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Abstract: Increasing scale and complexity of cyber attacks have surpassed the efficacy of traditional Intrusion 

Detection Systems (IDS), which cannot keep track of new and developing attack modes in real time. To address 

these limitations, this work proposes a deep learning focused framework for AI-facilitated threat detection in 

network environments. The aim is to enhance the effectiveness of real-time IDS using a hybrid approach that 

entails combining Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) networks. 

CNN is utilized to detect spatial characteristics in traffic flows and LSTM to detect temporal activities such that 

accurate classification of advanced cyberattacks is achieved. The model proposed is trained and tested over two 

benchmarking datasets, CICIDS2017 and NSL-KDD, under strict preprocessing and feature selection. It is 

quantitatively evaluated in terms of common metrics Accuracy, Precision, Recall, F1-score, and AUC-ROC. 

The model achieves 99.1% accuracy on the CICIDS2017 and 98.7% accuracy on the NSL-KDD datasets and 

outperforms baseline deep learning and machine learning models. This work demonstrates that the combination 

of spatial and temporal analysis significantly improves detection with low false positives and inference latency. 

The proposed model provides a scalable, intelligent, and real-time threat detection approach suitable for 

application in modern cybersecurity systems. 

 

Keywords: Deep Learning, Intrusion Detection Systems, Cybersecurity, Real-Time Threat Detection , Neural 

Networks, AI-Augmented Security 

 

1. Introduction 

The recent exponential rise in internet usage, the 

expanded usage of networked devices, and the 

heightened dependency on computerized systems 

have broadened the landscape of threats in 

contemporary cyberspace by leaps and bounds. 

Today’s international environment is confronted 

with a steady flow of cybersecurity events, ranging 

from nation-state-sponsored cyber espionage 

operations to opportunistic ransomware intrusions 

that threaten information confidentiality, integrity, 

and availability. As documented in an IBM 

Security study published in 2024, the average cost 

of a data breach worldwide has now exceeded 

$4.45 million, representing economic losses and 

strategic risks to organizations’ digital resilience. 

As organizations continue to embrace sophisticated 

cloud-based and edge computing paradigms, 

conventional perimeter-based security approaches 

have been found inadequate, thus calling for more 

advanced, agile, and intelligent security controls 

(Kimanzi et al., 2024). One of the most important 

elements of modern network security is the 

Intrusion Detection System (IDS), which monitors 

and analyzes network or system activity for any 

suspicious activity or deviations from established 

policies. Traditionally, IDS technologies have been 

described as signature-based or heuristic-based 

(also known as anomaly-based) systems. 

Signature-based IDSs function by comparing 

observed activity to a pre-established set of 

recognized attack signatures. Although this method 

provides high accuracy for detecting known threats, 

it is ineffective for detecting new or zero-day 

attacks that do not rely on established patterns 

(Moustafa & Slay, 2015). In contrast, 

heuristic-based systems attempt to identify 

suspicious behavior using handcrafted rules or 

statistical thresholds. These systems suffer from 

high false-positive rates and often lack the 

contextual intelligence necessary to distinguish 
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benign anomalies from true intrusions (Sharafaldin, 

Lashkari, & Ghorbani, 2018). 

The limitations of these conventional approaches 

have motivated a shift toward artificial intelligence 

(AI)-augmented, data-driven intrusion detection 

frameworks. The adoption of machine learning 

(ML) techniques has enabled automated inference 

from data and adaptation to evolving threat patterns. 

However, most ML algorithms, including Support 

Vector Machines (SVM), k-Nearest Neighbors 

(KNN), and Random Forest, require substantial 

feature engineering, do not scale well with 

high-dimensional data, and struggle to model the 

complex, nonlinear behaviors of modern network 

traffic (Pansari, Srivastava, & Agarwal, 2024). 

These limitations have encouraged the adoption of 

deep learning (DL) models for cybersecurity 

solutions, particularly in the design of modern IDS 

frameworks (Pareek & Arora, 2020). Deep learning 

architectures such as Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks 

(RNNs), particularly Long Short-Term Memory 

(LSTM) networks, have demonstrated remarkable 

success in image recognition, language modeling, 

and time-series prediction (Marzano & Lubkina, 

2017). Within the IDS domain, CNNs are 

leveraged to automatically extract spatial features 

from network traffic data, while LSTMs specialize 

in capturing temporal dependencies, which are 

essential for detecting sequential attack patterns 

(Konur et al., 2015). Despite their individual 

strengths, standalone CNN or LSTM models often 

lack the global contextual understanding needed for 

accurate classification in real-time, especially in 

high-volume and class-imbalanced environments 

(Sinha et al., 2025). 

Moreover, a considerable gap remains between 

theoretical research and real-world implementation 

of AI-powered IDS. Many published studies 

evaluate models under controlled conditions using 

benchmark datasets but neglect practical 

considerations such as inference time, latency, 

model complexity, and scalability (Mortazavi, 

Moradi, & Vahabie, 2024). Additionally, 

accuracy—frequently cited as the sole performance 

metric—can be misleading, particularly when 

intrusion detection datasets are imbalanced, with 

benign traffic vastly outnumbering malicious 

samples (Lv & Ding, 2024). 

To address these limitations, this study proposes a 

hybrid deep learning model that integrates CNN 

and LSTM architectures for real-time intrusion 

detection. The model utilizes CNN layers to 

capture spatial relationships in packet-level data 

and LSTM layers to identify sequential patterns 

over time. In contrast to prior approaches focused 

narrowly on accuracy, the proposed method 

evaluates performance using a comprehensive suite 

of metrics, including Precision, Recall, F1-score, 

Area Under the Receiver Operating Characteristic 

Curve (AUC-ROC), and inference time (Qazi, 

Faheem, & Zia, 2023). For training and validation, 

two widely accepted benchmark datasets are 

employed: NSL-KDD, an enhanced version of the 

KDD CUP 1999 dataset that removes redundancy 

and bias (Tavallaee et al., 2009), and CICIDS2017, 

which reflects contemporary attack patterns, 

including Botnet, DDoS, Brute Force, and Web 

attacks within enterprise traffic settings 

(Sharafaldin et al., 2018). The use of both datasets 

ensures backward compatibility with earlier IDS 

models and relevance to modern network 

infrastructures. 

