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Abstract: Increasing scale and complexity of cyber attacks have surpassed the efficacy of traditional Intrusion
Detection Systems (IDS), which cannot keep track of new and developing attack modes in real time. To address
these limitations, this work proposes a deep learning focused framework for Al-facilitated threat detection in
network environments. The aim is to enhance the effectiveness of real-time IDS using a hybrid approach that
entails combining Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) networks.
CNN is utilized to detect spatial characteristics in traffic flows and LSTM to detect temporal activities such that
accurate classification of advanced cyberattacks is achieved. The model proposed is trained and tested over two
benchmarking datasets, CICIDS2017 and NSL-KDD, under strict preprocessing and feature selection. It is
quantitatively evaluated in terms of common metrics Accuracy, Precision, Recall, F1-score, and AUC-ROC.
The model achieves 99.1% accuracy on the CICIDS2017 and 98.7% accuracy on the NSL-KDD datasets and
outperforms baseline deep learning and machine learning models. This work demonstrates that the combination
of spatial and temporal analysis significantly improves detection with low false positives and inference latency.
The proposed model provides a scalable, intelligent, and real-time threat detection approach suitable for
application in modern cybersecurity systems.

Keywords: Deep Learning, Intrusion Detection Systems, Cybersecurity, Real-Time Threat Detection , Neural
Networks, AI-Augmented Security

1. Introduction

The recent exponential rise in internet usage, the
expanded usage of networked devices, and the
heightened dependency on computerized systems
have broadened the landscape of threats in
contemporary cyberspace by leaps and bounds.
Today’s international environment is confronted
with a steady flow of cybersecurity events, ranging
from nation-state-sponsored cyber espionage
operations to opportunistic ransomware intrusions
that threaten information confidentiality, integrity,
and availability. As documented in an IBM
Security study published in 2024, the average cost
of a data breach worldwide has now exceeded
$4.45 million, representing economic losses and
strategic risks to organizations’ digital resilience.
As organizations continue to embrace sophisticated
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cloud-based and edge computing paradigms,
conventional perimeter-based security approaches
have been found inadequate, thus calling for more
advanced, agile, and intelligent security controls
(Kimanzi et al., 2024). One of the most important
elements of modern network security is the
Intrusion Detection System (IDS), which monitors
and analyzes network or system activity for any
suspicious activity or deviations from established
policies. Traditionally, IDS technologies have been
described as signature-based or heuristic-based
(also  known as anomaly-based) systems.
Signature-based IDSs function by comparing
observed activity to a pre-established set of
recognized attack signatures. Although this method
provides high accuracy for detecting known threats,
it is ineffective for detecting new or zero-day
attacks that do not rely on established patterns
(Moustafa &  Slay, 2015). In contrast,
heuristic-based systems attempt to identify
suspicious behavior using handcrafted rules or
statistical thresholds. These systems suffer from
high false-positive rates and often lack the
contextual intelligence necessary to distinguish
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benign anomalies from true intrusions (Sharafaldin,
Lashkari, & Ghorbani, 2018).

The limitations of these conventional approaches
have motivated a shift toward artificial intelligence
(Al)-augmented, data-driven intrusion detection
frameworks. The adoption of machine learning
(ML) techniques has enabled automated inference

from data and adaptation to evolving threat patterns.

However, most ML algorithms, including Support
Vector Machines (SVM), k-Nearest Neighbors
(KNN), and Random Forest, require substantial
feature engineering, do not scale well with
high-dimensional data, and struggle to model the
complex, nonlinear behaviors of modern network
traffic (Pansari, Srivastava, & Agarwal, 2024).
These limitations have encouraged the adoption of
deep learning (DL) models for cybersecurity
solutions, particularly in the design of modern IDS
frameworks (Pareek & Arora, 2020). Deep learning
architectures such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks
(RNNs), particularly Long Short-Term Memory
(LSTM) networks, have demonstrated remarkable
success in image recognition, language modeling,
and time-series prediction (Marzano & Lubkina,
2017). Within the IDS domain, CNNs are
leveraged to automatically extract spatial features
from network traffic data, while LSTMs specialize
in capturing temporal dependencies, which are
essential for detecting sequential attack patterns
(Konur et al., 2015). Despite their individual
strengths, standalone CNN or LSTM models often
lack the global contextual understanding needed for
accurate classification in real-time, especially in
high-volume and class-imbalanced environments
(Sinha et al., 2025).

Moreover, a considerable gap remains between
theoretical research and real-world implementation
of Al-powered IDS. Many published studies
evaluate models under controlled conditions using
benchmark  datasets but neglect practical
considerations such as inference time, latency,
model complexity, and scalability (Mortazavi,
Moradi, & Vahabie, 2024). Additionally,
accuracy—frequently cited as the sole performance
metric—can be misleading, particularly when
intrusion detection datasets are imbalanced, with
benign traffic vastly outnumbering malicious
samples (Lv & Ding, 2024).

To address these limitations, this study proposes a
hybrid deep learning model that integrates CNN
and LSTM architectures for real-time intrusion

detection. The model utilizes CNN layers to
capture spatial relationships in packet-level data
and LSTM layers to identify sequential patterns
over time. In contrast to prior approaches focused
narrowly on accuracy, the proposed method
evaluates performance using a comprehensive suite
of metrics, including Precision, Recall, Fl-score,

Area Under the Receiver Operating Characteristic

Curve (AUC-ROC), and inference time (Qazi,

Faheem, & Zia, 2023). For training and validation,

two widely accepted benchmark datasets are

employed: NSL-KDD, an enhanced version of the

KDD CUP 1999 dataset that removes redundancy

and bias (Tavallaee et al., 2009), and CICIDS2017,

which reflects contemporary attack patterns,
including Botnet, DDoS, Brute Force, and Web
attacks  within  enterprise  traffic  settings

(Sharafaldin et al., 2018). The use of both datasets

ensures backward compatibility with earlier IDS

models and relevance to modern network
infrastructures.

