
 

 

International Journal of 

Intelligent Systems and Applications in Engineering 

ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(1), 13–18  |  13 

 

An effective genetic algorithm with a critical-path-guided Giffler and 

Thompson crossover operator for job shop scheduling problem 

Mohamed Kurdi*1 

 
Submitted: 14/05/2018 Accepted : 25/02/2019 Published: 20/03/2019     DOI: 1b000000x 

Abstract: This work presents an effective genetic algorithm with a critical-path-guided Giffler and Thompson crossover operator for job 

shop scheduling problem with the objective of makespan minimization (GA-CPG-GT). Even though passing important traits from parents 

to offspring is known to be an important feature of any uniform crossover operator, most of the proposed operators adopt random exchange 

of genetic materials between parents; this is probably due to the fact that it is tricky to identify the genetic materials that hold the important 

traits. For that reason, in this work, a new selective exchange of genetic materials is proposed. In the proposed approach, at first, the genetic 

materials that hold the important traits are identified according to some domain specific information provided by the critical paths of the 

parents, and then the exchange is made on favor of them. The properties of critical path are usually utilized by the local search methods 

such as tabu search and simulating annealing; however, in this work, they are utilized in the global search method GA during the crossover 

operator. The implications of the proposed approach are investigated using the Giffler and Thompson crossover operator, which is a uniform 

crossover combined with the G&T algorithm. The proposed approach is tested on 55 benchmark instances, with the proposed selective 

exchange, and without it using the random one, and also compared with other 5 similar works reported in the literature. The computational 

results validate the enhancements accomplished by the proposed selective exchange, and show the superiority of the proposed algorithm 

over the compared works in terms of solution quality, and validate its effectiveness. 
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1. Introduction 

Job shop scheduling problem (JSSP) is an NP-hard problem, and 

one of the most difficult combinatorial optimization problems 

considered to date. Due to its difficulty of solving and importance 

for production management with regard to enhancing machine 

utilization and shortening cycle-time, JSSP has been tackled by so 

many methods over more than fifty years. The methods used range 

from exact methods [1], to heuristic [2] [3], and finally to 

metaheuristics such as simulated annealing (SA) [4], tabu search 

(TS) [5], ant colony optimization (ACO) [6], parallel artificial bee 

colony optimization (ABCO) [7], discrete particle swarm 

optimization (PSO) [8], modified clonal selection algorithm (CSA) 

[9], and parallel bat algorithm (BA) [10]. An overview of JSSP 

techniques can be found in Zobolas et al. [11], while an outdated 

but comprehensive survey of them can be found in Jain and Meeran 

[12]. 

Genetic algorithm (GA) is a well-known global search method that 

has a wide range of applications for solving combinatorial 

optimization problems. Regarding JSSP, many GAs with various 

approaches have been developed, the most common ones include 

developing encoding and decoding schemes [13], developing 

genetic operators [14], hybridizing with other algorithms [15], and 

designing parallel GA (PGA) models [16] [17] .  