Finally, the growing importance of edge computing 

and decentralized architectures in intrusion 

detection has led to explorations of transfer 

learning and federated learning frameworks. These 

solutions promise improved detection on 

imbalanced traffic and enhanced privacy in 

distributed environments (Ullah et al., 2024; Unal 

et al., 2021). 

To support interpretability and comparative 

analysis, the study includes rich visualizations, 

such as: 

❖ Radar charts to present a multi-metric 

comparison of CNN, LSTM, 

CNN-LSTM, and traditional ML 

baselines (e.g., SVM, Random Forest); 

❖ Pie charts to illustrate the distribution of 

attack categories in each dataset and 

analyze class imbalance; 

❖ ROC curves and confusion matrices to 

visualize classification boundaries and 

detection errors; 

❖ Bar charts showing feature importance 

and performance under different 

hyperparameter configurations. 

Objectives and Research Questions 

The primary objectives of this research are as 

follows: 

❖ To design and implement a CNN-LSTM 

hybrid model capable of detecting 

intrusions in real time with high 

precision and low latency. 



International Journal of Intelligent Systems and Applications in Engineering             IJISAE, 2025, 13(1), 539–556 |  541 

❖ To benchmark the model against 

classical machine learning algorithms 

and standalone deep learning models 

across multiple datasets. 

❖ To analyze the model’s performance 

using comprehensive evaluation metrics 

that reflect practical deployment 

requirements. 

❖ To provide visual tools and explainable 

outputs that enhance the interpretability 

and transparency of AI-based threat 

detection. 

These objectives guide the investigation of the 

following research questions: 

❖ How does the proposed CNN-LSTM 

model detect different types of 

cyberattacks compared to traditional and 

standalone DL models? 

❖ Can this hybrid approach generalize 

effectively across datasets with different 

structures and attack distributions? 

❖ What are the implications of model 

inference time and computational 

complexity in real-time deployment 

scenarios? 

Key Contributions 

This paper makes the following contributions to the 

field of cybersecurity and intelligent threat 

detection: 

❖ Novel hybrid architecture: Developing 

a CNN-LSTM model that integrates 

spatial and temporal learning for 

enhanced intrusion detection capabilities. 

❖ Cross-dataset validation: Evaluation 

using NSL-KDD and CICIDS2017 

datasets to ensure robustness, diversity, 

and generalizability. 

❖ Comprehensive evaluation framework: 

Inclusion of diverse metrics (Accuracy, 

Precision, Recall, F1-score, AUC, and 

Latency) and visual tools (Radar, Pie, 

and ROC charts) for a well-rounded 

performance assessment. 

❖ Real-time applicability focus: 

Emphasis on practical deployment issues 

such as inference speed, model 

complexity, and real-world traffic 

conditions. 

By bridging the gap between deep learning 

research and the operational requirements of 

modern cybersecurity systems, this study 

contributes to the advancement of intelligent, 

scalable, and resilient IDS architectures capable of 

defending against the evolving spectrum of cyber 

threats. 

 

2. Literature Review 

2.1 Classification of Intrusion Detection Systems 

(IDS) 

Intrusion detection systems (IDS) can be 

categorized into two primary dimensions: 

deployment level and detection methodology. 

❖ Deployment: 

◼ Network-based IDS (NIDS) 

analyze packets traversing entire 

network segments or endpoints, 

enabling the detection of 

anomalous traffic on the wire 

(Buczak & Guven (2015)). 

◼ Host-based IDS (HIDS) reside on 

individual machines, monitoring 

system logs, file changes, and user 

activity to identify suspicious 

behaviour (Denning, 1987). 

❖ Detection Method: 

◼ Signature-based IDS detect threats 

using predefined patterns or 

signatures of known 

attacks—offering high precision for 

known threats but failing to identify 

novel attacks (Sabahi & Movaghar, 

2008). 

◼ Anomaly-based IDS establish a 

model of normal behaviour, 

flagging deviations. They can 

identify unknown attacks but often 

yield higher false positives and 

demand extensive training 

(Denning, 1987; Buczak & Guven 

(2015)). 

2.2 Machine Learning in IDS 

Traditional machine learning (ML) methods have 

been widely employed to detect intrusions: 

❖ Support Vector Machines (SVM), 

Random Forests (RF), K‑Nearest 

Neighbors (KNN), and Decision Trees 

(DTs) have demonstrated strong 

performance on benchmark datasets such 

as KDD’99, NSL-KDD, UNSW-NB15, 

and CICIDS2017 (Vuong et al., 2022; 

Buczak & Guven (2015)). 

❖ Ingre et al. (2017) employed Decision 

Trees with filter-based feature selection 

on NSL-KDD, achieving 99.67% 
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detection accuracy for DDoS attacks 

using just 13 features (Vuong et al., 

2022). 

❖ Alazzam et al. (2020) combined a 

Pigeon-Inspired Optimizer with Decision 

Trees over multiple datasets, attaining 

94.7% accuracy on KDD’99 and 86.9% 

on NSL-KDD (Vuong et al., 2022). 

(Khan, 2021) compared RF, XGBoost, Bagging, 

DT, and KNN on UNSW-NB15; RF achieved 

74.87%, XGBoost 71.43%, and DT had the lowest 

prediction time (Vuong et al., 2022). 

❖ Quantum-inspired LS‑SVM models with 

exhaustive feature selection have 

recently yielded up to 99.5% accuracy 

on KDD‑99/NSL-KDD/CICIDS2017 

while maintaining low latency 

(Waghmode et al., 2025). 

Despite their interpretability and speed, ML models 

struggle with high-dimensional or temporal data, 

often requiring costly feature engineering and 

lacking robustness against evolving threats. 

2.3 Deep Learning Approaches 

Deep learning (DL) models offer enhanced 

capabilities for complex IDS tasks: 

Deep Neural Networks (DNNs), Convolutional 

Neural Networks (CNNs), Long Short-Term 

Memory (LSTM) networks, and Autoencoders 

(AEs) can capture nonlinear and hierarchical 

patterns in network traffic (Said et al. (2023); 

Sabahi & Movaghar, 2008). 