Finally, the growing importance of edge computing

and decentralized architectures in intrusion

detection has led to explorations of transfer
learning and federated learning frameworks. These
solutions promise improved detection on
imbalanced traffic and enhanced privacy in
distributed environments (Ullah et al., 2024; Unal

etal., 2021).

To support interpretability and comparative

analysis, the study includes rich visualizations,

such as:

¢ Radar charts to present a multi-metric

comparison of CNN, LSTM,

CNN-LSTM, and traditional ML

baselines (e.g., SVM, Random Forest);

% Pie charts to illustrate the distribution of
attack categories in each dataset and
analyze class imbalance;

< ROC curves and confusion matrices to
visualize classification boundaries and
detection errors;

< Bar charts showing feature importance
and performance under different
hyperparameter configurations.

Objectives and Research Questions

The primary objectives of this research are as

follows:

«  To design and implement a CNN-LSTM
hybrid model capable of detecting
intrusions in real time with high
precision and low latency.
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% To benchmark the model against
classical machine learning algorithms
and standalone deep learning models
across multiple datasets.

« To analyze the model’s performance
using comprehensive evaluation metrics
that reflect practical deployment
requirements.

« To provide visual tools and explainable
outputs that enhance the interpretability
and transparency of Al-based threat
detection.

These objectives guide the investigation of the

following research questions:

« How does the proposed CNN-LSTM
model detect different types of
cyberattacks compared to traditional and
standalone DL models?

¢ Can this hybrid approach generalize

effectively across datasets with different

structures and attack distributions?

< What are the implications of model
inference time and computational
complexity in real-time deployment
scenarios?

Key Contributions

This paper makes the following contributions to the

field of cybersecurity and intelligent threat

detection:

< Novel hybrid architecture: Developing

a CNN-LSTM model that integrates

spatial and temporal learning for

enhanced intrusion detection capabilities.

« Cross-dataset validation: Evaluation
using NSL-KDD and CICIDS2017
datasets to ensure robustness, diversity,
and generalizability.

Inclusion of diverse metrics (Accuracy,

Precision, Recall, Fl-score, AUC, and

Latency) and visual tools (Radar, Pie,

and ROC charts) for a well-rounded

performance assessment.

< Real-time applicability focus:
Emphasis on practical deployment issues
such as inference speed, model
complexity, and real-world traffic
conditions.

By bridging the gap between deep learning

research and the operational requirements of

modern  cybersecurity  systems, this study
contributes to the advancement of intelligent,

«» Comprehensive evaluation framework:

scalable, and resilient IDS architectures capable of
defending against the evolving spectrum of cyber
threats.

2. Literature Review

2.1 Classification of Intrusion Detection Systems
DS)

Intrusion detection systems (IDS) can be
categorized into two primary dimensions:
deployment level and detection methodology.

% Deployment:

B Network-based IDS (NIDS)
analyze packets traversing entire
network segments or endpoints,
enabling  the  detection  of

anomalous traffic on the wire

(Buczak & Guven (2015)).

B Host-based IDS (HIDS) reside on
individual machines, monitoring
system logs, file changes, and user
activity to identify suspicious
behaviour (Denning, 1987).

% Detection Method:

B Signature-based IDS detect threats
using predefined patterns or
signatures of known
attacks—offering high precision for
known threats but failing to identify
novel attacks (Sabahi & Movaghar,
2008).

B Anomaly-based IDS establish a
model of normal Dbehaviour,
flagging deviations. They can
identify unknown attacks but often
yield higher false positives and

demand extensive training
(Denning, 1987; Buczak & Guven
(2015)).

2.2 Machine Learning in IDS

Traditional machine learning (ML) methods have

been widely employed to detect intrusions:
< Support Vector Machines (SVM),
Random Forests (RF), K-Nearest
Neighbors (KNN), and Decision Trees
(DTs) have demonstrated strong
performance on benchmark datasets such
as KDD’99, NSL-KDD, UNSW-NB15,
and CICIDS2017 (Vuong et al., 2022;
Buczak & Guven (2015)).

< Ingre et al. (2017) employed Decision
Trees with filter-based feature selection
on NSL-KDD, achieving 99.67%
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detection accuracy for DDoS attacks
using just 13 features (Vuong et al.,
2022).

% Alazzam et al. (2020) combined a
Pigeon-Inspired Optimizer with Decision
Trees over multiple datasets, attaining
94.7% accuracy on KDD’99 and 86.9%
on NSL-KDD (Vuong et al., 2022).

(Khan, 2021) compared RF, XGBoost, Bagging,

DT, and KNN on UNSW-NBI15; RF achieved

74.87%, XGBoost 71.43%, and DT had the lowest

prediction time (Vuong et al., 2022).

«  Quantum-inspired LS-SVM models with
exhaustive  feature selection have
recently yielded up to 99.5% accuracy
on  KDD-99/NSL-KDD/CICIDS2017
while  maintaining  low  latency
(Waghmode et al., 2025).

Despite their interpretability and speed, ML models

struggle with high-dimensional or temporal data,

often requiring costly feature engineering and
lacking robustness against evolving threats.

2.3 Deep Learning Approaches

Deep learning (DL) models offer enhanced

capabilities for complex IDS tasks:

Deep Neural Networks (DNNs), Convolutional

Neural Networks (CNNs), Long Short-Term

Memory (LSTM) networks, and Autoencoders

(AEs) can capture nonlinear and hierarchical

patterns in network traffic (Said et al. (2023);

Sabahi & Movaghar, 2008).

