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Abstract: Accurately forecasting demand remains a persistent challenge for organizations, especially under conditions of high uncertainty 

and data scarcity. While machine learning and deep learning methods have advanced beyond traditional statistical approaches, their 

effectiveness is often constrained by limited data availability. To address this critical issue, this paper introduces an innovative and 

systematic framework that integrates advanced time series data augmentation techniques, the Long Short-Term Memory (LSTM) deep 

learning model, and Average Demand Interval-Coefficient of Variance (ADI-CV) methodology. The proposed framework leverages ADI-

CV to categorize time series patterns, enabling the application of tailored augmentation techniques such as Moving Block Bootstrap (MBB), 

Time-Conditional GAN (T-CGAN), and Transformer-based Time-Series Conditional GAN (TTS-CGAN). These techniques ensure the 

generation of synthetic data that accurately reflects temporal characteristics and market conditions, overcoming the traditional limitations 

of data scarcity. Our experimental results demonstrate that the augmented time series data significantly enhances forecasting performance 

across diverse and complex demand scenarios. This framework not only addresses the critical gap in demand forecasting methodologies 

but also establishes a scalable and adaptable solution for enterprises operating in volatile and dynamic market environments. By offering 

a robust tool to improve predictive accuracy and reliability, this study contributes a novel methodology with the potential to transform 

business decision-making processes. 
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1. Introduction 

Accurate prediction of product sales and shipments has been a 

significant challenge in corporate management. Precise demand 

forecasting forms the basis for effective inventory management, 

production planning, and promotional activities [1], enhancing a 

company's productivity and profitability [2]. Scholars emphasize 

that improving the accuracy of demand forecasting plays a critical 

role in enhancing corporate competitiveness, especially amid 

increasing market complexity and volatility. Accurate forecasts 

enable companies to optimize production planning, reduce 

inventory costs, and swiftly respond to fluctuating customer 

demands in unpredictable markets [1,3,4].  

Demand forecasting research has long relied on traditional 

statistical methods, including regression models such as Linear 

Regression, Lasso Regression, and Ridge Regression, as well as 

time series models like ARIMA and SARIMA [5]. While these 

methodologies are somewhat effective in predicting demand 

patterns using historical data, they often require extensive manual 

parameter tuning and significant domain knowledge, making them 

time-consuming and less adaptable to rapidly changing market 

conditions. 

To overcome these limitations, deep learning models have recently 

been applied to demand forecasting. Deep Neural Networks 

(DNNs), such as Multi-Layer Perceptrons (MLPs), have been used 

to model complex patterns [6] but may struggle with sequential 

data. Recurrent Neural Networks (RNNs) [7] address this by 

capturing temporal dependencies, yet they can suffer from issues 

like vanishing gradients. The Long Short-Term Memory (LSTM) 

model, an advanced type of RNN, effectively mitigates these issues 

and has shown excellent performance in solving complex demand 

forecasting problems across various fields [8,9,10]. 

Recent research trends focus on developing hybrid models that 

integrate various techniques to overcome the limitations of single 

machine learning or deep learning models [11,12]. Representative 

examples include combinations of LSTM with traditional time 

series forecasting models, CNN-LSTM hybrid models, ensembles 

of deep learning and machine learning techniques, and attention-

based models [13,14,15]. These models are gaining attention 

because they can better capture spatiotemporal characteristics and 

long-term and short-term data dependencies that existing models 

could not. 

However, these advancements have not addressed a fundamental 

challenge in demand forecasting: data scarcity [16]. While hybrid 

models have enhanced modeling capabilities, they remain heavily 

dependent on the quality and quantity of input data, which limits 

their effectiveness in scenarios with insufficient or inconsistent 
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data [17]. This limitation underscores the need for innovative 

solutions that focus not only on model sophistication but also on 

improving the availability and diversity of training data. 

According to [18], 52% of companies worldwide face significant 

challenges in adopting AI solutions due to insufficient data. Since 

machine learning is inherently data-intensive, data scarcity 

imposes severe constraints on the application of machine learning-

based demand forecasting models. Insufficient data reduces 

training opportunities for ML models, leading to diminished 

performance and significantly impairing their ability to generalize 

effectively in forecasting scenarios. 

In this context, data augmentation techniques play a crucial role in 

addressing these challenges. By supplementing insufficient data 

and generating enriched and diverse datasets, data augmentation 

mitigates the limitations of data scarcity and significantly enhances 

forecasting performance. Resolving data scarcity opens up the 

potential to apply machine learning forecasting models to the 

remaining 50% of demand forecasting scenarios that were 

previously inaccessible due to data limitations. 

To address these challenges in demand forecasting, this study 

highlights data augmentation as a hybrid approach that offers a 

direct and effective solution. Unlike traditional methods of 

information expansion, such as external data integration or transfer 

learning, data augmentation directly tackles dataset limitations by 

generating synthetic variations [19]. By enhancing the quantitative 

and qualitative diversity of existing data, it enables models to 

encounter a broader range of potential data patterns beyond what 

is typically observed in real-world settings, thereby improving 

model robustness and adaptability [20]. In the context of product 

demand forecasting—which must adapt to challenges such as new 

product launches, seasonal variability, and shifting market 

trends— diversity learning through data augmentation is essential 

[21].  

This study distinguishes itself by presenting a novel approach that 

integrates data augmentation techniques with deep learning models 

to address the dual challenges of data scarcity and prediction 

accuracy in demand forecasting scenarios. Unlike prior research, 

which has predominantly focused on enhancing model complexity 

or optimizing parameters, this study directly tackles the issue of 

data scarcity by generating synthetic data, enabling robust learning 

even in environments with limited data availability. 

Data augmentation, however, involves more than merely 

increasing the quantity of data; it requires a sophisticated design 

that accounts for the unique characteristics of each dataset. 

Randomly applied augmentation techniques can destabilize the 

training process or degrade model performance. To mitigate these 

risks, this study employs the Average Demand Interval-Coefficient 

of Variance (ADI-CV) methodology, systematically analyzing the 

variability and frequency of data to accurately select augmentation 

techniques optimized for each demand pattern. By doing so, the 

study maximizes the effectiveness of data augmentation, 

improving both the predictive accuracy and robustness of the 

models. 

Therefore, this study introduces augmentation models tailored to 

diverse demand patterns, optimizing the performance of LSTM-

based forecasting models. This approach not only addresses the 

often-overlooked issue of data scarcity in previous research but 

also presents a modeling framework with scalability and 

adaptability to dynamic and volatile market environments. 

Consequently, this study significantly enhances the accuracy and 

reliability of demand forecasting while providing a robust 

foundation for improving the quality of decision-making processes. 

 

2. Literature Review 

2.1. Approaches to Demand Forecasting 

In demand forecasting research, there is a notable emphasis on the 

capability of deep learning models to produce highly accurate 

predictions, even when working with univariate time series data 

[22]. Unlike traditional statistical models, deep learning techniques 

effectively capture complex nonlinear patterns and temporal 

dependencies inherent in univariate data. Traditional models often 

assume linearity and may struggle with the non-stationarity and 

noise present in real-world demand data. In contrast, deep learning 

models like LSTM can learn long-term dependencies and 

nonlinear relationships without extensive manual parameter tuning 

[23,24]. This advantage is particularly prominent in situations with 

high data complexity and volatility, where capturing intricate 

patterns in univariate time series is crucial for accurate forecasting. 

Deep learning-based time series forecasting models began with the 

MLP. However, MLPs lack recurrent structures, making them 

ineffective at capturing temporal dependencies in time series data 

[25]. To address this issue, RNNs were introduced, which learn 

patterns in sequential data through recurrent connections [7]. 

Despite this advancement, RNNs face challenges in learning long-

term dependencies due to the vanishing and exploding gradient 

problems during training [26]. To overcome these limitations, the 

Gated Recurrent Unit (GRU) was developed, enhancing model 

efficiency by regulating the flow of information with gating 

mechanisms [27]. [28] demonstrated that GRUs effectively 

process sequences of various lengths by sharing the same 

parameters across time steps.  