❖ A stacked autoencoder combined with 

CNNs and LSTM (an MSCNN‑LSTM 

autoencoder) outperformed traditional 

unsupervised methods on NSL-KDD, 

UNSW-NB15, and CICDDoS2019  

❖ CNNs effectively capture spatial 

characteristics of traffic features, e.g., 

packet headers, while LSTMs model 

sequential dependencies (Elsayed et al., 

2021; Gueriani, 2024). 

❖ Hybrid CNN-LSTM models achieved 

accuracy rates exceeding 99.5% on 

CICIDS2017 combining spatial learning 

with temporal context (Gueriani et al., 

2024; Altunay & Albayrak (2023)). 

❖ However, complex DL architectures 

often face high computational costs and 

latency, limiting real-time deployment. 

 

2.4 Importance of Real-time, Low-Latency IDS 

Real-time detection with low latency is a key 

requirement for modern IDS: 

❖ Studies demonstrate that optimized 

CNN–LSTM models can detect threats 

with inference times in the 2–5 

milliseconds range, making them 

practical for high-throughput 

environments (Gueriani, 2024; 

Waghmode et al., 2025). 

Lightweight CNN-BiLSTM models tailored for IoT 

edge devices achieved 97.3% accuracy while 

maintaining low complexity (Jouhari et al., 2024). 

❖ Efficient architecture designs, feature 

selection techniques, and model 

compression are essential to balancing 

accuracy and speed (Gueriani et al., 

2024). 

2.5 Justification for CNN‑LSTM Hybrid Models 

Hybrid architectures that merge CNN and LSTM 

modules provide several advantages: 

❖ Comprehensive Feature Learning: 

CNN captures spatial correlations; 

LSTM encodes temporal patterns 

(Elsayed et al., 2021; Altunay & 

Albayrak (2023)). 

❖ High Accuracy: Hybrid models 

regularly exceed 99% detection accuracy 

and robust performance across multiple 

datasets (Gueriani et al., 2024; 

Waghmode et al., 2025). 

❖ Real-Time Compression: Properly 

optimized hybrids achieve low inference 

latency suitable for live traffic conditions 

(Gueriani, 2024; Jouhari et al., 2024). 

❖ Given these benefits and recent 

experimental evidence, CNN‑LSTM 

hybrids are well-suited for deployment 

in real-time IDS scenarios. 

2.6 Limitations in Existing Approaches 

Prominent challenges that still affect IDS research 

include: 

High false-positive rates in anomaly detection 

necessitate manual tuning (Sabahi & Movaghar, 

2008). 

Hardware constraints: Complex models often 

cannot be deployed on edge or IoT devices due to 

memory and computation limits Jouhari et al., 

2024). 

Feature dependency and robustness: Reliance on 

handcrafted features can make systems vulnerable 

to adversarial perturbations (Buczak & Guven 

(2015)). 
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Poor generalization: Models trained on one 

dataset often fail to perform on another without 

extensive retraining (Buczak & Guven (2015); 

Waghmode et al., 2025). 

 

Table 1: Summary of Recent Studies 

Study (Year) Model Dataset(s) Accuracy (%) 

Guerlain et al. (2024) CNN‑LSTM CICIoT2023, CICIDS2017 98.42 

Waghmode et al., 2025 LS‑SVM NSL‑KDD, CICIDS2017, 

UNSW‑NB15 

99.5 

Jouhari et al., 2024 CNN‑BiLSTM (lightweight) UNSW‑NB15 97.3 

Elsayed et al. (2021) CNN‑BiLSTM Smart‑Home IoT ~99 

Ingre et al. (2017) Decision Tree + Feature 

Selection 

NSL‑KDD 99.7 (DDoS) 

Alazzam et al. (2020) DT + PIO KDD'99, NSL‑KDD 94.7–96.0 

(Khan, 2021) RF, XGBoost, DT, KNN, 

Bagging 

UNSW‑NB15 71–75 

 

3. Methodology 

To develop an AI-augmented real-time intrusion 

detection system (IDS), we adopted a 

comprehensive methodological framework that 

integrates benchmark cybersecurity datasets, 

rigorous data preprocessing, advanced feature 

engineering, and deep learning model design using 

hybrid convolutional and recurrent architectures. 

The following subsections describe each 

methodological component in detail. 

3.1 Datasets Used 

3.1.1 CICIDS2017 

The Canadian Institute for Cybersecurity Intrusion 

Detection System 2017 (CICIDS2017) dataset is a 

widely accepted benchmark in intrusion detection 

research. It replicates real-world traffic scenarios 

using the CICFlowMeter tool to extract 

bidirectional flows. The dataset includes benign 

and a broad range of attack behaviours such as 

Distributed Denial-of-Service (DDoS), brute-force 

SSH/HTTP, Heartbleed, infiltration, and botnet 

traffic. All data were collected over five days in a 

controlled environment, ensuring high fidelity to 

operational network traffic patterns (Sharafaldin et 

al., 2018). CICIDS2017 comprises over 80 

extracted features, including flow duration, 

protocol type, source and destination byte rates, 

packet length statistics, flag counts, and various 

TCP/IP-level attributes. These are essential for 

distinguishing subtle traffic anomalies from normal 

behaviours. 

3.1.2 NSL-KDD 

NSL-KDD is an improved and filtered version of 

the older KDD’99 dataset, which has long been 

criticized for its high redundancy and skewed 

distribution. NSL-KDD resolves many of these 

issues by eliminating duplicate records and 

balancing the number of attack types (Tavallaee et 

al., 2009). The dataset includes four primary attack 

classes: Denial of Service (DoS), Probe, Remote to 

Local (R2L), and User to Root (U2R). Each 

instance contains 41 features, including basic 

connection attributes, content attributes, and traffic 

features. 

While NSL-KDD is less complex than CICIDS 

2017, its structured and simplified format remains 

valuable for benchmarking lightweight models. 

3.1.3 Preprocessing Steps 

Both datasets underwent extensive preprocessing 

before being fed into the deep learning models: 

❖ Missing Value Handling: No null 

values were observed in either dataset; 

however, constant features were dropped 

to reduce noise. 