« A stacked autoencoder combined with

CNNs and LSTM (an MSCNN-LSTM

autoencoder) outperformed traditional

unsupervised methods on NSL-KDD,

UNSW-NB15, and CICDD0S2019

« CNNs effectively capture spatial
characteristics of traffic features, e.g.,
packet headers, while LSTMs model
sequential dependencies (Elsayed et al.,
2021; Gueriani, 2024).

« Hybrid CNN-LSTM models achieved
accuracy rates exceeding 99.5% on
CICIDS2017 combining spatial learning
with temporal context (Gueriani et al.,
2024; Altunay & Albayrak (2023)).

« However, complex DL architectures
often face high computational costs and
latency, limiting real-time deployment.

2.4 Importance of Real-time, Low-Latency IDS

Real-time detection with low latency is a key

requirement for modern IDS:

% Studies demonstrate that optimized
CNN-LSTM models can detect threats
with inference times in the 2-5
milliseconds range, making them
practical for high-throughput
environments (Gueriani, 2024;
Waghmode et al., 2025).

Lightweight CNN-BiLSTM models tailored for IoT

edge devices achieved 97.3% accuracy while

maintaining low complexity (Jouhari et al., 2024).
%+ Efficient architecture designs, feature
selection  techniques, and model
compression are essential to balancing
accuracy and speed (Gueriani et al.,
2024).

2.5 Justification for CNN-LSTM Hybrid Models

Hybrid architectures that merge CNN and LSTM

modules provide several advantages:

% Comprehensive Feature Learning:
CNN captures spatial correlations;
LSTM encodes temporal patterns
(Elsayed et al., 2021; Altunay &
Albayrak (2023)).

s High Accuracy: Hybrid models
regularly exceed 99% detection accuracy
and robust performance across multiple
datasets (Gueriani et al, 2024,
Waghmode et al., 2025).

% Real-Time Compression: Properly

optimized hybrids achieve low inference

latency suitable for live traffic conditions

(Gueriani, 2024; Jouhari et al., 2024).

Given these benefits and recent

experimental evidence, CNN-LSTM

hybrids are well-suited for deployment
in real-time IDS scenarios.

KD

%

2.6 Limitations in Existing Approaches
Prominent challenges that still affect IDS research
include:

High false-positive rates in anomaly detection
necessitate manual tuning (Sabahi & Movaghar,
2008).

Hardware constraints: Complex models often
cannot be deployed on edge or IoT devices due to
memory and computation limits Jouhari et al.,
2024).

Feature dependency and robustness: Reliance on
handcrafted features can make systems vulnerable
to adversarial perturbations (Buczak & Guven
(2015)).
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Poor generalization: Models trained on one
dataset often fail to perform on another without

extensive retraining (Buczak & Guven (2015);
Waghmode et al., 2025).

Table 1: Summary of Recent Studies

Study (Year) Model Dataset(s) Accuracy (%)
Guerlain et al. (2024) CNN-LSTM CIClIoT2023, CICIDS2017 98.42
Waghmode et al., 2025 LS-SVM NSL-KDD, CICIDS2017, 99.5
UNSW-NBI5
Jouhari et al., 2024 CNN-BiLSTM (lightweight) = UNSW-NBI15 97.3
Elsayed et al. (2021) CNN-BiLSTM Smart-Home [oT ~99
Ingre et al. (2017) Decision Tree + Feature NSL-KDD 99.7 (DDoS)
Selection
Alazzam et al. (2020) DT + PIO KDD'99, NSL-KDD 94.7-96.0
(Khan, 2021) RF, XGBoost, DT, KNN, UNSW-NBI5 71-75
Bagging
3. Methodology issues by eliminating duplicate records and
To develop an Al-augmented real-time intrusion balancing the number of attack types (Tavallace et
detection system (IDS), we adopted a al., 2009). The dataset includes four primary attack

comprehensive methodological framework that
integrates cybersecurity  datasets,
rigorous data preprocessing, advanced feature
engineering, and deep learning model design using
hybrid convolutional and recurrent architectures.
The following subsections describe each
methodological component in detail.

3.1 Datasets Used

3.1.1 CICIDS2017

The Canadian Institute for Cybersecurity Intrusion
Detection System 2017 (CICIDS2017) dataset is a
widely accepted benchmark in intrusion detection
research. It replicates real-world traffic scenarios
using the CICFlowMeter tool to extract
bidirectional flows. The dataset includes benign
and a broad range of attack behaviours such as
Distributed Denial-of-Service (DDoS), brute-force
SSH/HTTP, Heartbleed, infiltration, and botnet
traffic. All data were collected over five days in a
controlled environment, ensuring high fidelity to
operational network traffic patterns (Sharafaldin et
al., 2018). CICIDS2017 comprises over 80
extracted features, including flow duration,
protocol type, source and destination byte rates,
packet length statistics, flag counts, and various
TCP/IP-level attributes. These are essential for
distinguishing subtle traffic anomalies from normal

benchmark

behaviours.

3.1.2 NSL-KDD

NSL-KDD is an improved and filtered version of
the older KDD’99 dataset, which has long been
criticized for its high redundancy and skewed
distribution. NSL-KDD resolves many of these

classes: Denial of Service (DoS), Probe, Remote to
Local (R2L), and User to Root (U2R). Each
instance contains 41 features, including basic
connection attributes, content attributes, and traffic
features.
While NSL-KDD is less complex than CICIDS
2017, its structured and simplified format remains
valuable for benchmarking lightweight models.
3.1.3 Preprocessing Steps
Both datasets underwent extensive preprocessing
before being fed into the deep learning models:
% Missing Value Handling: No null
values were observed in either dataset;
however, constant features were dropped
to reduce noise.
% Normalization: Continuous features
were normalized using Min-Max scaling
to a range between 0 and 1, ensuring that
features with large numeric ranges do
not dominate during training.
Categorical  Encoding: Symbolic
features such as  ‘protocol type’,
‘service’, and ‘flag® were label encoded
followed by one-hot encoding to retain
semantic distinctions without imposing
ordinal relationships.
< Class Label Mapping: The attack labels
were mapped to five macro classes (e.g.,
Normal, DoS, Probe, R2L, U2R) to
reduce output complexity and address
class imbalance.
3.2 Feature Engineering

KD

%
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Practical feature engineering 1is critical to
enhancing model accuracy and generalizability in
intrusion detection. We employed correlation-based
filtering and dimensionality reduction to refine the
input feature space.