Finally, the LSTM network introduced additional gates and cell 

states, allowing for more stable learning of long-term 

dependencies [29]. [30] revealed that LSTM outperforms 

traditional models such as ETS, ARIMA, SVM, and standard 

RNNs in forecasting complex univariate time series data. This 

progression from MLP to RNN, GRU, and LSTM has significantly 

enhanced the ability to model complex and irregular time series 

data [31].  

Despite significant advancements in the application of deep 

learning in demand forecasting, several critical limitations remain 

in existing research. First, time series data used in demand 

forecasting often exhibits diverse and complex patterns such as 

seasonality, trends, and cyclicality. Accurately modeling these 

patterns requires advanced statistical and domain knowledge as 

well as sophisticated modeling techniques. Although deep learning 

models capture complex nonlinear relationships by utilizing 

layered architecture and nonlinear activation functions such as 

ReLU, sigmoid, and tanh that enable them to model intricate 

patterns in data, relying on a single predictive model may not 

always yield satisfactory results when tackling intricate sales 

forecasting problems due to the high complexity and variability 

inherent in demand data [32]. 

To address this challenge, recent studies have increasingly 

reported advanced hybrid models designed to overcome the 

limitations of single deep learning models. These hybrid models 

optimize prediction performance by integrating multiple processes 

such as data preprocessing, parameter tuning, clustering, error 

correction, and postprocessing into a cohesive framework. Such 

models consistently outperform single models, as demonstrated by 

various research efforts. For example, [33] introduced a hybrid 

model combining Seasonal and Trend Decomposition using Loess 

(STL) with a Duo-Attention Deep Learning Model (DADLM) for 

tourism demand forecasting. This STL-DADLM model mitigated 

overfitting and achieved higher accuracy compared to traditional 
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models, showcasing the advantage of integrating decomposition 

and deep learning techniques. Similarly, [34] proposed a (c, l)-

LSTM+CNN model for power demand forecasting, where the (c, 

l)-LSTM extracts temporal features, and the CNN generates 

refined prediction profiles. This hybrid approach outperformed 

ARIMA and other models, particularly excelling in short-term 

forecasts with fine temporal granularity. 

However, the second and third challenges remain unresolved by 

hybrid models. 

Second, deep learning models are at risk of overfitting the training 

data, which can hinder the model's ability to generalize to new data 

[35]. Overfitting is a major factor that can significantly reduce the 

predictive performance of a model in real-world operational 

environments. Hybrid models, while enhancing predictive 

capabilities, may still suffer from overfitting, especially when they 

become overly complex or when the amount of training data is 

limited. 

Third, deep learning models require a sufficient amount of data to 

be effectively trained. The study by [17] demonstrated that data 

scarcity is a major factor that diminishes the performance of LSTM 

models, arguing that with sufficient data, these models could 

outperform traditional forecasting methods. However, in real-

world scenarios, obtaining enough data is often challenging, 

especially in the case of new products where data may be 

nonexistent [36]. This issue critically limits the application scope 

of deep learning models, making it difficult to generate accurate 

forecasts for unique market conditions or niche products [37]. 

Hybrid models do not fundamentally solve the problem of data 

scarcity, as they often require even more data to train the additional 

components effectively. 

Therefore, while hybrid models can address the first challenge by 

enhancing the ability to model complex demand patterns, they do 

not effectively resolve the issues of overfitting and data scarcity. 

These limitations necessitate alternative approaches that can 

mitigate overfitting and improve model performance even when 

data is limited. 

2.2. Data Scarcity and Time Series Data Augmentation 

Data scarcity remains a significant challenge in the development 

of deep learning models. While model-centric techniques like 

dropout, batch normalization, and transfer learning help mitigate 

overfitting and enhance generalization, they do not fundamentally 

resolve limitations in data quantity and quality. The most effective 

way to overcome these constraints is to increase data availability. 

In this context, [19] emphasize that data augmentation is a 

foundational and effective approach to overcome overfitting 

caused by limited data. Data augmentation artificially enhances 

dataset diversity by applying transformations to existing data, 

creating new samples without additional data collection. Initially 

starting with simple transformation techniques in the field of image 

recognition, it has evolved into advanced, deep learning-based 

methods such as style transfer and Generative Adversarial 

Networks (GANs) [38,39]. This approach has established itself as 

a powerful solution in various fields, addressing data scarcity and 

improving model performance. 

In the field of time series forecasting, there has been active 

research on data augmentation to address challenges such as data 

scarcity, imbalanced data distribution, and privacy concerns 

[40,41,42]. [20] categorized time series data augmentation into 

basic approaches (cropping, flipping, jittering) and advanced 

techniques (decomposition, statistical generative models, machine 

learning-based methods), each aiming to enhance prediction 

accuracy. 

A variety of methods have been proposed to augment time series 

data effectively. Time Series Bootstrapping increases data 

diversity by resampling the original data, thus helping to estimate 

prediction uncertainties [43]. Dynamic Time Warping Barycentric 

Averaging (DBA) combines multiple time series to create a 

representative series that accounts for temporal variations [44]. 

Markov Chain Monte Carlo (MCMC) simulates realistic time 

series by estimating parameters of probabilistic models [45], while 

GRATIS generates synthetic data with diverse characteristics, 

improving model performance [46]. Additionally, Variational 

Auto-Encoders (VAE) and Generative Adversarial Networks 

(GANs) leverage deep learning to generate data that closely 

resembles real time series, significantly expanding datasets 

without manual collection [47, 48]. 

[49] demonstrated that RNN-based models trained on data 

augmented with methods like MBB, DBA, and GRATIS 

outperformed traditional univariate models. This suggests that data 

augmentation can significantly enhance both the accuracy and 

generalization capability of time series forecasting models in data-

scarce environments. 

However, data augmentation does not always guarantee improved 

predictive performance. The effectiveness of augmented data 

depends on how well it captures the complexity and diversity of 

the original dataset. If augmentation introduces distributional shifts 

or adds unnecessary noise, it may hinder the model from learning 

essential patterns and relationships [42]. For example, [50] tested 

12 time series augmentation methods in classification tasks but 

found that models like LSTM-FCN and MLP did not always 

benefit from augmented data. This suggests that augmentation 

needs to align closely with both data characteristics and model 

architecture to be effective. 

In demand forecasting, successful augmentation requires 

techniques tailored to the specific demand patterns present in the 

data. Understanding and decomposing data types before applying 

augmentation can improve the relevance of augmented data. [51] 

highlighted that traditional GAN-based augmentation performs 

poorly with non-uniform data distributions. To address this, they 

proposed a Decomposition-based Data Augmentation Scheme 

(DAST), which separates data into daily-load, seasonal context, 

and irregular components for targeted augmentation. This 

approach significantly reduced forecasting errors in building load 

predictions compared to conventional methods, illustrating the 

importance of aligning augmentation strategies with data 

characteristics. 

In demand forecasting, domain-specific metrics like ADI and CV 

are often used for data classification [52]. These metrics have also 

been leveraged to apply tailored predictive models, as shown by 

[53].  For example, [54] improved forecasting accuracy by 

segmenting data according to demand patterns and applying 

appropriate predictive models to each segment using a Dynamic 

Weighting Strategy (DWS). However, research on applying 

augmentation techniques based on demand patterns remains 

limited, suggesting a need for further exploration. 

2.3. Ensembled approach for forecasting 

This study employs ADI-CV analysis to classify demand patterns 

for effective data augmentation. ADI measures the average interval 

between demand occurrences, indicating the intermittent demand, 

while CV reflects the variability in demand volume. By combining 

these indicators, ADI-CV analysis enables segmentation based on 

demand frequency and variability, providing a structured approach 

to handling diverse demand patterns [52]. 

Previous research has highlighted the practical applications of 
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ADI-CV analysis. For instance, [55] developed an optimization 

strategy for managing spare parts with irregular demand patterns 

using ADI-CV, and [56] optimized inventory policies by analyzing 

demand frequency and variability to minimize costs. These studies 

demonstrate the effectiveness of ADI-CV analysis in operational 

decision-making, offering insights that can enhance efficiency in 

corporate inventory and demand management. 

In this study, ADI-CV analysis is utilized not only to classify 

demand patterns but also as a foundation for selecting appropriate 

data augmentation techniques. By aligning augmentation methods 

with specific demand characteristics, this approach aims to 

improve demand forecasting accuracy and model robustness 

across varied demand scenarios. 

