

International Journal of

Intelligent Systems and Applications in Engineering

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(1), 13–18 | 13

An effective genetic algorithm with a critical-path-guided Giffler and

Thompson crossover operator for job shop scheduling problem

Mohamed Kurdi*1

Submitted: 14/05/2018 Accepted : 25/02/2019 Published: 20/03/2019 DOI: 1b000000x

Abstract: This work presents an effective genetic algorithm with a critical-path-guided Giffler and Thompson crossover operator for job

shop scheduling problem with the objective of makespan minimization (GA-CPG-GT). Even though passing important traits from parents

to offspring is known to be an important feature of any uniform crossover operator, most of the proposed operators adopt random exchange

of genetic materials between parents; this is probably due to the fact that it is tricky to identify the genetic materials that hold the important

traits. For that reason, in this work, a new selective exchange of genetic materials is proposed. In the proposed approach, at first, the genetic

materials that hold the important traits are identified according to some domain specific information provided by the critical paths of the

parents, and then the exchange is made on favor of them. The properties of critical path are usually utilized by the local search methods

such as tabu search and simulating annealing; however, in this work, they are utilized in the global search method GA during the crossover

operator. The implications of the proposed approach are investigated using the Giffler and Thompson crossover operator, which is a uniform

crossover combined with the G&T algorithm. The proposed approach is tested on 55 benchmark instances, with the proposed selective

exchange, and without it using the random one, and also compared with other 5 similar works reported in the literature. The computational

results validate the enhancements accomplished by the proposed selective exchange, and show the superiority of the proposed algorithm

over the compared works in terms of solution quality, and validate its effectiveness.

Keywords: Critical path, Genetic algorithm, Job shop scheduling, Metaheuristic, Uniform crossover.

1. Introduction

Job shop scheduling problem (JSSP) is an NP-hard problem, and

one of the most difficult combinatorial optimization problems

considered to date. Due to its difficulty of solving and importance

for production management with regard to enhancing machine

utilization and shortening cycle-time, JSSP has been tackled by so

many methods over more than fifty years. The methods used range

from exact methods [1], to heuristic [2] [3], and finally to

metaheuristics such as simulated annealing (SA) [4], tabu search

(TS) [5], ant colony optimization (ACO) [6], parallel artificial bee

colony optimization (ABCO) [7], discrete particle swarm

optimization (PSO) [8], modified clonal selection algorithm (CSA)

[9], and parallel bat algorithm (BA) [10]. An overview of JSSP

techniques can be found in Zobolas et al. [11], while an outdated

but comprehensive survey of them can be found in Jain and Meeran

[12].

Genetic algorithm (GA) is a well-known global search method that

has a wide range of applications for solving combinatorial

optimization problems. Regarding JSSP, many GAs with various

approaches have been developed, the most common ones include

developing encoding and decoding schemes [13], developing

genetic operators [14], hybridizing with other algorithms [15], and

designing parallel GA (PGA) models [16] [17] .

The crossover operator is one of the main components of GA

because it provides the exploitation of search space by enabling

pairs of solutions (parents) to mate and generate new solutions

(offspring) by mutual exchange and recombination of their genetic

materials; therefor, several crossover operators have been

developed for JSSP, such as partial-mapped crossover (PMX),

order crossover (OX), cycle crossover (CX), position-based

crossover, order-based crossover, etc. An overview of them can be

found in [18]. Unlike the other types of crossover operators, the

Giffler and Thompson (GT) based crossover operators are problem

dependent operators, which are distinguished in the ability to

interact in the phenotype space of individuals, and thus produce

active schedules directly without the requirements of decoding and

repairing procedures. This ability is provided by utilizing the

principles of the conflict sets defined by G&T algorithm, which is

an algorithm for generating active schedules (a subclass of the

search space that includes the optimal solutions), and usually

combined with dispatching rules for the creation of an initial

population. The first GT based crossover operator is called GA-GT

crossover, and was proposed by Yamada and Nakano [19]. In their

approach, a direct representation in the form of a string of the

operation completion times of an active schedule is used, and the

GA-GT crossover can be described as follows. At each decision

point, one parent is chosen randomly, but the operation that is

schedulable and has the earliest completion time in the parent

schedule is scheduled next. This strategy corresponds to a uniform

crossover combined with the G&T algorithm as an interpreter to

convert illegal offspring into feasible active schedules. Peng and

Salim [20] proposed a modified GA-GT crossover, in which the

major modification is using a binary tournament selection for

selecting the parents (instead of random pairing applied in original

GA-GT crossover). Moonen and Janssens [21] proposed a new

crossover called Giffler-Thompson Focused (GTF) crossover

which combines an order-based crossover with a one-point

crossover, and uses the largest conflict set to direct the option of

the cut point [22].