3.2.1 Correlation-Based Feature Selection

We first computed the Pearson correlation
coefficient matrix to identify highly correlated
features. Redundant features with correlation

coefficients above +0.90 were removed to prevent
multicollinearity,  impairing deep learning
convergence and increasing overfitting risk (Guyon
& Elisseeft, 2003).

Additionally, features with low correlation to the
target label (intrusion class) were considered less
informative and excluded. This process retained
approximately 25 features from each dataset that
exhibited high variance and predictive capacity.

Feature Importance (Correlation-Based Selection)

Duration
Src_bytes
Dst_bytes

Wrong_fragment

Urgent

Feature

Hot
Num_failed_logins
Logged_in
Num_compromised

Root_shell

0.00 0.02 0.04 0.06

0.08 0.10 0.12 0.14

Importance Score

Figure 1: A bar chart showing the top 10 features by correlation-based importance is included below

3.2.2 Dimensionality Reduction
We experimented with Principal Component
Analysis (PCA) and autoencoder-based latent
representation techniques to explore further
compression. While PCA allowed for visualizing
variance distributions, the nonlinear nature of
network attacks made autoencoders a better fit for
unsupervised compression. However, we retained
the original top features rather than latent vectors
for model transparency and interpretability.
3.2.3 Feature Importance Visualization
As shown in Figure 1, a bar chart was generated to
visualize the relative importance of the top 10
features based on correlation scores. As the chart
shows, ‘duration’, ‘src_bytes’, ‘dst bytes’, and
‘wrong_fragment' ranked among the most
informative indicators of attack behaviour.
3.3 Model Architecture
We designed three core deep-learning models for
evaluation:

< A Convolutional Neural Network

(CNN)

< A Long Short-Term Memory (LSTM)
Network
« A CNN-LSTM hybrid that combines
spatial and temporal learning

3.3.1 CNN Architecture
CNNs are highly effective in extracting local
spatial hierarchies in input vectors. Each input
feature sequence is reshaped into a 2D grid,
enabling the use of 1D convolutional layers. Our
CNN architecture consists of the following:
<  Input layer (reshaped)
< Two 1D convolutional layers with ReLU
activations
Max-pooling layer
Flattening layer
Fully connected dense layer
Softmax output layer (5 classes)
This model enables rapid pattern recognition from
feature sets with low computational cost.
3.3.2 LSTM Architecture
As depicted in Figure 2 LSTM networks are
specialized for learning long-term dependencies in

X3

o

X3

o

X3

S

X3

S
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sequential data, ideal for modelling time-dependent
behaviours of attacks (Hochreiter & Schmidhuber,
1997). Our LSTM configuration includes:

The hybrid CNN-LSTM architecture integrates
CNN's local feature extraction power with LSTM's
sequential modelling capability. The flow is as

+ Embedding/reshaping layer follows:
« Two stacked LSTM layers (64 units < CNN block (ConvlD + MaxPool)
each) «  Reshape layer
« Dropout layers to mitigate overfitting « LSTM block
« Dense layer followed by a Softmax «  Dense output layer
classifier This model is particularly suitable for real-time

IDS, where spatial correlations and temporal
dependencies coexist (Almseidin et al., 2017). The
CNN-LSTM was the best-performing model in our

LSTM captures temporal patterns such as
slow-probing attacks and multi-step intrusions.
3.3.3 CNN-LSTM Hybrid

experiments.

INPUT LAYER
(1D vector)

5

1D CONVOLUTION +
RELU
~ J, A4
MAX POOLING b
LSTM LAYERS
=

l

DENSE LAYER

4

SOFTMAX OUTPUT J

CNN-LSTM Hybrid N
Nneural networck

Figure 2: Diagram of the CNN-LSTM architecture

Programming Language: Python 3.10
Libraries: TensorFlow 2.13, Keras, NumPy,
Pandas, Matplotlib, Scikit-learn

3.4 Experimental Setup

3.4.1 Environment and Frameworks

All models were developed and trained using the
following stack:

International Journal of Intelligent Systems and Applications in Engineering LJISAE, 2025, 13(1), 539-556 | 545



Hardware: NVIDIA RTX 3090 GPU, 24 GB

VRAM, 128 GB RAM, Intel i9 CPU

OS: Ubuntu 22.04 LTS

3.4.2 Training Parameters

« Epochs: 50

< Batch size: 128

< Optimizer: Adam (learning rate =
0.001)

< Loss function:
cross-entropy

< Regularization: Dropout 0.4),
EarlyStopping (patience=5)

3.4.3 Data Split

Each dataset was split into:
«  Training Set: 70%

* Validation Set: 10%

% Testing Set: 20%

Stratified sampling ensured that each set's attack

types were proportionally represented to mitigate

class imbalance.

3.4.4 Evaluation Metrics

To evaluate the efficacy of each model, the

following metrics were computed:

*

.

Categorical

*

4

>

*,

4

7

%  Accuracy (ACC): Percentage of correct
predictions.

« Precision (PRE): TP / (TP + FP), i.e.,
the proportion of actual predicted
positives.

< Recall (REC): TP / (TP + FN), i.e., the
proportion of actual positives captured.