In conclusion, this literature review confirms that properly 

analyzing demand patterns and applying suitable data 

augmentation techniques can enhance the performance of deep 

learning models. Therefore, this paper applies the ADI-CV 

methodology as a systematic tool for demand pattern analysis and 

explores various augmentation techniques such as Moving Block 

Bootstrap (MBB), Time-Conditional GAN (T-CGAN), and 

Transformer Time-Series Conditional GAN (TTS-CGAN) to 

address data scarcity issues. Through this, the study aims to 

develop a hybrid model that combines these augmentation 

techniques with the LSTM prediction model to improve 

performance. 

3. Methodology 

3.1.  Data Augmentation Model 

Generative Adversarial Networks (GANs), introduced by [38], 

have emerged as a powerful framework for generating synthetic 

data by learning the underlying distribution of real datasets. GANs 

consist of two neural networks, the generator and the discriminator 

that are trained simultaneously through an adversarial process. The 

generator creates synthetic data samples, while the discriminator 

evaluates their authenticity, guiding the generator to produce data 

that closely resembles the real data. 

In the context of time series data, traditional GANs face challenges 

due to the sequential and temporal dependencies inherent in such 

data. To address these issues, specialized GAN architectures have 

been developed to handle time series data more effectively. 

3.1.1. T-CGAN 

T-CGAN is proposed as a methodology to generate new data in 

cases where time series data is irregularly collected or insufficient 

[57]. This model uses GAN architecture consisting of two 

components: a Generator ( 𝐺 ) and a Discriminator ( 𝐷 ). 

Specifically, it employs a Conditional Generative Adversarial 

Network (CGAN) architecture, where the generator and 

discriminator learn to generate and distinguish data based on given 

conditions. 

The Generator ( 𝐺 ) creates new data based on the provided 

conditions, while the Discriminator (𝐷) distinguishes whether the 

data is real or generated. Through this process, the generator 

progressively produces data that closely resembles real data to 

deceive the discriminator. The generator is implemented using a 

deconvolutional neural network, and the discriminator is 

implemented using CNN. By conditioning on the time information 

that indicates the data collection points, T-CGAN generates time 

series data that mimics the actual data distribution. 

The model is primarily composed of three spaces: noise vector 

space (𝑍), time information space (𝑇), and data space (𝑋). The 

noise vector space (𝑍) includes noise vectors used as input values 

for the model, sampled from a Gaussian distribution to generate 

new time series data. The time information space (𝑇) contains 

information indicating the collection time of each data point, which 

is provided as a condition to both the generator and the 

discriminator. The data space (𝑋) includes both the actual time 

series data and the generated time series data. Through the 

interaction of these spaces, the model generates data that mimics 

the actual data distribution 𝑝𝑑𝑎𝑡𝑎(𝑥, 𝑡) based on the given time 

information condition. 

The objective function is as follows: 

min
𝐺

max
𝐷

𝑉 (𝐷, 𝐺) = 𝐸𝑥∼𝑝data(𝑥)[log 𝐷 ( 𝑥 ∣ 𝑡 )] + 𝐸𝑧∼𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺( 𝑧 ∣ 𝑡 )))] (1) 

The model operates with the goal of enabling the discriminator 

model D to accurately distinguish between real and generated data, 

while the generator model strives to deceive the discriminator by 

producing data indistinguishable from the real data. Here,𝑡  = 〈
𝑡1,  …  , 𝑡𝑛〉 is an ordered vector of timestamps randomly sampled 

from T. The model can also generate new time series 

corresponding to timestamps that do not present in the training set. 

The generator network takes noise vectors and timestamps as 

inputs to generate time series data similar to real data. This is 

accomplished using four transposed convolutional layers. Each 

layer applies ReLU activation functions and batch normalization, 

except for the last layer, to maximize learning efficiency and 

stability of the network. The generator network is defined as 

follows: 

𝐺: (𝑍, 𝑇) → 𝑋 (2) 

The discriminator network receives real data and generated data 

along with their corresponding timestamps as inputs to determine 

whether the data is real or generated. This network is composed of 

two convolutional layers, max-pooling layers, and a final fully 

connected layer that makes the final discrimination decision. The 

discriminator network is defined by the following function: 

𝐷: (𝑋, 𝑇) → [0, 1] (3) 

3.1.2. TTS-CGAN 

TTS-CGAN [58] is also an effective augmentation technique 

designed to address the problem of insufficient time series data. 

Traditional GAN models were limited to generating data for a 

single label, but TTS-CGAN introduces a label embedding 

strategy to generate conditional time series data that incorporates 

label information. By incorporating a transformer-based GAN 

structure, TTS-CGAN captures complex temporal patterns such as 

long-term dependencies, enabling the generation of highly 

accurate data. 

This model also consists of two main components: the generator 

and the discriminator. The generator starts with a random vector 

from the latent space and uses a multi-head self-attention 

mechanism and GELU activation function within an MLP to 

transform it into a sequence that matches the length of the time 

series data but with many hidden dimensions. The discriminator 

distinguishes between generated data and real data, leveraging a 

transformer encoder to learn the temporal order and patterns of the 

data. 

TTS-CGAN operates by integrating conditional information into 

the traditional GAN framework. It combines Adversarial Loss and 

Categorical Loss to train the model so that the generated data is 
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indistinguishable from real data while accurately reflecting the 

target category labels. Additionally, to assess the similarity 

between generated and real data, it introduces the Wavelet 

Coherence Similarity metric, which maximizes the variance 

between classes and minimizes the variance within classes. This 

metric quantitatively evaluates the similarity between actual 

signals and generated signals, ensuring that the generated data 

accurately reflects the characteristics of the original data. 

𝐿𝑎𝑑𝑣 = 𝐸[log 𝐷𝑎𝑑𝑣 (𝑥)] + 𝐸 [log (1 − 𝐷𝑎𝑑𝑣(𝐺(𝑧, 𝑐)))] (4) 

𝐿𝑐𝑙𝑠 = 𝐸[− log 𝐷𝑐𝑙𝑠 ( 𝑐 ∣ 𝑥 )] (5) 

𝑢𝑐𝑜ℎ =
|𝑆(𝐶𝑥(𝑎, 𝑏) ⋅ 𝐶𝑦(𝑎, 𝑏)∗)|

√𝑆(|𝐶𝑥(𝑎, 𝑏)|2) ⋅ 𝑆 (|𝐶𝑦(𝑎, 𝑏)|
2

)

(6)
 

3.1.3. MBB 

Bootstrap is a critical method in statistical inference for estimating 

the distribution of statistics without relying on parametric 

assumptions [59]. MBB is a bootstrap method tailored for time 

series data, designed to preserve the time dependence structure of 

the original time series by maintaining the order of data within the 

same block [60]. Bootstrap-based data augmentation techniques 

that generate time series similar to the original dataset distribution 

have proven effective in improving model accuracy [49]. 

The core of MBB is to generate new samples that reflect the 

autocorrelation within the time series data. According to [61], the 

process of selecting blocks of consecutive observations and the 

length of these blocks directly affect the accuracy of bootstrap 

estimates. Therefore, the appropriate block length should be 

determined by balancing the autocorrelation characteristics of the 

data and the accuracy of the estimates obtained through 

resampling. The mechanism of MBB is as follows [43]: 

Fig. 1.  MBB Architecture 

 

Decomposition: Decomposing data 𝐷𝑡 into trend 𝑇𝑡, seasonality 𝑆𝑡

, and residual 𝑅𝑡 components is essential for clearly understanding 

the fundamental structure of the data. Decomposition using STL 

flexibly captures the nonlinear trends and seasonal variations 

within the data. This decomposition process reduces the 

complexity of the data for future analysis and provides a 

foundation for evaluating the influence of each component 

separately. 

𝐷𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡 (7) 

Block Generation: Generating blocks of consecutive observations 

from the residual 𝑅𝑡  is the central step of MBB. The block length 

l should adequately reflect the autocorrelation properties of the 

data. According to Bergmeir's suggestion, the block length can be 

adjusted based on the data type and the analysis purpose [43]. This 

process plays a crucial role in ensuring the diversity and reliability 

of the bootstrap samples.  