1 Aydın Adnan Menderes University, Computer Engineering Department,

 09010, Aydin, TURKEY

 ORCID: 0000-0002-1461-1174

* Corresponding Author Email: mohamed.kurdi@adu.edu.tr

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(1), 13–18 | 14

Even though an important feature of any crossover operator is to

be able to pass important genetic materials (traits) to offspring,

most of the proposed uniform crossover operators that can be

found in the literature, including all the aforementioned GT based

crossovers, adopt random exchange of genetic materials between

parents, which may decrease the exploitation of the search space

because the resulting offspring may not inherit the important traits

from their parents. This is maybe due to the fact that it is difficult

to identify the genetic materials that hold the important traits of an

individual. However, a recent study, made by Kurdi [23], has

recommended identifying the important genetic materials

according to some criteria and giving them the preference for

exchange over the rest. In his work, he proposed an informed

uniform crossover that employs the history of parents’ evolution

occurred during the self-adaptation phase (local search via TS) in

determining the genetic materials exchanged between them i.e.

giving preference to the genes that have been evolved recently. The

findings of the aforesaid study, and the fact that only the genes

belonging to the critical path can evolve (during the self-adaptation

phase) have inspired us to propose a new selective exchange of

genetic materials, which may handle the aforementioned

shortcoming of the random one, and thus improve the exploitation

of the search space. In the proposed approach, at first, the genetic

materials that hold the important traits are identified according to

some domain specific information provided by the critical paths of

the parents, and then the exchange is made on favor of them. To

the best of our knowledge, the concept of critical path is usually

utilized only in local search methods (such as TS and SA), and this

is the first work that utilizes it in the global search method GA

during the crossover phase for selecting the genetic materials

exchanged between individuals. Because of its efficiency and

suitability, the GA-GT crossover operator [19] is used to study the

influence of the proposed criteria.

2. Problem Definition

The classical JSSP with the objective of minimization of makespan

consists of scheduling a set of n jobs {Jj} j n   on a set of m

machines {Mr} r m   . The processing of job Jj on machine Mr

is called the operation Ojr, and lasts for a continued specific period

called processing time Pjr (pre-emption is not permitted). Two

constraints exist in the problem: the precedence constraint that

states that each job Jj must be processed on each machine Mr

according to a predetermined sequence called topological

sequence, and the capacity constraint that enforces that each

machine Mr must process only one job Jj at a time. The start time

and completion time of operation Ojr are denoted as Sjr, Cjr

respectively. A solution (or schedule) is defined as the set of the

completion times for all operations; a feasible schedule is a

schedule that fulfils the two constraints. The time required for the

completion of all the jobs is called makespan and denoted as Cmax,

where Cmax = max 1≤j≤n,1≤r≤m Cjr. The objective of the problem

becomes finding a feasible solution that provides the minimum

value of Cmax [19]. An example of a 2 x 3 JSSP is given in Table

1. The data include the topological sequence of all jobs with their

processing times. For example, job 1 is processed in this sequence

O11→ O13 →O12, i.e. it is processed on machine 1 for 3 time units,

then on machine 3 for 3 units, then on machine 2 for 4 units. A

possible solution of the 2 x 3 JSSP represented by a Gantt chart is

given in Fig. 1.

Table 1. An example of a 2 × 3 JSSP.

Job

J1 M1 / 3 M3/ 3 M2/ 4

J2 M1 / 4 M2/ 6 M3/ 3

 Machine / Processing time

As shown in Fig. 2, the 2 x 3 JSSP problem can be also represented

by the job sequence matrix {Tjk} and processing time matrix {Pjk};

and its solution can be represented by a solution matrix {Srk}.

Where Tjk = r means that k-th operation for job Jj is processed on
machine Mr for Pjk time units, and Srk = j means that the k-th

operation on machine Mr is job Jj.

107

4

13

4 7

J1J2

Time

 Machine Number

M1

M3

J1J2M2

J1

10

Critical Path

14

J2J2

Fig. 1. A Gantt chart representation of a solution for the 2 × 3 problem.

     

2 1
1 3 2 3 3 4

, , 2 1
1 2 3 4 6 3

1 2

jk jk rk
T P S  

Fig. 2. Matrix representation for the 2 × 3 problem and its solution.