«  F1-Score: Harmonic mean of precision
and recall.

< AUC-ROC: Area under the ROC curve,
capturing sensitivity vs specificity.

< Inference Time: Measured average

prediction time (ms) per sample.

These metrics provide a holistic view of the
model's performance, including accuracy and
reliability in real-time use.

4. Experimental Results

This section comprehensively evaluates the
proposed deep learning models—CNN, LSTM, and
the hybrid CNN-LSTM architecture—based on
multiple performance dimensions. Using a
consistent training pipeline, the models were
trained on benchmark IDS datasets (CICIDS2017
and NSL-KDD). The evaluation focuses on model
performance, threat class coverage, and inference
efficiency, critical factors in deploying real-time
intrusion  detection systems in  production
environments.

4.1 Model Performance

To assess the models' learning capabilities and
detection accuracy, we trained each architecture for
10 epochs on the CICIDS2017 dataset and
evaluated using a stratified test split. We employed
the following performance metrics: accuracy,
precision, recall, Fl-score, and area under the
ROC curve (AUC) widely used in prior IDS
evaluation literature (Shone et al., 2018; Ghorsad &
Zade, 2023).

4.1.1 Accuracy vs Epochs

Figure 3 illustrates the progression of test accuracy
for each model across 10 epochs. The
Convolutional Neural Network (CNN) achieved 93%
accuracy by the 10th epoch, displaying steady and
consistent learning. The Long Short-Term Memory
(LSTM) model, designed for sequential temporal
data, reached 90% accuracy, reflecting its ability to
identify time-based attack patterns. The hybrid
CNN-LSTM model outperformed both, reaching
96% accuracy, indicating enhanced representation
learning due to combined spatial-temporal feature
extraction.
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Figure 3: Accuracy comparison of CNN, LSTM, and CNN-LSTM models over 10 training epochs.

This result aligns with previous studies suggesting model in a radar chart (Figure 4). The CNN-LSTM
hybrid models can leverage spatial and temporal model consistently scored above 0.94 in all metrics,
features to detect better complex cyberattack while CNN scored slightly lower, and LSTM
behaviours (Talukder et al., 2023). trailed behind.

4.1.2 Multi-Metric Radar Chart Comparison
To evaluate performance beyond accuracy, we
computed and plotted all five core metrics for each

Radar Chart of Model Performance CNN
Precision —— LSTM
= CNN-LSTM
Reca
uracy
F1-Scd
AUC

Figure 4: Radar chart comparison of CNN, LSTM, and CNN-LSTM across Accuracy, Precision, Recall,

F1-Score, and AUC.
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These results demonstrate the ability of the
CNN-LSTM model to maintain balanced
performance across metrics, reducing the
trade-offs often seen in IDS models between
precision and recall (Moustafa & Slay,2015; Niyaz
et al., 2017). High recall indicates strong detection
of true positives (intrusions), which is crucial for
minimizing threat escape in live environments.
4.1.3 Confusion Matrix and ROC Curves

The CNN-LSTM model performed superior
class-wise evaluation, as shown in the confusion
matrix (not shown here). Key attack classes such as
DoS and Probe were detected with over 95% recall,

while harder-to-detect R2L attacks were detected
with over 85% precision.

Similarly, ROC curves plotted for each model
(omitted here for brevity) indicated an AUC of
0.95 for CNN-LSTM, exceeding the benchmarks
set in comparable IDS studies (Nguyen et al.,
2023).

4.2 Threat Class Distribution

One of the critical challenges in IDS is handling
imbalanced class distributions, where attack
types occur at different frequencies. Figure 5
presents the distribution of attack classes in the
CICIDS2017 dataset, including DoS, DDoS, Probe,
U2R, R2L, and regular traffic.

Threat Class Distribution

U2R

DoS

Probe

Figure S : Distribution of attack classes in the CICIDS2017 dataset.

From the chart:
< Denial of Service (DoS) and
Distributed Denial of Service (DDoS)
attacks comprise 55% of total attacks
combined.

< Probing attacks represent 20%,

targeting vulnerability scanning.

«  Though critical, R2L (remote to local)
and U2R (User to root) attacks
constitute only 15% of the total.

«  Regular traffic makes up 10%.

This significant skew toward high-frequency

attacks like DoS causes bias in model learning,

favouring majority classes and underperforming
minority classes like U2R. We implemented

SMOTE  oversampling and class-weight
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adjustments during training (Chawla et al., 2002;
Lin et al., 2015).

Moreover, our hybrid model showed more
resilience to class imbalance than CNN and LSTM
alone, achieving higher recall for rare classes, as
confirmed by confusion matrix data.

4.3 Inference Efficiency

While accuracy is vital, real-time deployment of
IDS models also requires low latency and
memory efficiency, especially in high-throughput
environments such as enterprise networks and
cloud-native infrastructures (Aljawarneh et al.,
2018).

Table 2 summarizes the latency and model size for each architecture during inference on a standard NVIDIA

RTX GPU:
Table 2 : Inference Efficiency of IDS Models
Model Latency (ms) Model Size (MB)
CNN 12 4.2
LSTM 18 5.1
CNN-LSTM 20 6.7
As shown: consequence of combining two deep learning

« The CNN model exhibits the lowest
latency and smallest footprint, which
makes it ideal for lightweight
deployment.

< LSTM incurs higher latency due to
sequential computations.

« CNN-LSTM, while slightly larger and
slower, remains within acceptable
bounds for real-time detection (<25ms
latency).

These findings suggest that CNN-LSTM can be

feasibly deployed in operational settings with

minimal hardware overhead, offering a good
balance between detection accuracy and runtime
efficiency.

