original data.

Along with KL divergence, Epistemic Indicators provide another
measure of the reliability of the augmented data. Epistemic
Indicators calculate the conditional probability of each augmented
data point given the prediction results. By averaging these
individual conditional probability values, the overall average
reliability of the augmented dataset is determined. A higher
average value indicates that the augmented data maintains the
characteristics of the original data while incorporating sufficiently
diverse information. This average conditional probability is used
to assess the reliability of the augmented dataset. A high reliability
score suggests better generalization and predictive performance
when the augmented data is used for model training. The formula
for calculating the Epistemic Indicators is as follows:

E
1
f=% ) Poa (¥ 1) (12)
e=1

In this context, i, represents the conditional mean prediction value
for the i-th data point. This value is calculated as the average of the
prediction values obtained from multiple augmented data points.
Poce)(¥i | x;) denotes the conditional probability of the predicted
value y; given the input x; using the model 6 for the e -th
augmented data point. This probability indicates how likely the
predicted result is for that specific data point. E represents the
number of augmented data points, and it is used to average the
probabilities across all augmented data.

Table 3. Model results on KL divergence and Epistemic

Model KL Mean KL STDV Epistemic
MBB 0.18 0.052 95.14
TC-GAN 0.9 0.162 95.56
TTS-CGAN 1.45 0.586 95.85

The results of the KL divergence play a crucial role in
understanding the impact of data augmentation on model
performance. Specifically, the MBB model shows a low average
KL value of 0.08, indicating that the augmented data closely
reflects the distribution of the original data. In contrast, the TTS-
CGAN model has a high average KL value of 1.42, suggesting that
the augmented data from this model exhibits a greater discrepancy
from the original data.

6.3. Results

This study aims to compare the performance of four major models
in the field of demand forecasting. The target models are Moving
Block Bootstrap LSTM (MBB-LSTM), Time-Conditional
Generative Adversarial Network LSTM (TCGAN-LSTM),
Transformer Time-Series Conditional GAN LSTM (TTSCGAN-
LSTM), and the basic LSTM network. The performance of these
models was analyzed for 168 items with various demand patterns
('Smooth', 'Erratic', 'Intermittent’, 'Lumpy'). For performance
evaluation, the data was divided into training, validation, and test
datasets.

The training data spans from January 2019 to May 2022 and was
used to learn demand patterns and develop models for future
demand prediction. The validation data covers June 2022 to April

2023 and was used to assess the model's generalization ability and
determine optimal hyperparameter combinations by checking for
overfitting. Finally, the test data includes 12 weeks from May to
August 2023, and the prediction results for this period were used
to evaluate the actual performance of the models.

The performance evaluation of the models was conducted using
three metrics: nRMSE (Normalized Root Mean Square Error),
nMAE (Normalized Mean Absolute Error), and sMAPE
(Symmetric Mean Absolute Percentage Error). Both nRMSE and
nMAE quantify the prediction error of the models. nRMSE
calculates the squared differences between predicted and actual
values, averages them, takes the square root of this value, and
normalizes it using the min-max method (the difference between
the maximum and minimum values). nMAE calculates the average
of the absolute differences between actual and predicted values and
normalizes it in the same way. This normalization process makes
it easier to compare the performance of different datasets or
models, allowing the prediction accuracy of the models to be
evaluated on a consistent basis regardless of range.

SMAPE calculates the absolute difference between actual and
predicted values as a percentage of the sum of actual and predicted
values, and then averages this value. The performance of the
models was evaluated for each item, and the average performance
for each metric across all items was calculated to represent the final
model performance. This evaluation method helps to
comprehensively assess the overall model performance while
considering the performance differences for individual items.

In this study, we evaluated the demand forecasting performance of
four models (MBB-LSTM, TCGAN-LSTM, TTSCGAN-LSTM,
and LSTM) for 168 items with various demand patterns. The
results showed that the modified models (MBB-LSTM, TCGAN-
LSTM, TTSCGAN-LSTM) outperformed the standard LSTM
model.

Table 4. smooth

Model nRMSE SsMAPE nMAE
MBB-LSTM 0.246 0.076 0.184
TCGAN- 0.286 0.090 0.220
LSTM

TTSCGAN- 0.293 0.091 0.225
LSTM

LSTM 0.307 0.100 0.241

Table 5. Erratic

Model nRMSE SsMAPE nMAE
MBB-LSTM 0.322 0.165 0.241
LSTM 0.396 0.173 0.307
TCGAN- 0.408 0.186 0.346
LSTM

TTSCGAN- 0.438 0.191 0.368
LSTM

Table 6. Intermittent

Model nRMSE sMAPE nMAE
MBB-LSTM 0.428 0.355 0.289
TCGAN- 0.497 0.364 0.386
LSTM

LSTM 0.505 0.373 0.434
TTSCGAN- 0.815 0.327 0.662
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LSTM

Table 7. Lumpy

Model nRMSE sMAPE nMAE
MBB-LSTM 0.357 0.353 0.284
TCGAN- 0.517 0.287 0.454
LSTM

TTSCGAN- 0.760 0.293 0.674
LSTM

LSTM 0.842 0.233 0.724

For the 'Smooth' pattern, MBB-LSTM achieved the best
performance with an nRMSE of 0.246, followed by the optimized
TCGAN-LSTM and TTSCGAN-LSTM models, both with an
nRMSE of 0.285. These results are an improvement over the
standard LSTM model, which had an nRMSE of 0.307.