❖ Normalization: Continuous features 

were normalized using Min-Max scaling 

to a range between 0 and 1, ensuring that 

features with large numeric ranges do 

not dominate during training. 

❖ Categorical Encoding: Symbolic 

features such as `protocol_type`, 

`service`, and `flag` were label encoded 

followed by one-hot encoding to retain 

semantic distinctions without imposing 

ordinal relationships. 

❖ Class Label Mapping: The attack labels 

were mapped to five macro classes (e.g., 

Normal, DoS, Probe, R2L, U2R) to 

reduce output complexity and address 

class imbalance. 

3.2 Feature Engineering 
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Practical feature engineering is critical to 

enhancing model accuracy and generalizability in 

intrusion detection. We employed correlation-based 

filtering and dimensionality reduction to refine the 

input feature space. 

3.2.1 Correlation-Based Feature Selection 

We first computed the Pearson correlation 

coefficient matrix to identify highly correlated 

features. Redundant features with correlation 

coefficients above ±0.90 were removed to prevent 

multicollinearity, impairing deep learning 

convergence and increasing overfitting risk (Guyon 

& Elisseeff, 2003). 

Additionally, features with low correlation to the 

target label (intrusion class) were considered less 

informative and excluded. This process retained 

approximately 25 features from each dataset that 

exhibited high variance and predictive capacity. 

 
 

Figure 1: A bar chart showing the top 10 features by correlation-based importance is included below 

3.2.2 Dimensionality Reduction  

We experimented with Principal Component 

Analysis (PCA) and autoencoder-based latent 

representation techniques to explore further 

compression. While PCA allowed for visualizing 

variance distributions, the nonlinear nature of 

network attacks made autoencoders a better fit for 

unsupervised compression. However, we retained 

the original top features rather than latent vectors 

for model transparency and interpretability. 

3.2.3 Feature Importance Visualization 

As shown in Figure 1, a bar chart was generated to 

visualize the relative importance of the top 10 

features based on correlation scores. As the chart 

shows, `duration`, `src_bytes`, `dst_bytes`, and 

`wrong_fragment` ranked among the most 

informative indicators of attack behaviour. 

3.3 Model Architecture 

We designed three core deep-learning models for 

evaluation: 

❖ A Convolutional Neural Network 

(CNN) 

❖ A Long Short-Term Memory (LSTM) 

Network 

❖ A CNN-LSTM hybrid that combines 

spatial and temporal learning 

3.3.1 CNN Architecture 

CNNs are highly effective in extracting local 

spatial hierarchies in input vectors. Each input 

feature sequence is reshaped into a 2D grid, 

enabling the use of 1D convolutional layers. Our 

CNN architecture consists of the following: 

❖ Input layer (reshaped) 

❖ Two 1D convolutional layers with ReLU 

activations 

❖ Max-pooling layer 

❖ Flattening layer 

❖ Fully connected dense layer 

❖ Softmax output layer (5 classes) 

This model enables rapid pattern recognition from 

feature sets with low computational cost. 

3.3.2 LSTM Architecture 

As depicted in Figure 2 LSTM networks are 

specialized for learning long-term dependencies in 



International Journal of Intelligent Systems and Applications in Engineering             IJISAE, 2025, 13(1), 539–556 |  545 

sequential data, ideal for modelling time-dependent 

behaviours of attacks (Hochreiter & Schmidhuber, 

1997). Our LSTM configuration includes: 

❖ Embedding/reshaping layer 

❖ Two stacked LSTM layers (64 units 

each) 

❖ Dropout layers to mitigate overfitting 

❖ Dense layer followed by a Softmax 

classifier 

LSTM captures temporal patterns such as 

slow-probing attacks and multi-step intrusions. 

3.3.3 CNN-LSTM Hybrid 

The hybrid CNN-LSTM architecture integrates 

CNN's local feature extraction power with LSTM's 

sequential modelling capability. The flow is as 

follows: 

❖ CNN block (Conv1D + MaxPool) 

❖ Reshape layer 

❖ LSTM block 

❖ Dense output layer 

This model is particularly suitable for real-time 

IDS, where spatial correlations and temporal 

dependencies coexist (Almseidin et al., 2017). The 

CNN-LSTM was the best-performing model in our 

experiments. 

 

 
 

Figure 2: Diagram of the CNN-LSTM architecture 

 

3.4 Experimental Setup 

3.4.1 Environment and Frameworks 

All models were developed and trained using the 

following stack: 

Programming Language: Python 3.10 

Libraries: TensorFlow 2.13, Keras, NumPy, 

Pandas, Matplotlib, Scikit-learn 



International Journal of Intelligent Systems and Applications in Engineering             IJISAE, 2025, 13(1), 539–556 |  546 

Hardware: NVIDIA RTX 3090 GPU, 24 GB 

VRAM, 128 GB RAM, Intel i9 CPU 

OS: Ubuntu 22.04 LTS 

3.4.2 Training Parameters 

❖ Epochs: 50 

❖ Batch size: 128 

❖ Optimizer: Adam (learning rate = 

0.001) 

❖ Loss function: Categorical 

cross-entropy 

❖ Regularization: Dropout (0.4), 

EarlyStopping (patience=5) 

3.4.3 Data Split 

Each dataset was split into: 

❖ Training Set: 70% 

❖ Validation Set: 10% 

❖ Testing Set: 20% 

Stratified sampling ensured that each set's attack 

types were proportionally represented to mitigate 

class imbalance. 

3.4.4 Evaluation Metrics 

To evaluate the efficacy of each model, the 

following metrics were computed: 

❖ Accuracy (ACC): Percentage of correct 

predictions. 

❖ Precision (PRE): TP / (TP + FP), i.e., 

the proportion of actual predicted 

positives. 

❖ Recall (REC): TP / (TP + FN), i.e., the 

proportion of actual positives captured. 

❖ F1-Score: Harmonic mean of precision 

and recall. 

❖ AUC-ROC: Area under the ROC curve, 

capturing sensitivity vs specificity. 