The critical path is a sequence of critical operations (i.e. operations

that has zero slack time) that has the longest length in the schedule

[24]. In Fig. 1, an example of a possible critical path is indicated

by the dashed line, whereas the critical operations are indicted by

the dotted background.

3. The Proposed GA-CPG-GT Algorithm

At first, a set of individuals called population is created using the

G&T algorithm. Each individual has two representations called

phenotype and genotype. Whereas the phenotype represents
behavioral traits of this individual in its environment (what an

individual looks like) i.e. a potential solution to JSSP, the genotype

represents the genetic composition of this individual in the form of

a chromosome. The next step involves evaluating the fitness of

each individual that measures its suitability for the surrounding

environment i.e. how good the solution represented by it is for the

JSSP. And then, the natural evolution of the population takes place

through a series of generations [25]. At each generation, phases of

cooperation evolutions alternate with phases of self-adaptation

ones. While cooperation phases provide exploitation of the search

space and mean that individuals evolve by exchanging their

knowledge about the search space (inheriting acquired traits) via

the crossover operator, self-adaptation phases provide exploration

of the search space and mean that they evolve independently by

using only their own knowledge (generating new traits) via the

mutation operator [26]. The general methodology of the proposed

algorithm is described in Fig. 3.

3.1. Initial Population

The initial population can be created by many ways such as G&T

algorithm, priority dispatching rules, and random methods.

Generally, the initial population creation methods have small

effects on solution quality, but they may affect the running time

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(1), 13–18 | 15

[27]. However, in this work, the G&T algorithm was used to create

the initial population.

3.2. Chromosome Representation

The preference-list representation is used [28]. In this

representation, for a problem of the size n x m, a chromosome is

formed of m subchromosomes, each for one machine. Each

subchromosome is a string of symbols with a length of n, and each

symbol represents an operation processed on the relevant machine.

For example, the solution of the 2 x 3 problem given in Fig. 1 is

encoded in this form [(2 1) (2 1) (1 2)]. These subchromosomes are

usually generated randomly and may conflict with the problem

constraints (represent infeasible individuals); because of that,

initially they are considered as preference lists and passed to a

decoding (and repairing) procedure, that selects the operations that

appear first for processing on the related machines, and also alters

the sequence of these operations when it is necessary for meeting

the problem constraints [13]. However, in this work, there is no

need for the application of the decoding procedure on the

chromosomes that are constructed during the creation of the initial

population or that result from crossover, this is because these

chromosomes and their solutions (genotypes and their

corresponding phenotype) are constructed together using the G&T

algorithm. Therefore, the decoding procedure is only required for

the mutated individuals.

Start

Initial creation of the population

Selection of two individuals for crossover

Idnetification of their critical operations

Mutation

Population updating & evaluation

No

Evaluation of the population

Stop

condition

Yes

Construction of their inheretince matrices

Application of the CPG-GT crossover

Selection of individuals for mutation

End

Fig. 3. The general methodology of the GA-CPG-GT algorithm.

3.3. Fitness Function

To calculate the survival probability of an individual at the

upcoming generation, a fitness function is utilized to determine

how good the solution represented by an individual is. In this work,

the well-known function suggested by Goldberg [29] is used. It is

defined by the following formula F(x)=CmaxP - Cmax(x), where

CmaxP is the maximum makespan value found in the population

under consideration, and Cmax(x) is the makespan value of the

individual x.

3.4. Reproduction

Offspring are created through the application of crossover and/or

mutation operators. The candidates for the crossover operator are

selected using the roulette wheel method Goldberg [29], in which

individuals are selected randomly with their probability of

selection proportional to their relative fitness in the population.

Thus, fitter individuals have a greater chance to survive and

reproduce than the weaker ones. If the population size is n, the

probability of selection of an individual xj can be calculated by the

following formula.

𝑃(𝑥𝑗) = 𝐹(𝑥𝑗)/ ∑ 𝐹(𝑥𝑖)𝑛
𝑖=1 (1)

The candidates for mutation crossover are the worst ones with a

hope of introducing better traits to them, thereby increasing their

chances of survival.