Sample Extraction and Recombination: Randomly extracting the 

reconstructed residual blocks and adding them to the existing trend 

and seasonality generates new synthetic time series data. This 

process is crucial for creating new data samples while maintaining 

the statistical characteristics of the original data. By applying the 

resampling principle that preserves the temporal structure of the 

data, this step contributes to enhancing the reliability of the 

analysis. 

𝐷𝑡
∗ = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡

∗ (8) 

Estimation Calculation: Estimating the statistics or model 

parameters of interest from the reconstructed data 𝐷𝑡
∗ involves 

utilizing the samples obtained through the MBB approach to derive 

the statistical estimate distribution of the analysis target. Through 

this iterative process, confidence intervals, standard errors, and 

other evaluation metrics of the estimates can be assessed. This step 

verifies the reliability and predictive power of the model, 

effectively managing the uncertainty and variability of the data. 

3.2. Demand Pattern Analysis: ADI/CV 

In this study, ADI and CV are applied to distinguish demand 

patterns. ADI measures the average interval between demand 

occurrences for an item or service within a specific period, 

indicating demand frequency. CV assesses the variability in 

demand, reflecting its stability and predictability. These two 

indicators quantify the diversity in demand intervals and sizes, 

categorizing product demand patterns into four types: Smooth, 

Intermittent, Lumpy, and Erratic [62]. 

ADI represents the average time interval between consecutive 

demands. By calculating ADI, the frequency of demand 

occurrence can be understood, providing crucial information for 

inventory management and demand forecasting. A high ADI 

indicates long intervals between demand occurrences, which may 

suggest an irregular demand pattern. Here, the time interval 

between the 𝑖-th and 𝑖 + 1-th demands is 𝑡𝐼 , and 𝑁  is the total 

number of demand occurrences within the measurement period. 

𝐴𝐷𝐼 =
∑ 𝑡𝑖

𝑁
𝑖=1

𝑁
(9) 

CV is the value obtained by dividing the standard deviation σ by 

the mean demand μ, representing the relative variability of 

demand. A high CV indicates a wide variation in demand sizes, 

which can complicate demand forecasting and inventory 

management for the product. Here, DI  is the size of the i -th 

demand, and D  is the average demand size.  

𝐶𝑉 =
√∑ ( 𝐷𝑖 − 𝐷)2𝑁

𝑖=1

𝑁
𝐷

,  𝑤ℎ𝑒𝑟𝑒 𝐷  =  
∑ 𝐷𝑖

𝑁
𝑖=1

𝑁
                                          (10) 

 

Combining ADI and CV allows for a precise understanding of 

demand patterns for products. For instance, when both ADI and 

CV values are high, it indicates that demand is highly irregular and 

difficult to predict. The study by [52] established threshold values 

of CV 0.49 and ADI 1.32 to categorize demand patterns. Based on 

these thresholds, the four classified demand patterns are as follows: 

When ADI is less than 1.32 and CV is also less than 0.49, a Smooth 

demand pattern is observed, indicating a regular and predictable 

demand pattern. Conversely, when ADI increases to 1.32 or more 

while CV remains below 0.49, an Intermittent demand pattern is 

observed, characterized by infrequent but stable demand 
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quantities. When ADI is less than 1.32 and CV exceeds 0.49, a 

Lumpy demand pattern emerges, where the occurrence frequency 

is irregular, and the demand size is highly variable. Lastly, when 

both ADI and CV exhibit high values, an Erratic demand pattern is 

observed, making it difficult to predict and requiring considerable 

flexibility and caution in inventory management. 

 

Table 1. Classification of Demand pattern in terms of ADI-CV 

ADI CV Demand Pattern 

0.0 < ADI < 1.32 0.0 < CV < 0.49 Smooth 

1.32 < = ADI 0.0 < CV < 0.49 Intermittent 

0.0 < ADI < 1.32 0.49 < = CV Lumpy 

1.32 < = ADI 0.49 < = CV Erratic 

3.3. LSTM 

To address the complexities inherent in demand forecasting, this 

study employs the LSTM model, a specialized Recurrent Neural 

Network (RNN) architecture proposed by [29]. The LSTM model 

is chosen due to its ability to capture long-term dependencies 

within time series data, a characteristic essential for demand 

forecasting. Unlike traditional RNNs, LSTM mitigates the gradient 

vanishing issue, enabling effective learning over extended 

temporal sequences [63,64]. 

The main components of the LSTM model are the hidden state and 

cell state. The hidden state processes short-term information, while 

the cell state stores long-term information. These states manage the 

flow of short-term and long-term information, constituting the core 

mechanism that determines the model's performance. LSTM 

operates through three main gates: input gate, forget gate, and 

output gate. 

Input Gate decides whether new information should be added to 

the memory cell by considering the current input and previous 

hidden state. Forget Gate removes unnecessary information using 

the previous cell state and current input. Output Gate determines 

the output information based on the current cell state, adjusting it 

to generate the final output. 

This structure of LSTM effectively reflects the characteristics of 

time series data, which occurs sequentially over time and has 

strong dependencies between time points. Time series data 

includes both short-term fluctuations and long-term trends, 

requiring a model capable of handling these aspects. 

LSTM stores long-term information through the cell state, 

updating or maintaining it as needed. This mechanism is highly 

effective for learning long-term patterns in time series data. 

Additionally, the input gate and forget gate help remove 

unnecessary short-term fluctuations and selectively remember 

important information, aiding the model in learning key data 

characteristics. 

By managing information flow through its gates, the LSTM model 

effectively captures the dynamic and sequential nature of demand 

forecasting data. This architecture enables it to learn complex 

temporal patterns, making it highly suitable for predicting future 

demand based on historical trends. Consequently, the LSTM 

model offers a robust framework for handling time-dependent 

patterns, supporting accurate long-term demand predictions. 

In summary, LSTM’s ability to retain crucial historical 

information over extended periods while filtering out irrelevant 

data makes it an optimal model for time series forecasting. These 

attributes enhance its predictive accuracy and reliability, 

establishing it as a powerful tool for learning long-term 

dependencies in demand forecasting applications. 

 

Fig. 2.  LSTM Architecture 

4. Demand Forecasting Model Combined with 
Data Augmentation Techniques 

This study proposes a hybrid model that combines data 

augmentation techniques and deep learning models to achieve 

accurate product demand forecasting in situations with limited 

data. The framework explaining the procedure for this model is 

shown in Figure 3. 

4.1. Identifying Demand Pattern through ADI/CV Analysis 

We calculated the ADI and CV to analyze the frequency and 

variability of demand for each product. Based on these metrics, 

products were classified into one of four demand patterns: 

‘Smooth,’ ‘Erratic”, “Intermittent,’ or ‘Lumpy.’ 

4.2. Data Augmentation through various Models 

Subsequently, data with similar patterns to the actual ones is 

generated for each demand pattern using various augmentation 

models. The generated data undergoes a normalization process and 

is pooled together with the existing data for model training. 

4.3. Training LSTM for each Demand Pattern 

We trained the time series prediction model using LSTM on the 

pooled data, which includes both the augmented and original data 

generated for each demand pattern. Hyperparameter tuning is the 

process of adjusting the model's hyperparameter values to optimize 

its performance. For a base learning model like LSTM, it is 

essential to set various hyperparameters appropriately, such as 

LSTM cell dimensions, the number of epochs, hidden layers, mini-

batch size, and normalization layers. Therefore, we used Keras-

Tuner to test multiple hyperparameter combinations and 

automatically determine the optimal values. 
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Fig. 3.  Experiment framework 

4.4. Demand Forecasting with Trained Model 

In the demand forecasting stage, use the trained LSTM model to 

predict the future demand for each item. Evaluate the model's 

performance across the entire dataset and for each demand pattern 

and identify the most suitable prediction model for each pattern. 

4.5. Selecting Optimal Augmentation-Forecast Model 

Combination 

In the optimal combination selection process, compare and analyze 

the predictive performance of various data augmentation 

techniques and prediction model combinations. Determine the 

most effective data augmentation-prediction model combination 

for each demand pattern. Use performance evaluation metrics such 

as nRMSE (Normalized Root Mean Square Error), nMAE 

(Normalized Mean Absolute Error), and sMAPE (Symmetric 

Mean Absolute Percentage Error) to analyze the performance of 

each combination. Select the model combination with the highest 

performance for each demand pattern as the optimal model. 