The crossover operator is one of the main components of GA 

because it provides the exploitation of search space by enabling 

pairs of solutions (parents) to mate and generate new solutions 

(offspring) by mutual exchange and recombination of their genetic 

materials; therefor, several crossover operators have been 

developed for JSSP, such as partial-mapped crossover (PMX), 

order crossover (OX), cycle crossover (CX), position-based 

crossover, order-based crossover, etc. An overview of them can be 

found in [18]. Unlike the other types of crossover operators, the 

Giffler and Thompson (GT) based crossover operators are problem 

dependent operators, which are distinguished in the ability to 

interact in the phenotype space of individuals, and thus produce 

active schedules directly without the requirements of decoding and 

repairing procedures. This ability is provided by utilizing the 

principles of the conflict sets defined by G&T algorithm, which is 

an algorithm for generating active schedules (a subclass of the 

search space that includes the optimal solutions), and usually 

combined with dispatching rules for the creation of an initial 

population. The first GT based crossover operator is called GA-GT 

crossover, and was proposed by Yamada and Nakano [19]. In their 

approach, a direct representation in the form of a string of the 

operation completion times of an active schedule is used, and the 

GA-GT crossover can be described as follows. At each decision 

point, one parent is chosen randomly, but the operation that is 

schedulable and has the earliest completion time in the parent 

schedule is scheduled next. This strategy corresponds to a uniform 

crossover combined with the G&T algorithm as an interpreter to 

convert illegal offspring into feasible active schedules. Peng and 

Salim [20] proposed a modified GA-GT crossover, in which the 

major modification is using a binary tournament selection for 

selecting the parents (instead of random pairing applied in original 

GA-GT crossover). Moonen and Janssens [21] proposed a new 

crossover called Giffler-Thompson Focused (GTF) crossover 

which combines an order-based crossover with a one-point 

crossover, and uses the largest conflict set to direct the option of 

the cut point [22].  
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Even though an important feature of any crossover operator is to 

be able to pass important genetic materials (traits) to offspring, 

most of the proposed uniform crossover operators that can be 

found in the literature, including all the aforementioned GT based 

crossovers, adopt random exchange of genetic materials between 

parents, which may decrease the exploitation of the search space 

because the resulting offspring may not inherit the important traits 

from their parents. This is maybe due to the fact that it is difficult 

to identify the genetic materials that hold the important traits of an 

individual. However, a recent study, made by Kurdi [23], has 

recommended identifying the important genetic materials 

according to some criteria and giving them the preference for 

exchange over the rest. In his work, he proposed an informed 

uniform crossover that employs the history of parents’ evolution 

occurred during the self-adaptation phase (local search via TS) in 

determining the genetic materials exchanged between them i.e. 

giving preference to the genes that have been evolved recently. The 

findings of the aforesaid study, and the fact that only the genes 

belonging to the critical path can evolve (during the self-adaptation 

phase) have inspired us to propose a new selective exchange of 

genetic materials, which may handle the aforementioned 

shortcoming of the random one, and thus improve the exploitation 

of the search space. In the proposed approach, at first, the genetic 

materials that hold the important traits are identified according to 

some domain specific information provided by the critical paths of 

the parents, and then the exchange is made on favor of them. To 

the best of our knowledge, the concept of critical path is usually 

utilized only in local search methods (such as TS and SA), and this 

is the first work that utilizes it in the global search method GA 

during the crossover phase for selecting the genetic materials 

exchanged between individuals. Because of its efficiency and 

suitability, the GA-GT crossover operator [19] is used to study the 

influence of the proposed criteria. 

2. Problem Definition 

The classical JSSP with the objective of minimization of makespan 

consists of scheduling a set of n jobs {Jj}   j n    on a set of m 

machines {Mr}   r m   . The processing of job Jj on machine Mr 

is called the operation Ojr, and lasts for a continued specific period 

called processing time Pjr (pre-emption is not permitted). Two 

constraints exist in the problem: the precedence constraint that 

states that each job Jj must be processed on each machine Mr 

according to a predetermined sequence called topological 

sequence, and the capacity constraint that enforces that each 

machine Mr must process only one job Jj at a time. The start time 

and completion time of operation Ojr are denoted as Sjr, Cjr 

respectively. A solution (or schedule) is defined as the set of the 

completion times for all operations; a feasible schedule is a 

schedule that fulfils the two constraints. The time required for the 

completion of all the jobs is called makespan and denoted as Cmax, 

where Cmax = max 1≤j≤n,1≤r≤m Cjr. The objective of the problem 

becomes finding a feasible solution that provides the minimum 

value of Cmax [19]. An example of a 2 x 3 JSSP is given in Table 

1. The data include the topological sequence of all jobs with their 

processing times. For example, job 1 is processed in this sequence 

O11→ O13 →O12, i.e. it is processed on machine 1 for 3 time units, 

then on machine 3 for 3 units, then on machine 2 for 4 units. A 

possible solution of the 2 x 3 JSSP represented by a Gantt chart is 

given in Fig. 1.  