5. Discussion

The experimental results presented in the previous
section provide strong evidence of the efficacy of
the CNN-LSTM hybrid architecture for real-time
intrusion detection. This section discusses the
implications of these findings, the superiority of the
proposed model, its potential for deployment in
real-world scenarios, and challenges that must be
addressed before operationalization. In addition,
this discussion evaluates threats to the internal and
external validity of the study and provides practical
recommendations for building robust
Al-augmented IDS systems.

5.1 Interpretation of CNN-LSTM Superiority
The results reveal that the CNN-LSTM hybrid
model consistently outperforms standalone CNN
and LSTM architectures across all evaluated
metrics—accuracy, precision, recall, F1-score, and
AUC. This performance advantage is a direct

paradigms that exploit complementary strengths:
% CNN is highly effective at extracting
localized spatial features and patterns,
especially in network flow data where
attacks often manifest as structural
anomalies (e.g., unexpected packet size
or frequency).
LSTM, in contrast, excels in modelling
temporal dependencies, making it

>

o,
*

particularly  suitable for identifying

time-based attack patterns such as slow

loris or probing scans.
By integrating CNN and LSTM layers, the hybrid
model can simultaneously extract spatial
correlations from raw input features and model
sequential patterns over time. This dual perspective
is especially critical in intrusion detection, where
structural deviations and temporal behaviours
contribute to attack signatures (Talukder et al.,
2023, 2021; Shone et al., 2018).
The radar chart in the results section highlights that
the CNN-LSTM architecture achieves over 94%
across all core metrics, which is statistically
significant and operationally meaningful for
cybersecurity systems. High precision ensures
minimal false positives critical in environments
where alert fatigue can degrade incident response.
Similarly, high recall ensures that actual threats are
not missed, a weakness commonly observed in
traditional anomaly detection systems.
Furthermore, the model's robustness in identifying
minority attack classes such as U2R and R2L,
despite their low frequency in training data,
suggests that the hybrid architecture is less prone to
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class dominance bias, often seen in unbalanced
datasets (Lin et al., 2015; Moustafa & Slay,2015).
5.2 Scalability to Real-World Networks
From a deployment perspective, scalability is a key
consideration. Real-world network environments
are characterized by high throughput, dynamic
topology, and heterogeneity in traffic patterns. The
CNN-LSTM model demonstrates promising
scalability potential for several reasons:
Inference Time and Model Footprint: As shown
in Table 1, the CNN-LSTM model maintains a
reasonable inference latency of ~20 milliseconds
and a model size of 6.7 MB, both within
operational limits for real-time systems. This model
is deployable with minimal tuning in
high-performance environments where decision
latency must remain below 50 ms.
Edge and Cloud Compatibility: The model can
be containerized and deployed on edge devices
(e.g., firewalls, IoT gateways) and cloud-based
SIEM platforms. Its memory and CPU/GPU
requirements are  modest compared to
transformer-based models, making it suitable for
hybrid deployment scenarios (Nguyen et al., 2023).
Transferability = Across Datasets:  During
cross-validation with CICIDS2017 and NSL-KDD
datasets, the CNN-LSTM model retained high
performance, indicating good generalization across
traffic distributions and feature domains. This
property suggests its adaptability to enterprise
networks, cloud infrastructures, and critical
national infrastructure systems.
Compatibility with Real-Time Traffic Streams:
The model was evaluated wusing simulated
streaming input from packet capture logs with
batched classification windows, demonstrating its
suitability for online intrusion detection pipelines
(Aljawarneh et al., 2018). Future integration with
Apache Kafka or Flink can further enable real-time
streaming detection.
5.3 Challenges in Deploying Real-Time IDS
Systems
Despite the evident strengths of the CNN-LSTM
model, deploying such systems in operational
cybersecurity environments presents several
challenges:
« Data Pipeline Complexity: Real-time
IDS deployment requires seamless
ingestion, preprocessing, and network
traffic classification, often at gigabit
speeds. Building such data pipelines
involves:

B Efficient packet parsing and feature
extraction.
B [atency-optimized buffering and
batching mechanisms.
B Integration with existing security
infrastructure (e.g., SIEM, firewalls,
SOAR platforms).
These tasks demand engineering expertise and
present risks related to data loss, synchronization
issues, and performance bottlenecks.

% Labelling and Ground Truth
Availability: Supervised models like
CNN-LSTM require labelled data for
training and periodic re-calibration. In
most organizations, such labelled data is
sparse or unavailable. This can lead to
data drift, where the model degrades
over time due to changes in attack
patterns or network behaviour (Camarda
et al., 2025).

Model Updating and Versioning:
Cyber threats evolve rapidly,
necessitating continuous retraining and
model updates. Without robust
versioning and deployment pipelines
(e.g., MLOps integration), this may
introduce inconsistencies in threat

>
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detection.

< Operational Acceptance and
Explainability: Security professionals
may resist Al-based decisions that lack
explainability. Deep learning models,
while powerful, are often criticized as
black boxes. The absence of model
interpretability can impede trust and
adoption (Patil et al., 2022).

Hardware and Network Constraints:

KD

%

Real-time classification of encrypted or
compressed traffic introduces
computational and throughput
bottlenecks. In  resource-constrained
edge environments (e.g., remote
branches or IoT setups), deploying even
lightweight DL models may require
hardware acceleration.

5.4 Threats to Validity

As with any machine learning-based study, several

threats to validity must be acknowledged:

v Data Bias: The datasets used
(NSL-KDD, CICIDS2017) are widely
accepted benchmarks but may not reflect
the full complexity of real-world traffic.
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For instance, they may lack modern
malware variants, zero-day attack
signatures, or proprietary application
behaviours (Ring et al.,, 2019). This
limits external validity.

<  Overfitting Risk: Deep learning models
are prone to overfitting, primarily when
imbalanced class distributions exist.
Despite implementing dropout
regularization and early stopping, there
remains a risk that the model has
partially memorized training data rather
than learned generalizable patterns.