5. Data 

The data analyzed in this study consists of weekly demand data 

spanning a total of 243 weeks, from the first week of 2019 to the 

fourth week of August 2023, from a global pharmaceutical 

company. Out of 369 products, 168 items were identified as the 

target for prediction. Initially, 248 items with confirmed demand 

variability were selected through ADI/CV analysis. Subsequently, 

the distribution of shipment frequencies was examined to select the 

final items for the model. The distribution based on shipment 

frequencies showed that 40 items (approximately 16.12%) were 

fewer than 5 shipments, and 55 items (approximately 24.38%) 

were fewer than 10 shipments. The items used for model training 

were those with 40 or more shipments, totaling 168 items 

(approximately 67.74%). The average delivery quantity for these 

items was 4288.92, with a minimum value of 0.0 and a maximum 

value of 704,100.0, showing a wide range.  

 

Fig. 4. Weekly data distribution 

 

A descriptive statistical analysis was conducted on the weekly 

demand data. The analysis was based on the entire dataset from the 

first week of 2019 to the fourth week of August 2023, 

encompassing a total of 179,292 records. 

Fig. 5. Data distribution based on shipment frequencies 

 

The first quartile (Q1) of the demand data is 0, indicating that at 

least 25% of the data points are 0. The median (50th percentile) is 

72, while the mean demand is approximately 4,289, significantly 

higher than the median. This suggests that extreme demand values 

are substantially elevating the mean. The third quartile (Q3) is 

1,000, indicating that most data points have lower demand than the 

mean. The interquartile range (IQR) is 1,000, which is smaller than 

the mean, indicating that the data is highly clustered around the 

median with low variability. The maximum demand value is 

704,100, showing a highly skewed distribution. 

CV is approximately 5.11, indicating that the standard deviation is 

much larger than the mean, signifying high variability in the data. 

The skewness is about 11.89, showing that the demand distribution 

is heavily skewed to the right, with most demand being low but 

some extremely high. The kurtosis is around 196.43, indicating 

that the demand distribution is much more peak than a normal 

distribution, with many extreme values. 

 

Table 2. Descriptive statistical analysis on weekly demand data 

Number of Data Points 179,292 

1st Quartile 0 

Median 72 

Mean 4289 

3rd Quartile 1000 
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Interquartile Range 1000 

Maximum 704100 

Coefficient of Variation 5.11 

Skewness 11.89 

Kurtosis 196.43 

 

This statistical analysis provides crucial insights into the 

fundamental characteristics of the data, which is important for the 

modeling process. High skewness and kurtosis indicate the 

possibility of extreme demand occurrences, and the high CV 

implies significant demand variability. Therefore, it is essential to 

design a model that can appropriately understand, reflect, and 

predict these data characteristics and distributions. 

6. Experimental Results 

6.1. Demand Pattern 

In this section, ADI and CV were utilized to analyze the demand 

patterns of products. First, data was collected that measured the 

demand quantity D_I during the period t_I for each item. By 

calculating the average of these time intervals, the ADI was 

derived. The axis in Figure 6 represents time, and the demand 

occurring at specific points in time is indicated as D. Additionally, 

to evaluate the variability in demand size, the standard deviation 

of the demand quantities D_i (i=1,2,3,4,…,n) was calculated, and 

this was divided by the mean demand to obtain CV. 

 

Fig. 6. Example of demand occurrences between each interval 

 

Fig.7. Demand pattern analysis based on ADI-CV 

 

Based on the demand occurrence times and quantities for 168 

items, ADI and CV were calculated and plotted in Figure 7, with 

ADI on the x-axis and CV on the y-axis. Using specific threshold 

values, the items were categorized into four types: Smooth, Erratic, 

Intermittent, and Lumpy. The classification resulted in 60 items 

(35.71%) as Smooth, 60 items (35.71%) as Erratic, 16 items 

(9.52%) as Intermittent, and 32 items (19.04%) as Lumpy. 

Smooth items exhibit stable demand with a low CV of 0.12, slight 

right skewness (0.77), and kurtosis of 1.82. They have an average 

demand of 243 units and minimal zero-demand occurrences 

(1.22%). Erratic items show high variability with a CV of 0.86, 

high skewness (3.33), and kurtosis of 16.40, indicating extreme 

fluctuations, with an average demand of 241 units and a low zero-

demand frequency of 2.45%. Intermittent items display irregular 

demand, characterized by a CV of 0.34, right skewness (0.92), and 

low kurtosis (0.03), with frequent zero demand (61.41%) and a 

lower average demand of 113.9 units. Lumpy items exhibit 

sporadic demand with a CV of 1.03, high skewness (2.07), and 

kurtosis of 4.65, along with a substantial zero-demand frequency 

of 44.95% and an average demand of 129.4 units. 

This analysis provides critical insights for developing tailored 

forecasting models that address the distinct characteristics of each 

demand pattern. 

6.2. Data Augmentation 

In this section, we explain the process of identifying individual 

product demand patterns through ADI-CV analysis and forming 

clusters based on these patterns. For each cluster, we use t-SNE to 

map the data into a 2D space, visually verifying the effectiveness 

of data augmentation. Additionally, we quantitatively evaluate the 

distribution differences between augmented data and original data 

using the KL divergence metric and analyze the consistency of 

model results through epistemic indicators. This allows us to 

numerically confirm how accurately the augmented data mimics 

the original data distribution. This section details the visual and 

quantitative validation methods for data augmentation and 

comprehensively analyzes the impact of data augmentation on 

improving the accuracy and reliability of the demand forecasting 

model. 

  

Fig. 8. Comparison of distribution 

 

We visually validated the effectiveness of data augmentation by 

comparing the distributions of the original data (in red) and the data 

generated through augmentation (in blue). The original data forms 

distinct clusters according to the Smooth, Erratic, Intermittent, and 

Lumpy patterns, and the augmented data closely mimics these 

patterns. The distribution of the augmented data appears to be very 

similar to that of the original data. 

In this study, we used Kullback-Leibler Divergence (KL 

divergence) to quantitatively assess how closely the augmented 

data approximates the original data distribution. KL divergence is 

an asymmetric measure that quantifies the difference between two 

probability distributions, helping to determine how well the new 

data generated by the augmentation technique retains the original 

data distribution. The KL divergence between two probability 

distributions 𝑃 and 𝑄 is defined as follows: 

𝐾𝐿(𝑃 ∥ 𝑄) = ∑ 𝑃(𝑥)

𝑥

log (
𝑃(𝑥)

𝑄(𝑥)
) (11) 

In this equation, 𝑃(𝑥) represents the probability distribution of the 
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original data, while 𝑄(𝑥) represents the probability distribution of 

the augmented data. A lower KL divergence value indicates that 

the distribution 𝑄(𝑥) of the augmented data closely approximates 

the distribution 𝑃(𝑥) of the original data. 

Along with KL divergence, Epistemic Indicators provide another 

measure of the reliability of the augmented data. Epistemic 

Indicators calculate the conditional probability of each augmented 

data point given the prediction results. By averaging these 

individual conditional probability values, the overall average 

reliability of the augmented dataset is determined. A higher 

average value indicates that the augmented data maintains the 

characteristics of the original data while incorporating sufficiently 

diverse information. This average conditional probability is used 

to assess the reliability of the augmented dataset. A high reliability 

score suggests better generalization and predictive performance 

when the augmented data is used for model training. The formula 

for calculating the Epistemic Indicators is as follows: 

μ𝑖̂ =
1

𝐸
∑ 𝑝θ(𝑒)( 𝑦𝑖

∗ ∣∣ 𝑥𝑖 )

𝐸

𝑒=1

(12) 

In this context, 𝜇𝑖̂ represents the conditional mean prediction value 

for the 𝑖-th data point. This value is calculated as the average of the 

prediction values obtained from multiple augmented data points. 