 
 
 

Table 1. An example of a 2 × 3 JSSP. 

Job

J1 M1 / 3 M3/ 3 M2/ 4

J2 M1 / 4 M2/ 6 M3/ 3

 Machine / Processing time 

 

As shown in Fig. 2, the 2 x 3 JSSP problem can be also represented 

by the job sequence matrix {Tjk} and processing time matrix {Pjk}; 

and its solution can be represented by a solution matrix {Srk}. 

Where Tjk = r means that k-th operation for job Jj is processed on 
machine Mr for Pjk time units, and Srk = j means that the k-th 

operation on machine Mr is job Jj. 
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Fig. 1.  A Gantt chart representation of a solution for the 2 × 3 problem. 
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Fig. 2.  Matrix representation for the 2 × 3 problem and its solution. 

The critical path is a sequence of critical operations (i.e. operations 

that has zero slack time) that has the longest length in the schedule 

[24]. In Fig. 1, an example of a possible critical path is indicated 

by the dashed line, whereas the critical operations are indicted by 

the dotted background.  

3. The Proposed GA-CPG-GT Algorithm 

At first, a set of individuals called population is created using the 

G&T algorithm. Each individual has two representations called 

phenotype and genotype. Whereas the phenotype represents 
behavioral traits of this individual in its environment (what an 

individual looks like) i.e. a potential solution to JSSP, the genotype 

represents the genetic composition of this individual in the form of 

a chromosome. The next step involves evaluating the fitness of 

each individual that measures its suitability for the surrounding 

environment i.e. how good the solution represented by it is for the 

JSSP. And then, the natural evolution of the population takes place 

through a series of generations [25]. At each generation, phases of 

cooperation evolutions alternate with phases of self-adaptation 

ones. While cooperation phases provide exploitation of the search 

space and mean that individuals evolve by exchanging their 

knowledge about the search space (inheriting acquired traits) via 

the crossover operator, self-adaptation phases provide exploration 

of the search space and mean that they evolve independently by 

using only their own knowledge (generating new traits) via the 

mutation operator [26]. The general methodology of the proposed 

algorithm is described in Fig. 3. 

3.1. Initial Population  

The initial population can be created by many ways such as G&T 

algorithm, priority dispatching rules, and random methods. 

Generally, the initial population creation methods have small 

effects on solution quality, but they may affect the running time 
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[27]. However, in this work, the G&T algorithm was used to create 

the initial population. 

3.2. Chromosome Representation  

The preference-list representation is used [28]. In this 

representation, for a problem of the size n x m, a chromosome is 

formed of m subchromosomes, each for one machine.  Each 

subchromosome is a string of symbols with a length of n, and each 

symbol represents an operation processed on the relevant machine. 

For example, the solution of the 2 x 3 problem given in Fig. 1 is 

encoded in this form [(2 1) (2 1) (1 2)]. These subchromosomes are 

usually generated randomly and may conflict with the problem 

constraints (represent infeasible individuals); because of that, 

initially they are considered as preference lists and passed to a 

decoding (and repairing) procedure, that selects the operations that 

appear first for processing on the related machines, and also alters 

the sequence of these operations when it is necessary for meeting 

the problem constraints [13]. However, in this work, there is no 

need for the application of the decoding procedure on the 

chromosomes that are constructed during the creation of the initial 

population or that result from crossover, this is because these 

chromosomes and their solutions (genotypes and their 

corresponding phenotype) are constructed together using the G&T 

algorithm. Therefore, the decoding procedure is only required for 

the mutated individuals.  
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Selection of two individuals for crossover

Idnetification of their critical operations

Mutation 

Population updating & evaluation
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Evaluation of the population
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Selection of individuals for mutation
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Fig. 3.  The general methodology of the GA-CPG-GT algorithm. 