3.5. The Proposed CPG-GT Crossover Operator

The proposed CPG-GT crossover operator is described in

Algorithm 1. The main difference between it and the classical GA-

GT proposed by Yamada and Nakano [19] is in the (additional)

Step 2 i.e. in the generation of the inheritance matrices. In their

work, for each pair of parents p0 and p1 a binary matrix H of the

size n x m called inheritance matrix is generated randomly with

equal probability of 0 and 1; the purpose of this matrix is to

determine the genetic material exchanged between parents as

follows: Hri = 0 means that the i-th operation on machine r should

be determined by the first parent p0, and Hri = 1 means that it will

be determined by the second parent p1; and by this way, the first

child is produced, while the second child is produced by switching

the roles of p0 and p1 (for an example of the classical GA-GT

please refer to [24]). However, due to the randomness in the

creation of H, the resulting offspring are expected to inherent

random traits of their parents; consequently, this may weaken the

exploitation of search space provided by the crossover operator. In

order to overcome this drawback, in this work, the inheritance

matrix is initialized in the light of the critical path. The basic

assumption is that the critical operations, which are the building

units of any possible critical path, possess

Algorithm 1 (CPG-GT crossover operator)

A scheduling problem represented by the job sequence matrix

{Tjk}, and the processing time matrix {Pjk} as well as two solution

schedules p0 and p1 represented by solution matrices S0 = {S0
rk}

and S1 = {S1
rk} respectively, are given as inputs.

1. Initialize G as a set of operations that are first in the job

sequence; i.e., G = {O1T11, O1T21,…, O1Tn1}. For each operation

O ∈ G, set the earliest starting time ES (O) = 0 and the earliest

completion time EC(O) = p(O).

2. Generate the binary inheritance matrices H for p0, using

Algorithm 2.

3. Find the earliest completable operation (whose earliest

completion time is the smallest) O*r ∈ G as follows. O*r = arg

min {EC(O)| ∈ G} with machine Mr. A subset of G that

consists of operations processed on machine Mr is denoted as

Gr.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(1), 13–18 | 16

4. Calculate the conflict set C[Mr; i] ⊂ Gr as follows. C[Mr; i] =

{Okr ∈ G | ES(Okr) < EC(O*r)}, where i-1 is the number of

operations that are already scheduled on Mr.

5. Select one of the parents {p0, p1} as p according to the value of

Hri, that is, p = pHri and Sp = SHri. For each Ojr ∈ C[Mr; i] with

job number j, there exists an index l such that Srl = j. Let lm be

the smallest index number among them; i.e., lm = min {l | Srl =

j and Ojr ∈ C[Mr; i]} and let k = Srlm. This results in selecting

an operation Okr ∈ C[Mr; i] that has been scheduled in p earliest

among the members of C[Mr; i].

6. Schedule Okr as the i-th operation on Mr; i.e. Sri = k, with its

starting and completion times equal to ES (Okr) and EC(Okr)

respectively: s(Okr) = ES (Okr); c(Okr) = E(COkr).

7. For all Ojr ∈ Gr\{Okr}, update ES (Ojr) as ES (Ojr) = max {ES

(Ojr); EC(Okr)} and EC(Ojr) as EC(Okr) = ES (Okr) + p(Okr).

8. Remove Okr from G (and therefore from Gr), and add operation

Oks that is the next to Okr in the job sequence to G if such Oks

exits; i.e., if r = Tki and i < m, then s = Tki+1 and G = (G\{ Okr

})⋃{ Oks}. Calculate ES (Oks) and EC(Oks) as: ES (Oks) = max

{EC(Okr); EC(PM(Oks)) and EC(Oks) = ES (Oks) + p(Oks)

respectively.

9. Repeat from Step 3 to Step 8 until all operations are scheduled.

10. Output the solution matrix {Srk} as the active schedule obtained

with the set of starting and completion times {s(Ojr)} and

{c(Ojr)} respectively, where j = Srk.

more important traits than the others and should be inherited by the

offspring. Based on this assumption, 50% of them will be

transferred to offspring, while the rest are taken randomly from the

second parent. The generation of the inheritance matrix that

implements this idea is given in Algorithm 2. It can be noted from

Algorithm 2, that unlike the traditional GA-GT crossover operator,

each parent will have its own inheritance matrix. Another

difference between the proposed operator and the GA-GT is that

the proposed one does not integrate the mutation operator in Step

5, and there is an independent procedure for it.

Algorithm 2 (Inheritance matrix generation)

1: Let S=[(s11,s12,…s1n),…(s21,s22,…s2n),…(sm1,sm2,…smn)]

be the first parent.

2: Let ST(Ojr) be the slack time of the operation Ojr.

3: for x=1,n do

4: for y=1,m do

5: j=Sxy; r=x;

6: if (ST(Okr)==0)

7: r = a random value in the range [0, 1];

8: if (r <= 50) Hij=1;

9: else Hij=0;

10: else H0
ij=0;

11: end for

12: end for

3.6. Mutation

Mutation is the process of randomly changing the values of genes

in a chromosome. The main objective of it is to introduce new

genetic materials into some individuals in the population, thereby

promote the exploration of search space and avoid the premature

convergence [25]. The classical mutation operators include

inversion, insertion, and swap [30]. In this study, the inversion

operator is adopted. This operator acts as follows. It selects two

genes randomly and then inverts the substring that exists between

these two genes. Since the mutated chromosomes may represent

infeasible individuals, their associated solutions are generated by

the decoding procedure discussed in Section 3.2.