𝑝𝜃(𝑒)( 𝑦𝑖
∗ ∣∣ 𝑥𝑖 ) denotes the conditional probability of the predicted 

value 𝑦𝑖
∗  given the input 𝑥𝑖  using the model 𝜃  for the 𝑒 -th 

augmented data point. This probability indicates how likely the 

predicted result is for that specific data point. 𝐸  represents the 

number of augmented data points, and it is used to average the 

probabilities across all augmented data. 

 
Table 3. Model results on KL divergence and Epistemic 

Model KL Mean KL STDV Epistemic 

MBB 0.18 0.052 95.14 

TC-GAN 0.9 0.162 95.56 

TTS-CGAN 1.45 0.586 95.85 

 

The results of the KL divergence play a crucial role in 

understanding the impact of data augmentation on model 

performance. Specifically, the MBB model shows a low average 

KL value of 0.08, indicating that the augmented data closely 

reflects the distribution of the original data. In contrast, the TTS-

CGAN model has a high average KL value of 1.42, suggesting that 

the augmented data from this model exhibits a greater discrepancy 

from the original data. 

6.3. Results 

This study aims to compare the performance of four major models 

in the field of demand forecasting. The target models are Moving 

Block Bootstrap LSTM (MBB-LSTM), Time-Conditional 

Generative Adversarial Network LSTM (TCGAN-LSTM), 

Transformer Time-Series Conditional GAN LSTM (TTSCGAN-

LSTM), and the basic LSTM network. The performance of these 

models was analyzed for 168 items with various demand patterns 

('Smooth', 'Erratic', 'Intermittent', 'Lumpy'). For performance 

evaluation, the data was divided into training, validation, and test 

datasets. 

The training data spans from January 2019 to May 2022 and was 

used to learn demand patterns and develop models for future 

demand prediction. The validation data covers June 2022 to April 

2023 and was used to assess the model's generalization ability and 

determine optimal hyperparameter combinations by checking for 

overfitting. Finally, the test data includes 12 weeks from May to 

August 2023, and the prediction results for this period were used 

to evaluate the actual performance of the models. 

The performance evaluation of the models was conducted using 

three metrics: nRMSE (Normalized Root Mean Square Error), 

nMAE (Normalized Mean Absolute Error), and sMAPE 

(Symmetric Mean Absolute Percentage Error). Both nRMSE and 

nMAE quantify the prediction error of the models. nRMSE 

calculates the squared differences between predicted and actual 

values, averages them, takes the square root of this value, and 

normalizes it using the min-max method (the difference between 

the maximum and minimum values). nMAE calculates the average 

of the absolute differences between actual and predicted values and 

normalizes it in the same way. This normalization process makes 

it easier to compare the performance of different datasets or 

models, allowing the prediction accuracy of the models to be 

evaluated on a consistent basis regardless of range. 

sMAPE calculates the absolute difference between actual and 

predicted values as a percentage of the sum of actual and predicted 

values, and then averages this value. The performance of the 

models was evaluated for each item, and the average performance 

for each metric across all items was calculated to represent the final 

model performance. This evaluation method helps to 

comprehensively assess the overall model performance while 

considering the performance differences for individual items. 

In this study, we evaluated the demand forecasting performance of 

four models (MBB-LSTM, TCGAN-LSTM, TTSCGAN-LSTM, 

and LSTM) for 168 items with various demand patterns. The 

results showed that the modified models (MBB-LSTM, TCGAN-

LSTM, TTSCGAN-LSTM) outperformed the standard LSTM 

model. 

 

Table 4. smooth 

Model nRMSE sMAPE nMAE 

MBB-LSTM 0.246 0.076 0.184 

TCGAN-

LSTM 

0.286 0.090 0.220 

TTSCGAN-

LSTM 

0.293 0.091 0.225 

LSTM 0.307 0.100 0.241 

 

Table 5. Erratic 

Model nRMSE sMAPE nMAE 

MBB-LSTM 0.322 0.165 0.241 

LSTM 0.396 0.173 0.307 

TCGAN-

LSTM 

0.408 0.186 0.346 

TTSCGAN-

LSTM 

0.438 0.191 0.368 

 

Table 6. Intermittent 

Model nRMSE sMAPE nMAE 

MBB-LSTM 0.428 0.355 0.289 

TCGAN-

LSTM 

0.497 0.364 0.386 

LSTM 0.505 0.373 0.434 

TTSCGAN- 0.815 0.327 0.662 
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LSTM 

 

Table 7. Lumpy 

Model nRMSE sMAPE nMAE 

MBB-LSTM 0.357 0.353 0.284 

TCGAN-

LSTM 

0.517 0.287 0.454 

TTSCGAN-

LSTM 

0.760 0.293 0.674 

LSTM 0.842 0.233 0.724 

 

For the 'Smooth' pattern, MBB-LSTM achieved the best 

performance with an nRMSE of 0.246, followed by the optimized 

TCGAN-LSTM and TTSCGAN-LSTM models, both with an 

nRMSE of 0.285. These results are an improvement over the 

standard LSTM model, which had an nRMSE of 0.307. 

In the 'Erratic' pattern, MBB-LSTM also had the lowest error with 

an nRMSE of 0.322, compared to 0.396 for the LSTM, 0.408 for 

the TCGAN-LSTM model, and 0.438 for the TTSCGAN-LSTM 

model. 

For the 'Intermittent' pattern, MBB-LSTM again showed the 

lowest error with an nRMSE of 0.428, followed by the TCGAN-

LSTM model at 0.497 and the standard LSTM at 0.505. The 

TTSCGAN-LSTM model exhibited a relatively high error with an 

nRMSE of 0.815. 

In the 'Lumpy' pattern, MBB-LSTM achieved the lowest error with 

an nRMSE of 0.357, followed by TCGAN-LSTM at 0.516, 

TTSCGAN-LSTM at 0.438, and the LSTM model with the highest 

error at 0.842. These results demonstrate that the modified models, 

particularly MBB-LSTM, consistently outperformed the standard 

LSTM model across various demand patterns. 

The comparative analysis of prediction model performance for 

products with four different demand patterns revealed that models 

utilizing data augmentation techniques, such as MBB-LSTM and 

TCGAN-LSTM, exhibited superior performance, particularly for 

'Lumpy' and 'Intermittent' patterns. These patterns are 

characterized by frequent periods of no or very low demand, 

making them difficult for traditional prediction models to capture. 

The enhanced performance of models with data augmentation in 

these challenging patterns can be attributed to their ability to 

generate diverse data, which helps in better capturing and 

reflecting the complex patterns within the data. 

This study underscores the significant value of using data 

augmentation techniques in demand forecasting, especially when 

tailored to the specific demand patterns of products. The key 

findings are as follows. First, MBB-LSTM is highly effective for 

products with general demand patterns, delivering superior 

performance by accurately capturing regular trends and 

seasonality. Second, TCGAN-LSTM excels with products 

exhibiting special or complex demand patterns, such as 

'Intermittent' and 'Lumpy', by effectively modelling irregularities 

and variability. 

By enhancing the diversity and richness of the training data 

through appropriate augmentation strategies, these models achieve 

higher accuracy and reliability in their predictions. This highlights 

the importance of selecting and tailoring data augmentation 

techniques based on the specific characteristics of the data to 

improve demand forecasting performance. 

7. Conclusion 

This study introduces a novel methodology for enhancing demand 

forecasting accuracy by integrating data augmentation techniques 

with hybrid deep learning models. Through comprehensive 

experiments, we confirmed that models incorporating data 

augmentation—such as MBB-LSTM and TCGAN-LSTM—

consistently outperform the baseline LSTM model across various 

demand patterns, including challenging ones like 'Lumpy' and 

'Intermittent'. 

This study makes the following academic contributions. First, it 

provides an innovative solution to the pervasive issue of data 

scarcity in demand forecasting. By employing time-series-specific 

data augmentation techniques, this study generates enriched and 

diverse datasets that enhance model training and generalization 

capabilities, even in data-constrained environments. This 

addresses a critical gap in the field where the applicability of 

machine learning models is often limited due to insufficient data. 

Second, it presents a novel approach to handling high-variability 

patterns. Existing forecasting models often struggle to maintain 

consistent accuracy in scenarios with high variability and irregular 

demand, such as 'Lumpy' and 'Intermittent' patterns. The 

integration of tailored data augmentation techniques with hybrid 

deep learning models establishes a new standard for addressing 

these complex patterns, significantly improving prediction 

accuracy and robustness. 