3.3. Fitness Function 

To calculate the survival probability of an individual at the 

upcoming generation, a fitness function is utilized to determine 

how good the solution represented by an individual is. In this work, 

the well-known function suggested by Goldberg [29]  is used. It is 

defined by the following formula F(x)=CmaxP - Cmax(x), where 

CmaxP is the maximum makespan value found in the population 

under consideration, and Cmax(x) is the makespan value of the 

individual x. 

3.4. Reproduction 

Offspring are created through the application of crossover and/or 

mutation operators. The candidates for the crossover operator are 

selected using the roulette wheel method Goldberg [29], in which 

individuals are selected randomly with their probability of 

selection proportional to their relative fitness in the population. 

Thus, fitter individuals have a greater chance to survive and 

reproduce than the weaker ones. If the population size is n, the 

probability of selection of an individual xj can be calculated by the 

following formula. 

 

𝑃(𝑥𝑗) = 𝐹(𝑥𝑗)/ ∑ 𝐹(𝑥𝑖)𝑛
𝑖=1           (1) 

 

The candidates for mutation crossover are the worst ones with a 

hope of introducing better traits to them, thereby increasing their 

chances of survival.  

3.5. The Proposed CPG-GT Crossover Operator 

The proposed CPG-GT crossover operator is described in 

Algorithm 1. The main difference between it and the classical GA-

GT proposed by Yamada and Nakano [19] is in the (additional) 

Step 2 i.e. in the generation of the inheritance matrices. In their 

work, for each pair of parents p0 and p1 a binary matrix H of the 

size n x m called inheritance matrix is generated randomly with 

equal probability of 0 and 1; the purpose of this matrix is to 

determine the genetic material exchanged between parents as 

follows: Hri = 0 means that the i-th operation on machine r should 

be determined by the first parent p0, and Hri = 1 means that it will 

be determined by the second parent p1; and by this way, the first 

child is produced, while the second child is produced by switching 

the roles of p0  and p1 (for an example of the classical GA-GT  

please refer to [24]). However, due to the randomness in the 

creation of H, the resulting offspring are expected to inherent 

random traits of their parents; consequently, this may weaken the 

exploitation of search space provided by the crossover operator. In 

order to overcome this drawback, in this work, the inheritance 

matrix is initialized in the light of the critical path. The basic 

assumption is that the critical operations, which are the building 

units of any possible critical path, possess 

 

Algorithm 1 (CPG-GT crossover operator) 

A scheduling problem represented by the job sequence matrix 

{Tjk}, and the processing time matrix {Pjk} as well as two solution 

schedules p0 and p1 represented by solution matrices S0 = {S0
rk} 

and S1 = {S1
rk} respectively, are given as inputs. 

1. Initialize G as a set of operations that are first in the job 

sequence; i.e., G = {O1T11, O1T21,…, O1Tn1}. For each operation 

O ∈ G, set the earliest starting time ES (O) = 0 and the earliest 

completion time EC(O) = p(O). 

2. Generate the binary inheritance matrices H for p0, using 

Algorithm 2.  

3. Find the earliest completable operation (whose earliest 

completion time is the smallest) O*r ∈ G as follows. O*r = arg 

min {EC(O)| ∈ G} with machine Mr. A subset of G that 

consists of operations processed on machine Mr is denoted as 

Gr. 
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4. Calculate the conflict set C[Mr; i] ⊂ Gr as follows. C[Mr; i] = 

{Okr ∈  G | ES(Okr) < EC(O*r)}, where i-1 is the number of 

operations that are already scheduled on Mr. 

5. Select one of the parents {p0, p1} as p according to the value of 

Hri, that is, p = pHri and Sp = SHri. For each Ojr ∈ C[Mr; i] with 

job number j, there exists an index l such that Srl = j. Let lm be 

the smallest index number among them; i.e., lm = min {l | Srl = 

j and Ojr ∈ C[Mr; i]} and let k = Srlm. This results in selecting 

an operation Okr ∈ C[Mr; i] that has been scheduled in p earliest 

among the members of C[Mr; i]. 