3.7. Replacement Strategy and Stop Condition

A steady-state generation replacement method with elitist strategy

[29] is adopted. An old generation is not entirely replaced by the

new one; the best individual is copied to the next generation

without any changes. The stop condition is either the best known

solution has been reached, or the maximum number of generations

has been elapsed.

4. Computational Results

The algorithm was implemented in C++, and the tests were run on

a PC with 3.40 GHz Intel(R) Core (TM) i7-3770 CPU and 8.00

GB. The parameters were tuned through a number of experiments;

as a result, they were fixed as follows: the population size 100, the

maximum number of generations 1000, t crossover probability 0.8,

and mutation probability 0.05.

In order to validate the effectiveness of the proposed algorithm, it

was tested on 55 instances from four classes of standard JSSP

benchmark instances: Fisher and Thompson [31] instances ft06,

ft10, ft20; Lawrence [32] instances la01–la40; Applegate and

Cook [33] instances orb01–orb09; and two of Adams et al. [2]

instances denoted as ABZ5 and ABZ6.

GA-CPG-GT was compared with another version of it that is

identical to it, but uses a random initialization of the inheritance

matrix with equal probability of 0 and 1 (as proposed by Yamada

and Nakano [19]), and also compared with other 5 similar works

found in the literature: an agent-based parallel genetic algorithm

PaGA [34], ant colony optimization with parameterized search

space (ACO-PA) [35], multiple independent particle swarms

algorithm JSP/PSO [36], hybrid parallel micro genetic algorithm

(HPGA) models [16], and modified clonal selection algorithm

(CSA) [9]. The best makespan obtained by the proposed algorithm

from 10 independent runs was used as a criterion of the

performance.

Table 2 summarizes the experimental results on the 55 instances,

it lists problem name, problem size (number of jobs × number of

machines), the best known solution (BKS); and the best solution

(BS) obtained by each of the compared algorithms.

From Table 2, it can be seen that GA-CPG-GT is able of reaching

equal or better results than the compared works on almost the

whole set of instances; however, to make a precise comparison, the

relative deviation of the best solution was calculated using the

following formula.

BS-RD = 100 × (BS-BKS)/BKS (2)

The average value of BS-RD, denoted as BS-ARD, was also

calculated for each algorithm over its instances. Table 3 shows the

number of instances solved (NIS), BS-ARD values for GA-CPG-

GT and the other algorithms (OA), the relative improvement

achieved by GA-CPG-GT in BS-ARD values with respect to each

of the other algorithms. From Table 3 and Fig. 4, it can be noticed

that GA-CPG-GT yields remarkably significant relative

improvement to all of the other compared algorithms.

In comparison with the classical GA-R-GT that identical to GA-

CPG-GT but adopts random exchange of genetic materials, the

relative improvement is 53%, which validates the assumptions

made about the proposed selective exchange of genetic materials

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(1), 13–18 | 17

in promoting the exploitation of the search space. From the other

hand, it can be seen that GA-CPG-GT could outperform all of the

other compared works in terms of solution quality; the

improvement made by it reaches up to 96% when it is compared

with ACO-PA, which means that the proposed algorithm can be

considered as an effective approach for solving JSSP.

Table 2. Comparison of GA-CPG-GT with the other algorithms.