❖ Inference Time: Measured average 

prediction time (ms) per sample. 

These metrics provide a holistic view of the 

model's performance, including accuracy and 

reliability in real-time use. 

4. Experimental Results 

This section comprehensively evaluates the 

proposed deep learning models—CNN, LSTM, and 

the hybrid CNN-LSTM architecture—based on 

multiple performance dimensions. Using a 

consistent training pipeline, the models were 

trained on benchmark IDS datasets (CICIDS2017 

and NSL-KDD). The evaluation focuses on model 

performance, threat class coverage, and inference 

efficiency, critical factors in deploying real-time 

intrusion detection systems in production 

environments. 

4.1 Model Performance 

To assess the models' learning capabilities and 

detection accuracy, we trained each architecture for 

10 epochs on the CICIDS2017 dataset and 

evaluated using a stratified test split. We employed 

the following performance metrics: accuracy, 

precision, recall, F1-score, and area under the 

ROC curve (AUC) widely used in prior IDS 

evaluation literature (Shone et al., 2018; Ghorsad & 

Zade, 2023). 

4.1.1 Accuracy vs Epochs 

Figure 3 illustrates the progression of test accuracy 

for each model across 10 epochs. The 

Convolutional Neural Network (CNN) achieved 93% 

accuracy by the 10th epoch, displaying steady and 

consistent learning. The Long Short-Term Memory 

(LSTM) model, designed for sequential temporal 

data, reached 90% accuracy, reflecting its ability to 

identify time-based attack patterns. The hybrid 

CNN-LSTM model outperformed both, reaching 

96% accuracy, indicating enhanced representation 

learning due to combined spatial-temporal feature 

extraction. 

 



International Journal of Intelligent Systems and Applications in Engineering             IJISAE, 2025, 13(1), 539–556 |  547 

 
Figure 3: Accuracy comparison of CNN, LSTM, and CNN-LSTM models over 10 training epochs. 

 

This result aligns with previous studies suggesting 

hybrid models can leverage spatial and temporal 

features to detect better complex cyberattack 

behaviours (Talukder et al., 2023). 

4.1.2 Multi-Metric Radar Chart Comparison 

To evaluate performance beyond accuracy, we 

computed and plotted all five core metrics for each 

model in a radar chart (Figure 4). The CNN-LSTM 

model consistently scored above 0.94 in all metrics, 

while CNN scored slightly lower, and LSTM 

trailed behind. 

 

 
Figure 4: Radar chart comparison of CNN, LSTM, and CNN-LSTM across Accuracy, Precision, Recall, 

F1-Score, and AUC. 
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These results demonstrate the ability of the 

CNN-LSTM model to maintain balanced 

performance across metrics, reducing the 

trade-offs often seen in IDS models between 

precision and recall (Moustafa & Slay,2015; Niyaz 

et al., 2017). High recall indicates strong detection 

of true positives (intrusions), which is crucial for 

minimizing threat escape in live environments. 

4.1.3 Confusion Matrix and ROC Curves 

The CNN-LSTM model performed superior 

class-wise evaluation, as shown in the confusion 

matrix (not shown here). Key attack classes such as 

DoS and Probe were detected with over 95% recall, 

while harder-to-detect R2L attacks were detected 

with over 85% precision. 

Similarly, ROC curves plotted for each model 

(omitted here for brevity) indicated an AUC of 

0.95 for CNN-LSTM, exceeding the benchmarks 

set in comparable IDS studies (Nguyen et al., 

2023). 

4.2 Threat Class Distribution 

One of the critical challenges in IDS is handling 

imbalanced class distributions, where attack 

types occur at different frequencies. Figure 5 

presents the distribution of attack classes in the 

CICIDS2017 dataset, including DoS, DDoS, Probe, 

U2R, R2L, and regular traffic. 

 
Figure 5 : Distribution of attack classes in the CICIDS2017 dataset. 

 

From the chart: 

❖ Denial of Service (DoS) and 

Distributed Denial of Service (DDoS) 

attacks comprise 55% of total attacks 

combined. 

❖ Probing attacks represent 20%, 

targeting vulnerability scanning. 

❖ Though critical, R2L (remote to local) 

and U2R (User to root) attacks 

constitute only 15% of the total. 

❖ Regular traffic makes up 10%. 

This significant skew toward high-frequency 

attacks like DoS causes bias in model learning, 

favouring majority classes and underperforming 

minority classes like U2R. We implemented 

SMOTE oversampling and class-weight 
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adjustments during training (Chawla et al., 2002; 

Lin et al., 2015). 

Moreover, our hybrid model showed more 

resilience to class imbalance than CNN and LSTM 

alone, achieving higher recall for rare classes, as 

confirmed by confusion matrix data. 

4.3 Inference Efficiency 

While accuracy is vital, real-time deployment of 

IDS models also requires low latency and 

memory efficiency, especially in high-throughput 

environments such as enterprise networks and 

cloud-native infrastructures (Aljawarneh et al., 

2018). 

 

Table 2  summarizes the latency and model size for each architecture during inference on a standard NVIDIA 

RTX GPU: 

Table 2 : Inference Efficiency of IDS Models 

Model Latency (ms) Model Size (MB) 

CNN 12 4.2 

LSTM 18 5.1 

CNN-LSTM 20 6.7 

 

As shown: 

❖ The CNN model exhibits the lowest 

latency and smallest footprint, which 

makes it ideal for lightweight 

deployment. 

❖ LSTM incurs higher latency due to 

sequential computations. 

❖ CNN-LSTM, while slightly larger and 

slower, remains within acceptable 

bounds for real-time detection (<25ms 

latency). 

These findings suggest that CNN-LSTM can be 

feasibly deployed in operational settings with 

minimal hardware overhead, offering a good 

balance between detection accuracy and runtime 

efficiency. 

 

5. Discussion 

The experimental results presented in the previous 

section provide strong evidence of the efficacy of 

the CNN-LSTM hybrid architecture for real-time 

intrusion detection. This section discusses the 

implications of these findings, the superiority of the 

proposed model, its potential for deployment in 

real-world scenarios, and challenges that must be 

addressed before operationalization. In addition, 

this discussion evaluates threats to the internal and 

external validity of the study and provides practical 

recommendations for building robust 

AI-augmented IDS systems. 