6. Schedule Okr as the i-th operation on Mr; i.e. Sri = k, with its 

starting and completion times equal to ES (Okr) and EC(Okr) 

respectively: s(Okr) = ES (Okr); c(Okr) = E(COkr). 

7. For all Ojr ∈  Gr\{Okr}, update ES (Ojr) as ES (Ojr) = max {ES 

(Ojr); EC(Okr)} and EC(Ojr) as EC(Okr) = ES (Okr) + p(Okr). 

8. Remove Okr from G (and therefore from Gr), and add operation 

Oks that is the next to Okr in the job sequence to G if such Oks 

exits; i.e., if r = Tki and i < m, then s = Tki+1 and G = (G\{ Okr 

})⋃{ Oks}. Calculate ES (Oks) and EC(Oks) as: ES (Oks) = max 

{EC(Okr); EC(PM(Oks)) and EC(Oks) = ES (Oks) + p(Oks) 

respectively. 

9. Repeat from Step 3 to Step 8 until all operations are scheduled. 

10. Output the solution matrix {Srk} as the active schedule obtained 

with the set of starting and completion times {s(Ojr)} and 

{c(Ojr)} respectively, where j = Srk. 

more important traits than the others and should be inherited by the 

offspring. Based on this assumption, 50% of them will be 

transferred to offspring, while the rest are taken randomly from the 

second parent. The generation of the inheritance matrix that 

implements this idea is given in Algorithm 2. It can be noted from 

Algorithm 2, that unlike the traditional GA-GT crossover operator, 

each parent will have its own inheritance matrix. Another 

difference between the proposed operator and the GA-GT is that 

the proposed one does not integrate the mutation operator in Step 

5, and there is an independent procedure for it. 

 

Algorithm 2 (Inheritance matrix generation) 

1:  Let   S=[(s11,s12,…s1n),…( s21,s22,…s2n),…(       sm1,sm2,…smn)]  

be the first parent.  

2:  Let ST(Ojr) be the slack time of the operation Ojr. 

3:  for x=1,n do 

4:    for y=1,m do 

5:       j=Sxy; r=x; 

6:       if (ST(Okr)==0) 

7:           r = a random value in the range [0, 1]; 

8:           if (r <= 50)  Hij=1; 

9:           else  Hij=0; 

10:     else H0
ij=0; 

11:   end for 

12: end for 

 

3.6. Mutation 

Mutation is the process of randomly changing the values of genes 

in a chromosome. The main objective of it is to introduce new 

genetic materials into some individuals in the population, thereby 

promote the exploration of search space and avoid the premature 

convergence [25]. The classical mutation operators include 

inversion, insertion, and swap [30]. In this study, the inversion 

operator is adopted. This operator acts as follows. It selects two 

genes randomly and then inverts the substring that exists between 

these two genes. Since the mutated chromosomes may represent 

infeasible individuals, their associated solutions are generated by 

the decoding procedure discussed in Section 3.2. 

3.7. Replacement Strategy and Stop Condition 

A steady-state generation replacement method with elitist strategy 

[29] is adopted. An old generation is not entirely replaced by the 

new one; the best individual is copied to the next generation 

without any changes. The stop condition is either the best known 

solution has been reached, or the maximum number of generations 

has been elapsed. 

4. Computational Results 

The algorithm was implemented in C++, and the tests were run on 

a PC with 3.40 GHz Intel(R) Core (TM) i7-3770 CPU and 8.00 

GB. The parameters were tuned through a number of experiments; 

as a result, they were fixed as follows: the population size 100, the 

maximum number of generations 1000, t crossover probability 0.8, 

and mutation probability 0.05.  