Third, this study advances the literature by proposing a scalable 

framework that effectively combines data augmentation with 

hybrid prediction models. This integration not only enhances 

forecasting performance but also broadens the applicability of 

demand forecasting techniques across various industries and 

dynamic scenarios.  

Building on these academic contributions, this study also 

demonstrates practical utility for diverse industries. Most notably, 

it addresses data scarcity, enabling companies that previously 

struggled to adopt AI solutions to implement demand forecasting 

technologies. This is particularly impactful for small and medium-

sized enterprises operating with limited or irregular data, thereby 

expanding the accessibility of AI-driven tools. 

Additionally, the proposed models exhibit high predictive 

accuracy across various demand patterns, empowering businesses 

to optimize inventory levels, reduce costs, and prevent losses from 

stockouts. This ultimately enhances supply chain efficiency and 

maximizes operational performance. Furthermore, the 

framework’s ability to maintain high accuracy in high-variability 

demand patterns allows businesses to better forecast customer 

needs and respond swiftly, thereby improving customer 

satisfaction and strengthening competitive advantage in the 

market. 

This study was conducted using a specific dataset, which may limit 

the generalizability of the findings across different industries and 

demand conditions. To address this limitation, future research 

should employ a broader range of datasets that encompass various 

industry sectors and demand scenarios to validate the models' 

applicability and robustness. 

Moreover, the effectiveness of data augmentation techniques is 

highly dependent on their alignment with the characteristics of the 

demand patterns. Inappropriate augmentation methods can 

degrade predictive performance. Therefore, in-depth research is 

necessary to systematically compare and evaluate different data 

augmentation techniques. Identifying the optimal methods tailored 

to specific demand patterns will help maximize forecasting 

accuracy and enhance model robustness. 

Future studies should also explore new hybrid approaches that 

combine various data augmentation techniques with advanced 

prediction models. This exploration aims to enhance the 
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interpretability of the models and the reliability of the prediction 

results. Additionally, it is crucial to verify the predictive 

performance and practical applicability of these models in real-

world settings to ensure their effectiveness in operational 

environments. 

By addressing these limitations and pursuing the suggested 

avenues for future research, the full potential of integrating data 

augmentation with hybrid deep learning models in demand 

forecasting can be realized. This will contribute to developing 

more robust and accurate forecasting models, ultimately benefiting 

businesses through improved inventory management and supply 

chain optimization. 

Acknowledgements 

This research was supported by Ministry of SMEs and Startups of 

S.Korea, under grant number RS-2024-00441955. 

Author contributions 

Jinseop Yun: Conceptualization, Methodology, Software, Field 

study Park Yejun: Data curation, Writing-Original draft 

preparation, Validation., Field study Doohee Chung: 

Conceptualization, Writing-Reviewing and Editing. 

Conflicts of interest 

The authors declare no conflicts of interest. 

References 

[1] Bandara, K., Bergmeir, C., & Hewamalage, H. 

(2020). LSTM-MSNet: Leveraging forecasts on sets of 

related time series with multiple seasonal patterns. IEEE 

transactions on neural networks and learning systems, 

32(4), 1586-1599. 

[2] Bohanec, M., Borštnar, M. K., & Robnik-Šikonja, 

M. (2017). Explaining machine learning models in sales 

predictions. Expert Systems with Applications, 71, 416-

428. 

[3] Wheelwright, S., Makridakis, S., & Hyndman, R. 

J. (1998). Forecasting: methods and applications. John 

Wiley & Sons. 

[4] Ramanathan, U. (2012). Supply chain 

collaboration for improved forecast accuracy of 

promotional sales. International Journal of Operations & 

Production Management, 32(6), 676-695. 

[5] Seeger, M. W., Salinas, D., & Flunkert, V. (2016). 

Bayesian intermittent demand forecasting for large 

inventories. Advances in Neural Information Processing 

Systems, 29. 

[6] Pinkus, A. (1999). Approximation theory of the 

MLP model in neural networks. Acta numerica, 8, 143-

195. 

[7] Elman, J. L. (1990). Finding structure in time. 

Cognitive science, 14(2), 179-211. 

[8] Hong, J. K. (2021). LSTM-based Sales Forecasting 

Model. KSII Transactions on Internet & Information 

Systems, 15(4). 

[9] Pliszczuk, D., Lesiak, P., Zuk, K., & Cieplak, T. 

(2021). Forecasting sales in the supply chain based on 

the LSTM network: the case of furniture industry. 

[10] Salamanis, A., Xanthopoulou, G., Kehagias, D., & 

Tzovaras, D. (2022). LSTM-based deep learning models 

for long-term tourism demand forecasting. Electronics, 

11(22), 3681. 

[11] Sina, L. B., Secco, C. A., Blazevic, M., & Nazemi, 

K. (2023). Hybrid Forecasting Methods—A Systematic 

Review. Electronics, 12(9), 2019. 

[12] Noh, J., Park, H. J., Kim, J. S., & Hwang, S. J. 

(2020). Gated recurrent unit with genetic algorithm for 

product demand forecasting in supply chain 

management. Mathematics, 8(4), 565. 

[13] Makridakis, S., Spiliotis, E., & Assimakopoulos, V. 

(2018). The M4 Competition: Results, findings, 

conclusion and way forward. International Journal of 

Forecasting, 34(4), 802-808. 

[14] Chen, Y., Xie, X., Pei, Z., Yi, W., Wang, C., Zhang, 

W., & Ji, Z. (2024). Development of a Time Series E-

Commerce Sales Prediction Method for Short-Shelf-

Life Products Using GRU-LightGBM. Applied Sciences, 

14(2), 866. 

[15] Schmidt, A., Kabir, M. W. U., & Hoque, M. T. 

(2022). Machine learning based restaurant sales 

forecasting. Machine Learning and Knowledge 

Extraction, 4(1), 105-130. 

[16] Smirnov, P. S., & Sudakov, V. A. (2021, May). 

Forecasting new product demand using machine 

learning. In Journal of Physics: Conference Series (Vol. 

1925, No. 1, p. 012033). IOP Publishing. 

[17] Fourkiotis, K. P., & Tsadiras, A. (2024). Applying 

Machine Learning and Statistical Forecasting Methods 

for Enhancing Pharmaceutical Sales Predictions. 

Forecasting, 6(1), 170-186. 

[18] The HR Director (2024). Dei initiatives on the rise, 

but strategic execution is lacking. 

[19] Shorten, C., & Khoshgoftaar, T. M. (2019). A 

survey on image data augmentation for deep learning. 

Journal of big data, 6(1), 1-48. 

[20] Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., 

Wang, X., & Xu, H. (2020). Time series data 

augmentation for deep learning: A survey. arXiv 

preprint arXiv:2002.12478. 

[21] Chen, M., Xu, Z., Zeng, A., & Xu, Q. (2023). 

FrAug: Frequency Domain Augmentation for Time 

Series Forecasting. arXiv preprint arXiv:2302.09292. 

[22] Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., 

Reyes, M. P., ... & Iyengar, S. S. (2018). A survey on 

deep learning: Algorithms, techniques, and applications. 

ACM Computing Surveys (CSUR), 51(5), 1-36. 

[23] Gamboa, J. C. B. (2017). Deep learning for time-

series analysis. arXiv preprint arXiv:1701.01887. 

[24] Najafabadi, M. M., Villanustre, F., Khoshgoftaar, 

T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). 

Deep learning applications and challenges in big data 

analytics. Journal of big data, 2(1), 1-21. 

[25] Zhang, T., Zhang, Y., Cao, W., Bian, J., Yi, X., 

Zheng, S., & Li, J. (2022). Less is more: Fast 

multivariate time series forecasting with light sampling-

oriented mlp structures. arXiv preprint 

arXiv:2207.01186. 

[26] Pascanu, R. (2013). On the difficulty of training 

recurrent neural networks. arXiv preprint 

arXiv:1211.5063. 

[27] Cho, K., Van Merriënboer, B., Gulcehre, C., 

Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. 

(2014). Learning phrase representations using RNN 

encoder-decoder for statistical machine 

translation. arXiv preprint arXiv:1406.1078. 