In the 'Erratic' pattern, MBB-LSTM also had the lowest error with
an nRMSE of 0.322, compared to 0.396 for the LSTM, 0.408 for
the TCGAN-LSTM model, and 0.438 for the TTSCGAN-LSTM
model.

For the 'Intermittent' pattern, MBB-LSTM again showed the
lowest error with an nRMSE of 0.428, followed by the TCGAN-
LSTM model at 0.497 and the standard LSTM at 0.505. The
TTSCGAN-LSTM model exhibited a relatively high error with an
nRMSE of 0.815.

In the 'Lumpy' pattern, MBB-LSTM achieved the lowest error with
an nRMSE of 0.357, followed by TCGAN-LSTM at 0.516,
TTSCGAN-LSTM at 0.438, and the LSTM model with the highest
error at 0.842. These results demonstrate that the modified models,
particularly MBB-LSTM, consistently outperformed the standard
LSTM model across various demand patterns.

The comparative analysis of prediction model performance for
products with four different demand patterns revealed that models
utilizing data augmentation techniques, such as MBB-LSTM and
TCGAN-LSTM, exhibited superior performance, particularly for
'Lumpy' and 'Intermittent' patterns. These patterns are
characterized by frequent periods of no or very low demand,
making them difficult for traditional prediction models to capture.
The enhanced performance of models with data augmentation in
these challenging patterns can be attributed to their ability to
generate diverse data, which helps in better capturing and
reflecting the complex patterns within the data.

This study underscores the significant value of using data
augmentation techniques in demand forecasting, especially when
tailored to the specific demand patterns of products. The key
findings are as follows. First, MBB-LSTM is highly effective for
products with general demand patterns, delivering superior
performance by accurately capturing regular trends and
seasonality. Second, TCGAN-LSTM excels with products
exhibiting special or complex demand patterns, such as
'Intermittent’ and 'Lumpy’, by effectively modelling irregularities
and variability.

By enhancing the diversity and richness of the training data
through appropriate augmentation strategies, these models achieve
higher accuracy and reliability in their predictions. This highlights
the importance of selecting and tailoring data augmentation
techniques based on the specific characteristics of the data to
improve demand forecasting performance.

7. Conclusion

This study introduces a novel methodology for enhancing demand

forecasting accuracy by integrating data augmentation techniques
with hybrid deep learning models. Through comprehensive
experiments, we confirmed that models incorporating data
augmentation—such as MBB-LSTM and TCGAN-LSTM—
consistently outperform the baseline LSTM model across various
demand patterns, including challenging ones like 'Lumpy' and
'Intermittent’.

This study makes the following academic contributions. First, it
provides an innovative solution to the pervasive issue of data
scarcity in demand forecasting. By employing time-series-specific
data augmentation techniques, this study generates enriched and
diverse datasets that enhance model training and generalization
capabilities, even in data-constrained environments. This
addresses a critical gap in the field where the applicability of
machine learning models is often limited due to insufficient data.
Second, it presents a novel approach to handling high-variability
patterns. Existing forecasting models often struggle to maintain
consistent accuracy in scenarios with high variability and irregular
demand, such as 'Lumpy' and 'Intermittent' patterns. The
integration of tailored data augmentation techniques with hybrid
deep learning models establishes a new standard for addressing
these complex patterns, significantly improving prediction
accuracy and robustness.

Third, this study advances the literature by proposing a scalable
framework that effectively combines data augmentation with
hybrid prediction models. This integration not only enhances
forecasting performance but also broadens the applicability of
demand forecasting techniques across various industries and
dynamic scenarios.

Building on these academic contributions, this study also
demonstrates practical utility for diverse industries. Most notably,
it addresses data scarcity, enabling companies that previously
struggled to adopt Al solutions to implement demand forecasting
technologies. This is particularly impactful for small and medium-
sized enterprises operating with limited or irregular data, thereby
expanding the accessibility of Al-driven tools.

Additionally, the proposed models exhibit high predictive
accuracy across various demand patterns, empowering businesses
to optimize inventory levels, reduce costs, and prevent losses from
stockouts. This ultimately enhances supply chain efficiency and
operational  performance.  Furthermore, the
framework’s ability to maintain high accuracy in high-variability
demand patterns allows businesses to better forecast customer
needs and respond swiftly, thereby improving customer
satisfaction and strengthening competitive advantage in the
market.

This study was conducted using a specific dataset, which may limit
the generalizability of the findings across different industries and
demand conditions. To address this limitation, future research
should employ a broader range of datasets that encompass various
industry sectors and demand scenarios to validate the models'
applicability and robustness.

Moreover, the effectiveness of data augmentation techniques is
highly dependent on their alignment with the characteristics of the
demand patterns. Inappropriate augmentation methods can
degrade predictive performance. Therefore, in-depth research is
necessary to systematically compare and evaluate different data
augmentation techniques. Identifying the optimal methods tailored
to specific demand patterns will help maximize forecasting
accuracy and enhance model robustness.

Future studies should also explore new hybrid approaches that
combine various data augmentation techniques with advanced
prediction models. This exploration aims to enhance the

maximizes
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interpretability of the models and the reliability of the prediction
results. Additionally, it is crucial to verify the predictive
performance and practical applicability of these models in real-
world settings to ensure their effectiveness in operational
environments.

By addressing these limitations and pursuing the suggested
avenues for future research, the full potential of integrating data
augmentation with hybrid deep learning models in demand
forecasting can be realized. This will contribute to developing
more robust and accurate forecasting models, ultimately benefiting
businesses through improved inventory management and supply
chain optimization.
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