In order to validate the effectiveness of the proposed algorithm, it 

was tested on 55 instances from four classes of standard JSSP 

benchmark instances: Fisher and Thompson [31] instances ft06, 

ft10, ft20; Lawrence [32] instances la01–la40; Applegate and 

Cook [33] instances orb01–orb09; and two of Adams et al.  [2] 

instances denoted as ABZ5 and ABZ6. 

GA-CPG-GT was compared with another version of it that is 

identical to it, but uses a random initialization of the inheritance 

matrix with equal probability of 0 and 1 (as proposed by Yamada 

and Nakano [19]), and also compared with other 5 similar works 

found in the literature: an agent-based parallel genetic algorithm 

PaGA [34], ant colony optimization with parameterized search 

space (ACO-PA) [35], multiple independent particle swarms 

algorithm JSP/PSO [36], hybrid parallel micro genetic algorithm 

(HPGA) models [16], and modified clonal selection algorithm 

(CSA) [9]. The best makespan obtained by the proposed algorithm 

from 10 independent runs was used as a criterion of the 

performance. 

Table 2 summarizes the experimental results on the 55 instances, 

it lists problem name, problem size (number of jobs × number of 

machines), the best known solution (BKS); and the best solution 

(BS) obtained by each of the compared algorithms.  

From Table 2, it can be seen that GA-CPG-GT is able of reaching 

equal or better results than the compared works on almost the 

whole set of instances; however, to make a precise comparison, the 

relative deviation of the best solution was calculated using the 

following formula.  

BS-RD = 100 × (BS-BKS)/BKS         (2) 

The average value of BS-RD, denoted as BS-ARD, was also 

calculated for each algorithm over its instances. Table 3 shows the 

number of instances solved (NIS), BS-ARD values for GA-CPG-

GT and the other algorithms (OA), the relative improvement 

achieved by GA-CPG-GT in BS-ARD values with respect to each 

of the other algorithms. From Table 3 and Fig. 4, it can be noticed 

that GA-CPG-GT yields remarkably significant relative 

improvement to all of the other compared algorithms.  

In comparison with the classical GA-R-GT that identical to GA-

CPG-GT but adopts random exchange of genetic materials, the 

relative improvement is 53%, which validates the assumptions 

made about the proposed selective exchange of genetic materials 
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in promoting the exploitation of the search space. From the other 

hand, it can be seen that GA-CPG-GT could outperform all of the 

other compared works in terms of solution quality; the 

improvement made by it reaches up to 96% when it is compared 

with ACO-PA, which means that the proposed algorithm can be 

considered as an effective approach for solving JSSP. 

 
Table 2.  Comparison of GA-CPG-GT with the other algorithms. 