Name Size BKS BS BS BS BS BS BS BS

ft06 6x6 55 55 55 55 - - 57 55

ft10 10x10 930 935 969 997 931 - 956 1034

ft20 20x5 1165 1180 1199 1196 1165 - 1180 -

orb01 10x10 1059 1084 1087 1149 1085 - - -

orb02 10x10 888 890 906 929 - - - -

orb03 10x10 1005 1037 1109 1129 - - - -

orb04 10x10 1005 1028 1066 1062 1054 - - -

orb05 10x10 887 894 903 936 - - - -

orb06 10x10 1010 1035 1063 1060 - - - -

orb07 10x10 397 404 407 416 - - - -

orb08 10x10 899 937 926 1010 - - - -

orb09 10x10 934 943 944 994 - - - -

orb10 10x10 944 967 987 - - - - -

abz5 10x10 1234 1238 1280 - - - - 1270

abz6 10x10 943 947 975 - - - - 943

la01 10x5 666 666 666 666 - 666 666 666

la02 10x5 655 655 667 655 680 665 668 655

la03 10x5 597 597 626 617 - 609 606 597

la04 10x5 590 590 595 607 - 597 611 590

la05 10x5 593 593 593 593 - 593 593 593

la06 15x5 926 926 926 926 - 926 926 -

la07 15x5 890 890 890 890 - 890 890 -

la08 15x5 863 863 863 863 - 863 863 -

la09 15x5 951 951 951 951 - 951 951 -

la10 15x5 958 958 958 958 - 958 958 -

la11 20x5 1222 1222 1222 1222 - 1222 1222 -

la12 20x5 1039 1039 1039 1039 - 1039 1039 -

la13 20x5 1150 1150 1150 1150 - 1150 1150 -

la14 20x5 1292 1292 1292 1292 - 1292 1292 -

la15 20x5 1207 1207 1207 1207 - 1251 1207 -

la16 10x10 945 946 979 994 947 995 988 1024

la17 10x10 784 784 804 793 - 786 792 -

la18 10x10 848 848 865 860 - 848 860 -

la19 10x10 842 842 876 873 - 856 875 -

la20 10x10 902 907 911 912 - 930 938 -

la21 15x10 1046 1090 1136 1146 1067 - 1082 -

la22 15x10 927 954 1003 1007 - - 977 -

la23 15x10 1032 1032 1044 1033 - - 1032 -

la24 15x10 935 974 983 1012 - - 975 -

la25 15x10 977 999 1029 1067 - - 1013 -

la26 20x10 1218 1237 1303 1323 - - 1237 -

la27 20x10 1235 1313 1314 1359 - - 1290 -

la28 20x10 1216 1280 1291 1369 - - 1251 -

la29 20x10 1152 1247 1301 1322 1154 - 1247 -

la30 20x10 1355 1367 1393 1437 - - 1355 -

la31 30x10 1784 1784 1784 1844 1906 - 1784 -

la32 30x10 1850 1850 1850 1907 - - 1850 -

la33 30x10 1719 1719 1722 - - - 1719 -

la34 30x10 1721 1725 1766 - - - 1748 -

la35 30x10 1888 1888 1888 - - - 1888 -

la36 15x15 1268 1308 1361 - 1308 - 1332 -

la37 15x15 1397 1489 1485 - - - 1468 -

la38 15x15 1196 1275 1294 - - - 1280 -

la39 15x15 1233 1290 1327 - - - 1267 -

la40 15x15 1222 1252 1304 - - - 1286 -

MCSAMPSOProblem
GA-R-

GT

ACO-

PA
HPGAPaGA

GA-CPG-

GT

Table 3. Relative improvements from GA-CPG-GT to the other works.

Algorithm NIS

OA (%) GA-CPG-GT (%) GA-CPG-GT (%)

GA-R-GT 55 3,22 1,52 53

PaGA 44 4,27 1,29 70

HPGA 10 2,36 2,22 6

 ACO-PA 20 0,93 0,03 96

MPSO 43 2,10 1,44 31

MCSA 10 2,25 0,14 94

BS-ARD
BS-ARDRI

0

20

40

60

80

100

GA-R-GT PaGA HPGA ACO-PA MPSO MCSA

Series4
BS-ARDRI

Fig. 4. Visualization of the relative improvements.

5. Conclusion and Further Works

Given the fact that an important feature of any uniform crossover

is to enable the inheritance of important genetic materials (traits)

from parent to their offspring, this study aims to study the impacts

of selecting the genetic materials exchanged during crossover in

the light of the domain specific information that exists in the

critical path instead of selecting them randomly. The proposed

algorithm has been tested on 55 benchmark instances, with the

proposed selective exchange, and without it using the random

exchange, and also compared with other 5 similar algorithms found

in the literature. The experimental results validate the assumptions

made about the proposed selective exchange of genetic materials

in promoting the exploitation of the search space, and show the

superiority of the proposed algorithm over the other compared

works in terms of solution quality.

The basic idea proposed for the identification of the genes that hold

the most important traits is a promising area of research, and it is

worthy of further investigation on other combinatorial

optimization problems since it yields significant improvements

when applied on JSSP, which is one of the most difficult

combinatorial optimization problems. Furthermore, the proposed

approach is effective, simple to understand, and easy to implement;

and these characteristics are sometimes welcome in real

applications, especially industrial applications.