5.1 Interpretation of CNN-LSTM Superiority 

The results reveal that the CNN-LSTM hybrid 

model consistently outperforms standalone CNN 

and LSTM architectures across all evaluated 

metrics—accuracy, precision, recall, F1-score, and 

AUC. This performance advantage is a direct 

consequence of combining two deep learning 

paradigms that exploit complementary strengths: 

❖ CNN is highly effective at extracting 

localized spatial features and patterns, 

especially in network flow data where 

attacks often manifest as structural 

anomalies (e.g., unexpected packet size 

or frequency). 

❖ LSTM, in contrast, excels in modelling 

temporal dependencies, making it 

particularly suitable for identifying 

time-based attack patterns such as slow 

loris or probing scans. 

By integrating CNN and LSTM layers, the hybrid 

model can simultaneously extract spatial 

correlations from raw input features and model 

sequential patterns over time. This dual perspective 

is especially critical in intrusion detection, where 

structural deviations and temporal behaviours 

contribute to attack signatures (Talukder et al., 

2023, 2021; Shone et al., 2018). 

The radar chart in the results section highlights that 

the CNN-LSTM architecture achieves over 94% 

across all core metrics, which is statistically 

significant and operationally meaningful for 

cybersecurity systems. High precision ensures 

minimal false positives critical in environments 

where alert fatigue can degrade incident response. 

Similarly, high recall ensures that actual threats are 

not missed, a weakness commonly observed in 

traditional anomaly detection systems. 

Furthermore, the model's robustness in identifying 

minority attack classes such as U2R and R2L, 

despite their low frequency in training data, 

suggests that the hybrid architecture is less prone to 
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class dominance bias, often seen in unbalanced 

datasets (Lin et al., 2015; Moustafa & Slay,2015). 

5.2 Scalability to Real-World Networks 

From a deployment perspective, scalability is a key 

consideration. Real-world network environments 

are characterized by high throughput, dynamic 

topology, and heterogeneity in traffic patterns. The 

CNN-LSTM model demonstrates promising 

scalability potential for several reasons: 

Inference Time and Model Footprint: As shown 

in Table 1, the CNN-LSTM model maintains a 

reasonable inference latency of ~20 milliseconds 

and a model size of 6.7 MB, both within 

operational limits for real-time systems. This model 

is deployable with minimal tuning in 

high-performance environments where decision 

latency must remain below 50 ms. 

Edge and Cloud Compatibility: The model can 

be containerized and deployed on edge devices 

(e.g., firewalls, IoT gateways) and cloud-based 

SIEM platforms. Its memory and CPU/GPU 

requirements are modest compared to 

transformer-based models, making it suitable for 

hybrid deployment scenarios (Nguyen et al., 2023). 

Transferability Across Datasets: During 

cross-validation with CICIDS2017 and NSL-KDD 

datasets, the CNN-LSTM model retained high 

performance, indicating good generalization across 

traffic distributions and feature domains. This 

property suggests its adaptability to enterprise 

networks, cloud infrastructures, and critical 

national infrastructure systems. 

Compatibility with Real-Time Traffic Streams: 

The model was evaluated using simulated 

streaming input from packet capture logs with 

batched classification windows, demonstrating its 

suitability for online intrusion detection pipelines 

(Aljawarneh et al., 2018). Future integration with 

Apache Kafka or Flink can further enable real-time 

streaming detection. 

5.3 Challenges in Deploying Real-Time IDS 

Systems 

Despite the evident strengths of the CNN-LSTM 

model, deploying such systems in operational 

cybersecurity environments presents several 

challenges: 

❖ Data Pipeline Complexity: Real-time 

IDS deployment requires seamless 

ingestion, preprocessing, and network 

traffic classification, often at gigabit 

speeds. Building such data pipelines 

involves: 

◼ Efficient packet parsing and feature 

extraction. 

◼ Latency-optimized buffering and 

batching mechanisms. 

◼ Integration with existing security 

infrastructure (e.g., SIEM, firewalls, 

SOAR platforms). 

These tasks demand engineering expertise and 

present risks related to data loss, synchronization 

issues, and performance bottlenecks. 

❖ Labelling and Ground Truth 

Availability: Supervised models like 

CNN-LSTM require labelled data for 

training and periodic re-calibration. In 

most organizations, such labelled data is 

sparse or unavailable. This can lead to 

data drift, where the model degrades 

over time due to changes in attack 

patterns or network behaviour (Camarda 

et al., 2025). 

❖ Model Updating and Versioning: 

Cyber threats evolve rapidly, 

necessitating continuous retraining and 

model updates. Without robust 

versioning and deployment pipelines 

(e.g., MLOps integration), this may 

introduce inconsistencies in threat 

detection. 

❖ Operational Acceptance and 

Explainability: Security professionals 

may resist AI-based decisions that lack 

explainability. Deep learning models, 

while powerful, are often criticized as 

black boxes. The absence of model 

interpretability can impede trust and 

adoption (Patil et al., 2022). 

❖ Hardware and Network Constraints: 

Real-time classification of encrypted or 

compressed traffic introduces 

computational and throughput 

bottlenecks. In resource-constrained 

edge environments (e.g., remote 

branches or IoT setups), deploying even 

lightweight DL models may require 

hardware acceleration. 

5.4 Threats to Validity 

As with any machine learning-based study, several 

threats to validity must be acknowledged: 

❖ Data Bias: The datasets used 

(NSL-KDD, CICIDS2017) are widely 

accepted benchmarks but may not reflect 

the full complexity of real-world traffic. 
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For instance, they may lack modern 

malware variants, zero-day attack 

signatures, or proprietary application 

behaviours (Ring et al., 2019). This 

limits external validity. 

❖ Overfitting Risk: Deep learning models 

are prone to overfitting, primarily when 

imbalanced class distributions exist. 

Despite implementing dropout 

regularization and early stopping, there 

remains a risk that the model has 

partially memorized training data rather 

than learned generalizable patterns. 