< Adversarial Vulnerabilities: Deep
learning models are susceptible to
adversarial examples of small input

perturbations that cause misclassification.

An attacker could exploit this by crafting
traffic that evades detection. Robustness
to adversarial attacks was not explicitly
tested in this study, constituting an
important area for future exploration
(Papernot et al., 2017).

< Label Leakage and Redundancy:
Improper preprocessing can lead to
feature-label leakage, where a model
learns from features that correlate
directly with labels (e.g., timestamp
anomalies). Though rigorous
preprocessing was applied, unintentional
leakage cannot be entirely ruled out in
large datasets.

5.5 Recommendations for Robust IDS Design

Based on the findings and identified limitations,

several practical recommendations can be made for

developing and deploying robust, Al-augmented

IDS:
« Adopt Hybrid Architectures: Security
teams should favour hybrid models like
CNN-LSTM for their ability to extract
spatial and temporal features, which are
critical for diverse intrusion types.

< Integrate with MLOps Pipelines:
Deploying models in production requires
robust pipelines for data versioning,
retraining, and monitoring. Integration
with platforms such as MLflow or
Kubeflow is recommended.

< Employ Real-Time Feature
Engineering: To support live
classification, feature extraction tools
(e.g., Zeek, Wireshark plugins) must be

optimized for low-latency transformation
of raw packets into structured inputs.

% Mitigate Data Imbalance: Use
oversampling,  under-sampling, or
synthetic generation techniques (e.g.,
SMOTE, GAN-based augmentation) to
improve learning in minority classes
without biasing the model.

s Incorporate  Adversarial Defense
Mechanisms: Models should be trained
using adversarial training, input
sanitization, or robust loss functions to
resist perturbation-based evasion
techniques.

s Enable Explainability  Features:

Explainable AI (XAI) techniques such as

SHAP or LIME should be integrated to

provide insights into feature importance

and enhance operational trust among

SOC analysts.

Benchmark  Continuously:  Future

models should be benchmarked on open

datasets and live enterprise traffic

>
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through controlled deployments,

honeypots, or  synthetic traffic

generators.
In conclusion, the CNN-LSTM hybrid model offers
a promising and practically deployable approach to
real-time intrusion detection. Its high detection
accuracy, temporal-spatial learning capability, and
modest latency profile make it suitable for various
deployment environments. However, real-world
integration demands a systemic approach
encompassing robust data pipelines, continual
learning mechanisms, adversarial robustness, and
interpretability enhancements. Addressing these
challenges will be vital in transitioning from
academic prototypes to operational, Al-powered
cybersecurity defences.

6. Conclusion

The exponential increase in cyber threats—from
denial-of-service attacks to sophisticated zero-day
exploits—underscores the urgent need for
intelligent and adaptive security frameworks.
While foundational to cybersecurity architecture,
traditional intrusion detection systems (IDS) often
fail to detect novel or evolving threats due to their
reliance on signature-based or heuristic rule sets.
Introducing Artificial Intelligence (AI) and, more
specifically, Deep Learning (DL) techniques into
the  cybersecurity = domain  represents a
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transformative  shift in the design and
implementation of IDS. This study sought to
explore and advance this frontier by proposing and
validating a CNN-LSTM hybrid architecture for
real-time, Al-augmented intrusion detection.

6.1 Summary of Objectives and Achievements
The core objective of this research was to design,
implement, and evaluate an intelligent, deep
learning-based IDS capable of delivering high
detection accuracy with low latency and suitable
for real-time deployment in enterprise and
governmental mnetworks. To achieve this, the
study was guided by the following research goals:
Design a deep learning model that integrates
spatial and temporal feature learning: This was
addressed by developing a hybrid CNN-LSTM
architecture. CNN layers captured spatial
correlations among network features, while LSTM
units modelled temporal dynamics in traffic
sequences.

Benchmark the performance of the proposed
model against traditional ML and standalone
DL models: The hybrid CNN-LSTM model was
compared with baseline CNN and LSTM
architectures on the CICIDS2017 and NSL-KDD
datasets, achieving superior performance across
accuracy (96%), precision (95%), recall (94%),
F1-score (94%), and AUC (0.95).

Assess the practicality of deploying the model in
real-time environments: The model demonstrated
an inference latency of 20 ms and a compact size of
6.7 MB, confirming feasibility for integration into
operational IDS systems without excessive
computational resources.

Analyze threats to model validity and propose a
roadmap for robust IDS design: The discussion
addressed challenges, including class imbalance,
overfitting,  adversarial  vulnerabilities, and
deployment issues, offering mitigation strategies
through regularization, synthetic data generation,
and MLOps integration.

These achievements validate the CNN-LSTM
approach as an effective mechanism for modern
threat detection and position it as a realistic
candidate for next-generation cybersecurity
frameworks. Moreover, this research bridges the
gap between theoretical IDS models and
deployable, mission-critical cybersecurity tools by
incorporating multi-metric  evaluation, model
explainability = considerations, and real-time
inference capabilities.

6.2 Practical Implications for Enterprise and
Government Security

The findings of this study carry significant
implications for both enterprise and public sector
stakeholders involved in cybersecurity:

% Strengthening Defense-in-Depth
Architectures: In complex enterprise
environments, layered security (firewalls,
antivirus, behavioural analysis, and IDS)
is standard. The CNN-LSTM model can
act as a smart intrusion detection layer
capable of identifying subtle anomalies
and unknown threats that
signature-based systems may miss. This
reduces reliance on static rules and
enhances defence against polymorphic
malware and zero-day exploits.
Enhancing Security Operations
Center (SOC) Efficiency: False
positives are a significant burden in
traditional IDS, overwhelming security
analysts and delaying incident response.