References

[1] J. Carlier, E. Pinson, “An algorithm for solving the job-shop

problem”, Manag Sci, vol. 35, no. 2, pp. 164-176, 1989.

https://doi.org/10.1287/mnsc.35.2.164

[2] J. Adams, E. Balas, D. Zawack, “The shifting bottleneck procedure
for job shop scheduling”, Manag Sci, vol. 34, no. 3, pp. 391-401,

1988. https://doi.org/10.1287/mnsc.34.3.391

[3] J.H. Blackstone, D.T. Phillips, G.L. Hogg, “A state-of-the-art survey
of dispatching rules for manufacturing job shop operations”, Int J

Prod Res, vol. 20, no. 1, pp. 27-45, 1982.

https://doi.org/10.1080/00207548208947745

[4] T. Satake, K. Morikawa, K. Takahashi, N. Nakamura, “ Simulated

annealing approach for minimizing the makespan of the general job-

shop”,Int J Prod Econ, pp. 60–61, pp. 515-522, 1999.
https://doi.org/10.1016/S0925-5273(98)00171-6

[5] E. Nowicki, C. Smutnicki, “An advanced tabu search algorithm for

the job shop problem”, J Sched, vol. 8, no. 2, pp. 145-159, 2005.
https://doi.org/10.1007/s10951-005-6364-5

[6] N. Fığlalı, C. Özkale, O. Engin, A. Fığlalı, “Investigation of ant

system parameter interactions by using design of experiments for
job-shop scheduling problems”, Comput Ind Eng, vol. 56, no. 2, pp.

538-559, 2009. https://doi.org/10.1016/j.cie.2007.06.001

[7] L. Asadzadeh, “A parallel artificial bee colony algorithm for the job
shop scheduling problem with a dynamic migration strategy”,

Comput Ind Eng, vol 102, pp. 359-367, 2016.

https://doi.org/10.1016/j.cie.2016.06.025

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(1), 13–18 | 18

[8] K. &. R. C. Rameshkumar, “A novel discrete PSO algorithm for

solving job shop scheduling problem to minimize makespan”. In
IOP Conference Series: Materials Science and Engineering, vol.

310, no. IOP Publishing, 2018. https://doi.org/10.1088/1757-

899X/310/1/012143

[9] Atay, Y., & Kodaz, H. “Optimization of job shop scheduling

problems using modified clonal selection algorithm”. Turk J Elec

Eng & Comp Sci, vol. 22, no. 6, pp. 1528-1539, 2014.
https://doi.org/10.3906/elk-1212-26

[10] Dao, T. K., Pan, T. S., & Pan, J. S.“Parallel bat algorithm for

optimizing makespan in job shop scheduling problems”, J Intell
Manuf, vol. 29, no. 2, pp. 451-462, 2018.

https://doi.org/10.1007/s10845-015-1121-x

[11] G. Zobolas, C. Tarantilis, G. Ioannou, “Exact, heuristic and meta-
heuristic algorithms for solving job shop scheduling problems”, F.

Xhafa, A. Abraham (Eds.), Metaheuristics for scheduling in

industrial and manufacturing applications, Springer, Berlin (2008),
pp. 1-40. https://doi.org/10.1007/978-3-540-78985-7_1

[12] A.S. Jain, S. Meeran, “Deterministic job-shop scheduling: past,

present and future”, Eur J Oper Res, vol. 113, no. 2, pp. 390-434,
1999. https://doi.org/10.1016/S0377-2217(98)00113-1

[13] R. Cheng, M. Gen, Y. Tsujimura A tutorial survey of job-shop

scheduling problems using genetic algorithms—I. Representation
Comput Ind Eng, vol. 30, no. 4, pp. 983-997, 1996.

https://doi.org/10.1016/0360-8352(96)00047-2

[14] M. Watanabe, K. Ida, M. Gen, "A genetic algorithm with modified
crossover operator and search area adaptation for the job-shop

scheduling problem", Comput Ind Eng, vol. 48, no. 4, pp. 743-752,

2005 https://doi.org/10.1016/j.cie.2004.12.008

[15] M. Kurdi, “A new hybrid island model genetic algorithm for job

shop scheduling problem”, Comput Ind Eng, vol. 88, 273-28, 2015.

https://doi.org/10.1016/j.cie.2015.07.015

[16] R. Yusof, M. Khalid, G.T. Hui, S. Md Yusof, M.F. Othman,

“Solving job shop scheduling problem using a hybrid parallel micro

genetic algorithm”, Appl Soft Comput, vol. 11, no. 8, pp. 5782-
5792, 2011. https://doi.org/10.1016/j.asoc.2011.01.046