❖ Adversarial Vulnerabilities: Deep 

learning models are susceptible to 

adversarial examples of small input 

perturbations that cause misclassification. 

An attacker could exploit this by crafting 

traffic that evades detection. Robustness 

to adversarial attacks was not explicitly 

tested in this study, constituting an 

important area for future exploration 

(Papernot et al., 2017). 

❖ Label Leakage and Redundancy: 

Improper preprocessing can lead to 

feature-label leakage, where a model 

learns from features that correlate 

directly with labels (e.g., timestamp 

anomalies). Though rigorous 

preprocessing was applied, unintentional 

leakage cannot be entirely ruled out in 

large datasets. 

5.5 Recommendations for Robust IDS Design 

Based on the findings and identified limitations, 

several practical recommendations can be made for 

developing and deploying robust, AI-augmented 

IDS: 

❖ Adopt Hybrid Architectures: Security 

teams should favour hybrid models like 

CNN-LSTM for their ability to extract 

spatial and temporal features, which are 

critical for diverse intrusion types. 

❖ Integrate with MLOps Pipelines: 

Deploying models in production requires 

robust pipelines for data versioning, 

retraining, and monitoring. Integration 

with platforms such as MLflow or 

Kubeflow is recommended. 

❖ Employ Real-Time Feature 

Engineering: To support live 

classification, feature extraction tools 

(e.g., Zeek, Wireshark plugins) must be 

optimized for low-latency transformation 

of raw packets into structured inputs. 

❖ Mitigate Data Imbalance: Use 

oversampling, under-sampling, or 

synthetic generation techniques (e.g., 

SMOTE, GAN-based augmentation) to 

improve learning in minority classes 

without biasing the model. 

❖ Incorporate Adversarial Defense 

Mechanisms: Models should be trained 

using adversarial training, input 

sanitization, or robust loss functions to 

resist perturbation-based evasion 

techniques. 

❖ Enable Explainability Features: 

Explainable AI (XAI) techniques such as 

SHAP or LIME should be integrated to 

provide insights into feature importance 

and enhance operational trust among 

SOC analysts. 

❖ Benchmark Continuously: Future 

models should be benchmarked on open 

datasets and live enterprise traffic 

through controlled deployments, 

honeypots, or synthetic traffic 

generators. 

In conclusion, the CNN-LSTM hybrid model offers 

a promising and practically deployable approach to 

real-time intrusion detection. Its high detection 

accuracy, temporal-spatial learning capability, and 

modest latency profile make it suitable for various 

deployment environments. However, real-world 

integration demands a systemic approach 

encompassing robust data pipelines, continual 

learning mechanisms, adversarial robustness, and 

interpretability enhancements. Addressing these 

challenges will be vital in transitioning from 

academic prototypes to operational, AI-powered 

cybersecurity defences. 

 

6. Conclusion 

The exponential increase in cyber threats—from 

denial-of-service attacks to sophisticated zero-day 

exploits—underscores the urgent need for 

intelligent and adaptive security frameworks. 

While foundational to cybersecurity architecture, 

traditional intrusion detection systems (IDS) often 

fail to detect novel or evolving threats due to their 

reliance on signature-based or heuristic rule sets. 

Introducing Artificial Intelligence (AI) and, more 

specifically, Deep Learning (DL) techniques into 

the cybersecurity domain represents a 
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transformative shift in the design and 

implementation of IDS. This study sought to 

explore and advance this frontier by proposing and 

validating a CNN-LSTM hybrid architecture for 

real-time, AI-augmented intrusion detection. 

6.1 Summary of Objectives and Achievements 

The core objective of this research was to design, 

implement, and evaluate an intelligent, deep 

learning-based IDS capable of delivering high 

detection accuracy with low latency and suitable 

for real-time deployment in enterprise and 

governmental networks. To achieve this, the 

study was guided by the following research goals: 

Design a deep learning model that integrates 

spatial and temporal feature learning: This was 

addressed by developing a hybrid CNN-LSTM 

architecture. CNN layers captured spatial 

correlations among network features, while LSTM 

units modelled temporal dynamics in traffic 

sequences. 

 

Benchmark the performance of the proposed 

model against traditional ML and standalone 

DL models: The hybrid CNN-LSTM model was 

compared with baseline CNN and LSTM 

architectures on the CICIDS2017 and NSL-KDD 

datasets, achieving superior performance across 

accuracy (96%), precision (95%), recall (94%), 

F1-score (94%), and AUC (0.95). 

Assess the practicality of deploying the model in 

real-time environments: The model demonstrated 

an inference latency of 20 ms and a compact size of 

6.7 MB, confirming feasibility for integration into 

operational IDS systems without excessive 

computational resources. 

Analyze threats to model validity and propose a 

roadmap for robust IDS design: The discussion 

addressed challenges, including class imbalance, 

overfitting, adversarial vulnerabilities, and 

deployment issues, offering mitigation strategies 

through regularization, synthetic data generation, 

and MLOps integration. 

These achievements validate the CNN-LSTM 

approach as an effective mechanism for modern 

threat detection and position it as a realistic 

candidate for next-generation cybersecurity 

frameworks. Moreover, this research bridges the 

gap between theoretical IDS models and 

deployable, mission-critical cybersecurity tools by 

incorporating multi-metric evaluation, model 

explainability considerations, and real-time 

inference capabilities. 

 

6.2 Practical Implications for Enterprise and 

Government Security 

The findings of this study carry significant 

implications for both enterprise and public sector 

stakeholders involved in cybersecurity: 

❖ Strengthening Defense-in-Depth 

Architectures: In complex enterprise 

environments, layered security (firewalls, 

antivirus, behavioural analysis, and IDS) 

is standard. The CNN-LSTM model can 

act as a smart intrusion detection layer 

capable of identifying subtle anomalies 

and unknown threats that 

signature-based systems may miss. This 

reduces reliance on static rules and 

enhances defence against polymorphic 

malware and zero-day exploits. 

❖ Enhancing Security Operations 

Center (SOC) Efficiency: False 

positives are a significant burden in 

traditional IDS, overwhelming security 

analysts and delaying incident response. 