 

International Journal of Intelligent Systems and Applications in Engineering                                                          IJISAE, 2025, 13(1), 526–538 |  537 

[28] Che, Z., Purushotham, S., Cho, K., Sontag, D., & 

Liu, Y. (2018). Recurrent neural networks for 

multivariate time series with missing values. Scientific 

reports, 8(1), 6085. 

[29] Hochreiter, S., & Schmidhuber, J. (1997). Long 

short-term memory. Neural computation, 9(8), 1735-

1780. 

[30] Abbasimehr, H., Shabani, M., & Yousefi, M. 

(2020). An optimized model using LSTM network for 

demand forecasting. Computers & industrial 

engineering, 143, 106435. 

[31] Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, 

A., Duan, Y., Al-Shamma, O., ... & Farhan, L. (2021). 

Review of deep learning: Concepts, CNN architectures, 

challenges, applications, future directions. Journal of big 

Data, 8, 1-74. 

[32] Li, X., Xiong, H., Li, X., Wu, X., Zhang, X., Liu, 

J., ... & Dou, D. (2022). Interpretable deep learning: 

Interpretation, interpretability, trustworthiness, and 

beyond. Knowledge and Information Systems, 64(12), 

3197-3234. 

[33] Zhang, Y., Li, G., Muskat, B., & Law, R. (2021). 

Tourism demand forecasting: A decomposed deep 

learning approach. Journal of Travel Research, 60(5), 

981-997. 

[34] Kim, M., Choi, W., Jeon, Y., & Liu, L. (2019). A 

hybrid neural network model for power demand 

forecasting. Energies, 12(5), 931. 

[35] Salman, S., & Liu, X. (2019). Overfitting 

mechanism and avoidance in deep neural networks. 

arXiv preprint arXiv:1901.06566. 

[36] Giri, C., & Chen, Y. (2022). Deep learning for 

demand forecasting in the fashion and apparel retail 

industry. Forecasting, 4(2), 565-581. 

[37] Alzubaidi, L., Bai, J., Al-Sabaawi, A., Santamaría, 

J., Albahri, A. S., Al-dabbagh, B. S. N., ... & Gu, Y. 

(2023). A survey on deep learning tools dealing with 

data scarcity: definitions, challenges, solutions, tips, and 

applications. Journal of Big Data, 10(1), 46. 

[38] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, 

B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). 

Generative adversarial nets. Advances in neural 

information processing systems, 27. 

[39] Bowles, C., Chen, L., Guerrero, R., Bentley, P., 

Gunn, R., Hammers, A., ... & Rueckert, D. (2018). Gan 

augmentation: Augmenting training data using 

generative adversarial networks. arXiv preprint 

arXiv:1810.10863. 

[40] Han, Z., Zhao, J., Leung, H., Ma, K. F., & Wang, 

W. (2019). A review of deep learning models for time 

series prediction. IEEE Sensors Journal, 21(6), 7833-

7848. 

[41] Lee, S. W., & Kim, H. Y. (2020). Stock market 

forecasting with super-high dimensional time-series data 

using ConvLSTM, trend sampling, and specialized data 

augmentation. Expert systems with applications, 161, 

113704. 

[42] Iglesias, G., Talavera, E., González-Prieto, Á., 

Mozo, A., & Gómez-Canaval, S. (2023). Data 

Augmentation techniques in time series domain: a 

survey and taxonomy. Neural Computing and 

Applications, 35(14), 10123-10145. 

[43] Bergmeir, C., Hyndman, R. J., & Benítez, J. M. 

(2016). Bagging exponential smoothing methods using 

STL decomposition and Box–Cox transformation. 

International journal of forecasting, 32(2), 303-312. 

[44] Petitjean, F., Forestier, G., Webb, G. I., Nicholson, 

A. E., Chen, Y., & Keogh, E. (2014, December). 

Dynamic time warping averaging of time series allows 

faster and more accurate classification. In 2014 IEEE 

international conference on data mining (pp. 470-479). 

IEEE. 

[45] Denaxas, E. A., Bandyopadhyay, R., Patiño-

Echeverri, D., & Pitsianis, N. (2015, April). SynTiSe: A 

modified multi-regime MCMC approach for generation 

of wind power synthetic time series. In 2015 Annual 

IEEE Systems Conference (SysCon) Proceedings (pp. 

668-674). IEEE. 

[46] Kang, Y., Hyndman, R. J., & Li, F. (2020). 

GRATIS: GeneRAting TIme Series with diverse and 

controllable characteristics. Statistical Analysis and 

Data Mining: The ASA Data Science Journal, 13(4), 

354-376. 

[47] Kingma, D. P., & Welling, M. (2013). Auto-

encoding variational bayes. arXiv preprint 

arXiv:1312.6114. 

[48] Yoon, J., Jarrett, D., & Van der Schaar, M. (2019). 

Time-series generative adversarial networks. Advances 

in neural information processing systems, 32. 

[49] Bandara, K., Hewamalage, H., Liu, Y. H., Kang, 

Y., & Bergmeir, C. (2021). Improving the accuracy of 

global forecasting models using time series data 

augmentation. Pattern Recognition, 120, 108148. 

[50] Iwana, B. K., & Uchida, S. (2021). An empirical 

survey of data augmentation for time series 

classification with neural networks. Plos one, 16(7), 

e0254841. 

[51] Deng, Y., Liang, R., Wang, D., Li, A., & Xiao, F. 

(2023, November). Decomposition-based Data 

Augmentation for Time-series Building Load Data. In 

Proceedings of the 10th ACM International Conference 

on Systems for Energy-Efficient Buildings, Cities, and 

Transportation (pp. 51-60). 

[52] Syntetos, A. A., Boylan, J. E., & Croston, J. D. 

(2005). On the categorization of demand patterns. 

Journal of the operational research society, 56, 495-503. 

[53] Kim, J. S., Hwang, J. S., & Jung, J. W. (2020). A 

New LSTM Method Using Data Decomposition of Time 

Series for Forecasting the Demand of Aircraft Spare 

Parts. Korean Management Science Review, 37(2), 1-18. 

[54] Yu, M., Tian, X., & Tao, Y. (2022). Dynamic 

Model Selection Based on Demand Pattern 

Classification in Retail Sales Forecasting. Mathematics, 

10(17), 3179. 

[55] Costantino, F., Di Gravio, G., Patriarca, R., & 

Petrella, L. (2018). Spare parts management for irregular 

demand items. Omega, 81, 57-66. 

[56] Kuncoro, E. G. B., Aurachman, R., & Santosa, B. 

(2018, November). Inventory policy for relining roll 

spare parts to minimize total cost of inventory with 

periodic review (R, s, Q) and periodic review (R, S) 

(Case study: PT. Z). In IOP conference series: Materials 

science and engineering (Vol. 453, No. 1, p. 012021). 

IOP Publishing. 

[57] Ramponi, G., Protopapas, P., Brambilla, M., & 

Janssen, R. (2018). T-cgan: Conditional generative 



 

International Journal of Intelligent Systems and Applications in Engineering                                                          IJISAE, 2025, 13(1), 526–538 |  538 

adversarial network for data augmentation in noisy time 

series with irregular sampling. arXiv preprint 

arXiv:1811.08295. 

[58] Li, X., Ngu, A. H. H., & Metsis, V. (2022). Tts-

cgan: A transformer time-series conditional gan for 

biosignal data augmentation. arXiv preprint 

arXiv:2206.13676. 

[59] Efron, B. (1992). Bootstrap methods: another look 

at the jackknife. In Breakthroughs in statistics: 

Methodology and distribution, pages 569–593. Springer. 

[60] Kunsch, H. R. (1989). The jackknife and the 

bootstrap for general stationary observations. The annals 

of Statistics, 1217-1241. 

[61] Carlstein, E., Do, K. A., Hall, P., Hesterberg, T., & 

Künsch, H. R. (1998). Matched-block bootstrap for 

dependent data. Bernoulli, 305-328. 

[62] Tian, X., Wang, H., & Erjiang, E. (2021). 

Forecasting intermittent demand for inventory 

management by retailers: A new approach. Journal of 

Retailing and Consumer Services, 62, 102662. 

 