[17] M. Kurdi, ”An effective new island model genetic algorithm for job

shop scheduling problem”, Comput Oper Res, vol. 67, pp. 132-142,
2016. https://doi.org/10.1016/j.cor.2015.10.005

[18] R. Cheng, M. Gen, Y. Tsujimura, "A tutorial survey of job-shop
scheduling problems using genetic algorithms, Part II: Hybrid

genetic search strategies", Comput Ind Eng, vol. 36, no. 2, pp. 343-

364,1999. https://doi.org/10.1016/S0360-8352(99)00136-9

[19] T .Yamada, R. Nakano, “A genetic algorithm applicable to large-

scale job-shop problems”. In Proc. the 2nd international workshop

on parallel problem solving from nature, Brussels, Belgium, 1992,
pp. 281–290.

[20] H. P. Lee, S. Salim, “A modified Giffler and Thompson genetic

algorithm on the job shop scheduling problem”, MATEMATIKA,
2006, vol. 22, no. 2, pp. 91-107, 2006.

https://doi.org/10.11113/matematika.v22.n.178

[21] M. Moonen, G. Janssens, “A Giffler-Thompson Focused Genetic
Algorithm for the Static Job-Shop Scheduling Problem”, Journal of

Information and Computational Science, vol. 4, no. 2, pp. 629-642,

2007. http://hdl.handle.net/1942/10029

[22] F .Werner, ” A survey of genetic algorithms for shop scheduling

problems,. P. Siarry: Heuristics: Theory and Applications, Nova

Science Publishers, (2013), pp. 161-222.

[23] M. Kurdi, “An improved island model memetic algorithm with a

new cooperation phase for multi-objective job shop scheduling

problem”, Comput Ind Eng, vol. 111, pp.183-201, 2007.
https://doi.org/10.1016/j.cie.2017.07.021

[24] T. Yamada, “Studies on metaheuristics for jobshop and flowshop

scheduling problems”, doctoral dissertation, Kyoto University,
Japan, 2003.

[25] A.P. Engelbrecht, “ Computational intelligence: an introduction

(Second Edition)”, John Wiley & Sons, West Sussex, England,
2007.

[26] A. Hertz, D. Kobler, “A framework for the description of

evolutionary algorithms”, Eur J Oper Res, vol. 126, no. 1, pp. 1-12,
2000. https://doi.org/10.1016/S0377-2217(99)00435-X

[27] L. Gao,G. Zhang, L. Zhang, , X. Li, "An efficient memetic

algorithm for solving the job shop scheduling problem", Comput Ind
Eng, vol. 60, no. 4, pp. 699-705, 2011.

https://doi.org/10.1016/j.cie.2011.01.003

[28] L. Davis, “Job shop scheduling with genetic algorithms”, In Proc.
An international conference on genetic algorithms and their

applications, Carnegie-Mellon University, Pittsburgh, PA, USA,

1985, pp. 136-140

[29] D. Goldberg, “Genetic algorithms in search, optimization and

machine learning”, Addison-Wesley, MA, 1989.

[30] M. Gen, R. Cheng, “Genetic algorithms and engineering design,
John Wiley & Sons, New York, 1997.

[31] H. Fisher, G.L. Thompson,” Probabilistic learning combinations of

local job-shop scheduling rules”, J. Muth, G. Thompson (Eds.),
Industrial scheduling, Prentice-Hall, Englewood Cliffs, NJ, 1963,

pp. 225-251.

[32] S. Lawrence, “Resource constrained project scheduling: an
experimental investigation of heuristic scheduling techniques“

(supplement), Graduate School of Industrial Administration,

Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1984.

[33] D. Applegate, W. Cook, “A computational study of the job shop

scheduling problem”, ORSA J Comput, vol. 3, no. 2, pp. 149-156,

1991. https://doi.org/10.1287/ijoc.3.2.149

[34] L. Asadzadeh, K. Zamanifar, “ An agent-based parallel approach for

the job shop scheduling problem”, Math Comput Model, vol. 52, no.

(11–12), pp.1957-1965,2010.
https://doi.org/10.1016/j.mcm.2010.04.019

[35] M. Seo, D. Kim, “Ant colony optimisation with parameterised

search space for the job shop scheduling problem”, Int J Prod Res,
vol. 48, no. 4, pp. 1143-1154, 2010.

https://doi.org/10.1080/00207540802538021

[36] G.G. Yen, B. Ivers, “Job shop scheduling optimization through
multiple independent particle swarms”, Int J Intell Comput Cybern,

vol. 2, no. 1, pp. 5-33, 2009.

https://doi.org/10.1108/17563780910939237