Name Size BKS BS BS BS BS BS BS BS

ft06 6x6 55 55 55 55 - - 57 55

ft10 10x10 930 935 969 997 931 - 956 1034

ft20 20x5 1165 1180 1199 1196 1165 - 1180 -

orb01 10x10 1059 1084 1087 1149 1085 - - -

orb02 10x10 888 890 906 929 - - - -

orb03 10x10 1005 1037 1109 1129 - - - -

orb04 10x10 1005 1028 1066 1062 1054 - - -

orb05 10x10 887 894 903 936 - - - -

orb06 10x10 1010 1035 1063 1060 - - - -

orb07 10x10 397 404 407 416 - - - -

orb08 10x10 899 937 926 1010 - - - -

orb09 10x10 934 943 944 994 - - - -

orb10 10x10 944 967 987 - - - - -

abz5 10x10 1234 1238 1280 - - - - 1270

abz6 10x10 943 947 975 - - - - 943

la01 10x5 666 666 666 666 - 666 666 666

la02 10x5 655 655 667 655 680 665 668 655

la03 10x5 597 597 626 617 - 609 606 597

la04 10x5 590 590 595 607 - 597 611 590

la05 10x5 593 593 593 593 - 593 593 593

la06 15x5 926 926 926 926 - 926 926 -

la07 15x5 890 890 890 890 - 890 890 -

la08 15x5 863 863 863 863 - 863 863 -

la09 15x5 951 951 951 951 - 951 951 -

la10 15x5 958 958 958 958 - 958 958 -

la11 20x5 1222 1222 1222 1222 - 1222 1222 -

la12 20x5 1039 1039 1039 1039 - 1039 1039 -

la13 20x5 1150 1150 1150 1150 - 1150 1150 -

la14 20x5 1292 1292 1292 1292 - 1292 1292 -

la15 20x5 1207 1207 1207 1207 - 1251 1207 -

la16 10x10 945 946 979 994 947 995 988 1024

la17 10x10 784 784 804 793 - 786 792 -

la18 10x10 848 848 865 860 - 848 860 -

la19 10x10 842 842 876 873 - 856 875 -

la20 10x10 902 907 911 912 - 930 938 -

la21 15x10 1046 1090 1136 1146 1067 - 1082 -

la22 15x10 927 954 1003 1007 - - 977 -

la23 15x10 1032 1032 1044 1033 - - 1032 -

la24 15x10 935 974 983 1012 - - 975 -

la25 15x10 977 999 1029 1067 - - 1013 -

la26 20x10 1218 1237 1303 1323 - - 1237 -

la27 20x10 1235 1313 1314 1359 - - 1290 -

la28 20x10 1216 1280 1291 1369 - - 1251 -

la29 20x10 1152 1247 1301 1322 1154 - 1247 -

la30 20x10 1355 1367 1393 1437 - - 1355 -

la31 30x10 1784 1784 1784 1844 1906 - 1784 -

la32 30x10 1850 1850 1850 1907 - - 1850 -

la33 30x10 1719 1719 1722 - - - 1719 -

la34 30x10 1721 1725 1766 - - - 1748 -

la35 30x10 1888 1888 1888 - - - 1888 -

la36 15x15 1268 1308 1361 - 1308 - 1332 -

la37 15x15 1397 1489 1485 - - - 1468 -

la38 15x15 1196 1275 1294 - - - 1280 -

la39 15x15 1233 1290 1327 - - - 1267 -

la40 15x15 1222 1252 1304 - - - 1286 -

MCSAMPSOProblem
GA-R-

GT

ACO-

PA
HPGAPaGA

GA-CPG-

GT

 
Table 3.  Relative improvements from GA-CPG-GT to the other works. 

Algorithm NIS

OA (%) GA-CPG-GT (%) GA-CPG-GT (%)

GA-R-GT 55 3,22 1,52 53

PaGA 44 4,27 1,29 70

HPGA 10 2,36 2,22 6

 ACO-PA 20 0,93 0,03 96

MPSO 43 2,10 1,44 31

MCSA 10 2,25 0,14 94
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Fig. 4.  Visualization of the relative improvements. 

5. Conclusion and Further Works 

Given the fact that an important feature of any uniform crossover 

is to enable the inheritance of important genetic materials (traits) 

from parent to their offspring, this study aims to study the impacts 

of selecting the genetic materials exchanged during crossover in 

the light of the domain specific information that exists in the 

critical path instead of selecting them randomly. The proposed 

algorithm has been tested on 55 benchmark instances, with the 

proposed selective exchange, and without it using the random 

exchange, and also compared with other 5 similar algorithms found 

in the literature. The experimental results validate the assumptions 

made about the proposed selective exchange of genetic materials 

in promoting the exploitation of the search space, and show the 

superiority of the proposed algorithm over the other compared 

works in terms of solution quality. 

The basic idea proposed for the identification of the genes that hold 

the most important traits is a promising area of research, and it is 

worthy of further investigation on other combinatorial 

optimization problems since it yields significant improvements 

when applied on JSSP, which is one of the most difficult 

combinatorial optimization problems. Furthermore, the proposed 

approach is effective, simple to understand, and easy to implement; 

and these characteristics are sometimes welcome in real 

applications, especially industrial applications. 
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