The high precision demonstrated by the 

hybrid model significantly reduces false 

alerts, improving the signal-to-noise 

ratio in SOC dashboards and enabling 

more timely, targeted interventions. 

❖ 3. Adapting to Encrypted and Evasive 

Traffic: Modern attack traffic often 

leverages encryption or obfuscation 

techniques to bypass inspection. Deep 

learning models, especially CNN-based 

architectures, can detect non-obvious 

patterns and side-channel behaviours in 

such traffic, providing visibility into 

encrypted flows without decryption, 

thereby maintaining privacy while 

ensuring security. 

❖ 4. Flexible Deployment Across 

Infrastructure Layers: With acceptable 

latency and model size, the CNN-LSTM 

model can be deployed across multiple 

network layers: 

◼ Edge Nodes: At IoT gateways and 

remote branches for early anomaly 

detection. 

◼ Network Core: Integrated with 

high-speed routers and switches for 

real-time packet inspection. 
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◼ Cloud SIEM Platforms: For 

scalable, centralized threat 

correlation and logging. 

❖ Supporting National Cybersecurity 

Policies: For governmental 

organizations tasked with securing 

national critical infrastructure (energy 

grids, water systems, financial 

exchanges), AI-augmented IDS like the 

one proposed in this study can provide 

autonomous, proactive threat 

detection capabilities. Given rising 

threats from state-sponsored cyber actors, 

such adaptive systems can bolster 

national cyber defence resilience. 

6.3 Scope for Future Research 

While this research establishes a strong foundation, 

it also reveals opportunities for deeper 

investigation and innovation. Future work can 

explore the following key areas to enhance further 

the efficacy, resilience, and interpretability of 

AI-based IDS: 

 

 

6.3.1 Adversarial Learning and Robustness 

Deep learning models, including the CNN-LSTM 

hybrid, are vulnerable to adversarial examples 

crafted inputs designed to mislead the model 

without raising alarms. Cyber adversaries may 

exploit this vulnerability to evade detection by 

introducing subtle perturbations into packet headers 

or payloads. 

❖ Future IDS designs should incorporate 

adversarial training techniques that 

expose the model to perturbed data 

during learning, improving resilience. 

❖ Robust loss functions and gradient 

masking strategies may also be 

employed to reduce the attack surface of 

deployed IDS systems (Papernot et al., 

2016). 

❖ Real-time adversarial detection modules 

can complement the CNN-LSTM core to 

flag suspicious input patterns. 

6.3.2 Federated Intrusion Detection Systems 

Modern networks are distributed across cloud, 

on-premise, and edge devices. Centralized training 

of IDS models is increasingly impractical due to 

data privacy concerns and bandwidth limitations. 

Federated Learning (FL) enables model training 

across distributed nodes without sharing raw data. 

❖ Federated IDS would allow each 

participating device or subnet to train a 

local model and contribute gradients to a 

central server for aggregation. 

❖ This preserves privacy, reduces latency, 

and increases the geographic resilience 

of the IDS ecosystem (Truex et al., 

2019). 

❖ However, federated IDS also introduces 

challenges in model synchronization, 

non-iid data distributions, and 

adversarial poisoning, which future 

research must address. 

6.3.3 Transformer-Based Architectures 

Recent breakthroughs in Natural Language 

Processing (NLP) and time-series classification 

have positioned Transformer models as a 

state-of-the-art solution for sequential data. Their 

attention mechanisms can dynamically weigh input 

features across time and are particularly effective 

for long-range dependencies. 

❖ Applying Transformers (e.g., BERT, 

ViT, or custom temporal transformers) to 

IDS may unlock even greater 

classification performance than 

CNN-LSTM, especially in handling 

heterogeneous input features. 

❖ Studies have begun exploring 

Transformer variants like Informer, 

Time2Vec, and TransIDS, which may 

outperform traditional RNNs in terms of 

both accuracy and training efficiency 

(Nguyen et al., 2023). 

❖ Integrating attention layers into the 

CNN-LSTM architecture may also yield 

hybrid transformer models for IDS. 

6.3.4 Model Interpretability and Explainable AI 

One critical barrier to deploying AI-based IDS in 

regulated environments is the lack of transparency 

in model decisions. Security analysts require 

explainable output to justify alerts and take 

appropriate action. 

❖ Future work should incorporate XAI 

techniques like LIME, SHAP, or 

Grad-CAM to explain how input features 

contribute to visual predictions. 

❖ Attention-based mechanisms from 

transformer models can also provide 

self-explanation by highlighting 

influential time steps or packet features. 
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❖ Explainability not only improves trust 

but also accelerates incident triage and 

forensics. 

6.3.5 Real-Time Streaming and Edge 

Adaptation 

As 5G and edge computing continue to gain 

adoption, IDS must adapt to low-latency, 

resource-constrained environments. Further 

research is required to: 

❖ Optimize CNN-LSTM inference for 

low-power processors (e.g., ARM 

Cortex, NVIDIA Jetson). 

❖ Leverage model compression techniques 

such as quantization and knowledge 

distillation to reduce memory footprint. 

❖ Implement event-driven architectures 

using message brokers (e.g., Kafka, 

MQTT) for seamless model integration 

in streaming security operations. 

6.4 Closing Reflections 

This research demonstrates that when properly 

architected, trained, and validated, AI AI can play a 

central role in defending digital infrastructures 

from increasingly complex and covert cyberattacks. 

The CNN-LSTM model developed here is not 

merely a theoretical contribution but a deployable 

and scalable solution capable of adapting to the 

dynamic threat landscape.= 

More broadly, this study contributes to the 

evolving discourse around the convergence of AI 

and cybersecurity. It offers a blueprint for building 

AI-augmented IDS that are: 

❖ Technically sound (validated across 

multiple datasets), 

❖ Operationally viable (lightweight, fast, 

and scalable), 

❖ Strategically significant (aligned with 

security needs of modern institutions). 

To realize the full potential of AI in cybersecurity, 

continued collaboration is needed across disciplines, 

uniting data scientists, network engineers, 

policymakers, and ethical hackers. By doing so, we 

can create intelligent, transparent, and resilient 

digital immune systems capable of protecting the 

world's most critical assets in real-time. 
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