>
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The high precision demonstrated by the

hybrid model significantly reduces false

alerts, improving the signal-to-noise
ratio in SOC dashboards and enabling
more timely, targeted interventions.

< 3. Adapting to Encrypted and Evasive

Traffic: Modern attack traffic often

leverages encryption or obfuscation

techniques to bypass inspection. Deep
learning models, especially CNN-based
architectures, can detect non-obvious
patterns and side-channel behaviours in
such traffic, providing visibility into
encrypted flows without decryption,
thereby maintaining privacy while
ensuring security.

< 4. Flexible Deployment Across

Infrastructure Layers: With acceptable

latency and model size, the CNN-LSTM

model can be deployed across multiple
network layers:

B Edge Nodes: At IoT gateways and
remote branches for early anomaly
detection.

B Network Core: Integrated with
high-speed routers and switches for
real-time packet inspection.
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B Cloud SIEM Platforms: For
scalable, centralized threat
correlation and logging.

< Supporting National Cybersecurity
Policies: For governmental
organizations tasked with securing
national critical infrastructure (energy
grids,  water  systems, financial
exchanges), Al-augmented IDS like the
one proposed in this study can provide
autonomous, proactive threat
detection capabilities. Given rising
threats from state-sponsored cyber actors,
such adaptive systems can bolster
national cyber defence resilience.
6.3 Scope for Future Research
While this research establishes a strong foundation,
it also reveals opportunities for deeper
investigation and innovation. Future work can
explore the following key areas to enhance further
the efficacy, resilience, and interpretability of
Al-based IDS:

6.3.1 Adversarial Learning and Robustness

Deep learning models, including the CNN-LSTM

hybrid, are vulnerable to adversarial examples

crafted inputs designed to mislead the model
without raising alarms. Cyber adversaries may
exploit this vulnerability to evade detection by
introducing subtle perturbations into packet headers
or payloads.
«  Future IDS designs should incorporate
adversarial training techniques that
expose the model to perturbed data
during learning, improving resilience.

«  Robust loss functions and gradient
masking strategies may also be
employed to reduce the attack surface of
deployed IDS systems (Papernot et al.,
2016).

« Real-time adversarial detection modules
can complement the CNN-LSTM core to
flag suspicious input patterns.

6.3.2 Federated Intrusion Detection Systems

Modern networks are distributed across cloud,

on-premise, and edge devices. Centralized training

of IDS models is increasingly impractical due to
data privacy concerns and bandwidth limitations.

Federated Learning (FL) enables model training

across distributed nodes without sharing raw data.

% Federated IDS would allow each

participating device or subnet to train a

local model and contribute gradients to a

central server for aggregation.

This preserves privacy, reduces latency,

and increases the geographic resilience

of the IDS ecosystem (Truex et al.,

2019).

* However, federated IDS also introduces
challenges in model synchronization,
non-iid data distributions, and
adversarial poisoning, which future
research must address.

6.3.3 Transformer-Based Architectures

Recent breakthroughs in Natural Language

Processing (NLP) and time-series classification

have positioned Transformer models as a

state-of-the-art solution for sequential data. Their

X3

*

attention mechanisms can dynamically weigh input
features across time and are particularly effective
for long-range dependencies.
% Applying Transformers (e.g., BERT,
ViT, or custom temporal transformers) to
IDS may unlock even greater
classification performance than
CNN-LSTM, especially in handling
heterogeneous input features.
s Studies have begun exploring
Transformer variants like Informer,
Time2Vec, and TransIDS, which may
outperform traditional RNNs in terms of
both accuracy and training efficiency
(Nguyen et al., 2023).
Integrating attention layers into the
CNN-LSTM architecture may also yield
hybrid transformer models for IDS.
6.3.4 Model Interpretability and Explainable Al
One critical barrier to deploying Al-based IDS in

KD

%

regulated environments is the lack of transparency
in model decisions. Security analysts require
explainable output to justify alerts and take
appropriate action.
¢ Future work should incorporate XAI
techniques like LIME, SHAP, or
Grad-CAM to explain how input features
contribute to visual predictions.

s Attention-based = mechanisms  from
transformer models can also provide
self-explanation by highlighting
influential time steps or packet features.
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%  Explainability not only improves trust
but also accelerates incident triage and

forensics.
6.3.5 Real-Time Streaming and Edge
Adaptation

As 5G and edge computing continue to gain
adoption, IDS must adapt to low-latency,
resource-constrained environments.  Further
research is required to:
«  Optimize CNN-LSTM inference for
low-power processors (e.g., ARM
Cortex, NVIDIA Jetson).
< Leverage model compression techniques
such as quantization and knowledge
distillation to reduce memory footprint.
< Implement event-driven architectures
using message brokers (e.g., Kafka,
MQTT) for seamless model integration
in streaming security operations.
6.4 Closing Reflections
This research demonstrates that when properly
architected, trained, and validated, Al Al can play a
central role in defending digital infrastructures
from increasingly complex and covert cyberattacks.
The CNN-LSTM model developed here is not
merely a theoretical contribution but a deployable
and scalable solution capable of adapting to the
dynamic threat landscape.=
More broadly, this study contributes to the
evolving discourse around the convergence of Al
and cybersecurity. It offers a blueprint for building
Al-augmented IDS that are:
« Technically sound (validated across
multiple datasets),
« Operationally viable (lightweight, fast,
and scalable),
«  Strategically significant (aligned with
security needs of modern institutions).
To realize the full potential of Al in cybersecurity,
continued collaboration is needed across disciplines,
uniting data scientists, network engineers,
policymakers, and ethical hackers. By doing so, we
can create intelligent, transparent, and resilient
digital immune systems capable of protecting the
world's most critical assets in real-time.
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