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Abstract— The growing challenges of climate change, food insecurity, and the digital divide have motivated significant 

research into artificial intelligence (AI), the Internet of Things (IoT), and digital education as enablers of sustainable farming. 

This review synthesizes multiple internationally recognized papers published between 2015 and 2024, covering three thematic 

domains: AI and IoT applications in farming, AI-powered education and digital literacy for rural communities, and farming’s 

role in hunger mitigation within the framework of Sustainable Development Goal 2 (Zero Hunger). It was found that AI and 

IoT innovations improve crop yield, resource efficiency, and pest management; AI-driven education platforms enhance 

farmers’ skills and digital inclusion; and targeted agricultural interventions can significantly reduce hunger risk. However, 

issues of infrastructure, affordability, digital literacy, and policy integration remain critical challenges. Future work has been 

suggested toward integrated frameworks combining AI, IoT, and education platforms to enable scalable, inclusive, and 

climate-resilient farming systems. 

Keywords: Artificial Intelligence (AI); Internet of Things (IoT); Digital Literacy; Precision Agriculture; Sustainable Farming 
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1. INTRODUCTION 

Food insecurity and rural poverty continue to threaten 

millions of households worldwide[1]. Farmers face 

yield losses due to pests, climate variability, and 

inefficient resource use, while underserved 

communities face exclusion from digital opportunities. 

Artificial intelligence and IoT technologies have been 

increasingly applied to agriculture, offering solutions 

such as yield prediction, pest detection, smart 

irrigation, and supply chain optimization [2]. In 

parallel, AI-driven education platforms have emerged 

to bridge digital divides by providing multilingual, 

gamified, and context-aware learning experiences[3]. 

Farming has also been directly linked to hunger 

mitigation, where precision agriculture, crop 

diversification, and food redistribution systems are 

being studied as interventions[4, 5]. 

This review aims to: 

1. Analyze the role of AI and IoT in transforming 

farming practices. 

2. Examine AI-powered digital literacy initiatives for 

farmers and rural learners. 

3. Assess farming’s contribution to hunger mitigation 

and SDG-2. 

2. METHODOLOGY 

The review was conducted on peer-reviewed papers 

from IEEE, Elsevier, Scopus, Web of Science, 

Springer, and Sage (2015–2024). Approximately 50 

papers were selected on farming, AI education, and 

hunger mitigation, with an additionally about 15 

papers on SDGs and sustainability. Thematic grouping 

was applied instead of a chronological narrative. Each 

paper was summarized by title, year, methodology, 

findings, and limitations, and analyzed within thematic 

clusters[6]. 
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3. AI AND IOT FARMING 

AI and IoT technologies are significantly transforming 

precision agriculture by enabling smarter decision-

making and automation[7].  

a. Precision Crop Monitoring: Machine learning 

models (including deep CNNs and RNNs) have been 

applied to predict crop yields with high accuracy [8]. 

In fact, some studies report yields prediction errors as 

low as ~1.3% using ensemble neural networks[9]. 

Computer vision techniques for plant disease and pest 

detection similarly show remarkable performance – 

deep learning models (e.g. CNNs, YOLO) often 

exceed 90% accuracy in identifying plant diseases 

from images [10]. For example, hyperspectral imaging 

combined with neural networks achieved ~99% 

accuracy in detecting wheat rust infections in the field, 

enabling much earlier and more precise disease 

management[11-12]. 

b. IoT Sensors and Smart Irrigation: Low-cost sensor 

networks are improving resource efficiency on farms. 

IoT-based irrigation systems that monitor soil 

moisture and weather can autonomously optimize 

water usage[13]. A field trial using a LoRaWAN 

wireless sensor network in tomato farming 

demonstrated a 22–28% improvement in water-use 

efficiency and a 15–22% increase in crop yield under 

an automated irrigation schedule[14]. Notably, the 

entire IoT setup was built for under $1000, 

highlighting that such solutions can be affordable for 

smallholders[15]. 

c. Digital Twins and Farm Automation: Emerging 

“digital twin” models are being used to simulate farm 

scenarios before real-world deployment[16]. For 

instance, researchers developed a digital twin of an 

irrigation system that integrates real-time sensor data 

(soil, weather, crop status) with a virtual farm model. 

This allows farmers to test different irrigation 

strategies virtually, reducing risk and improving 

decision-making[17]. 

d. AIoT Architectures: Many initiatives integrate AI 

with IoT (“AIoT”) through cloud and edge computing 

frameworks to enable real-time farm analytics[18]. 

Drones, satellite data, and ground sensors together 

feed big data platforms that AI algorithms analyze for 

insights like pest outbreak predictions or fertilizer 

optimization. Such data-driven agriculture techniques 

could increase farm productivity by up to 45% while 

reducing inputs like water by 35% under experimental 

conditions. However, bridging these innovations to 

broad practice remains a challenge. Rural connectivity 

gaps, high device costs, and data privacy concerns are 

persistent hurdles[19]. Even in developed countries, 

fewer than 20% of farmers have adopted digital 

agriculture tools so far, largely due to the cost and 

uncertain ROI of sensors and analytics. These 

challenges underscore the need for affordable 

hardware and better infrastructure to fully realize 

AI/IoT benefits in farming[20]. 

 

 
Figure 1: Impact of AI and IoT Framing Costs 
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4. AI EDUCATION AND DIGITAL LITERACY FOR 

RURAL COMMUNITIES 

 Empowering farmers with digital skills and AI-driven 

knowledge is crucial. 

a. AI-Powered Learning Platforms: Intelligent 

educational tools are being deployed to bridge the 

digital divide in rural areas. For example, AI chatbots 

and voice-based assistants now deliver agricultural 

advice in local languages, allowing even low-literacy 

farmers to access information through simple 

conversations. This personalization – farmers can ask 

questions via voice, text, or images – helps overcome 

language and literacy barriers in learning. Digital 

Green’s FarmerChat is one such AI assistant that 

works through voice/chat in the farmer’s native 

language, providing real-time answers about farming 

practices[21]. 

b. Inclusive and Contextual Learning: Notably, these 

AI advisors have been especially empowering for 

women farmers and extension agents. In a deployment 

in India, women used the AI assistant twice as much 

as their male counterparts, leveraging it for immediate, 

confident advice on issues like climate-smart pest 

management. This suggests AI tools can promote 

inclusivity and gender equity in agricultural 

knowledge access. Moreover, by using location-

specific data (weather, soil, market prices), the advice 

can be tailored to each farmer’s context, making 

learning immediately relevant[22]. 

c.  Impact on Extension Services: AI-driven platforms 

can dramatically lower the cost and scale of 

agricultural extension. Traditional in-person extension 

might cost around $35 per farmer reached, whereas an 

AI chatbot system can deliver personalized guidance 

for mere cents per farmer (about $0.35), a two-order-

of-magnitude reduction. This cost-effectiveness means 

many more farmers can be served with timely advice 

and tutorials, from best agronomic practices to 

financial and market literacy[23].  

Case Studies and Initiatives: Various projects 

illustrate the trend of integrating AI into agricultural 

education. The “Agro-AI Education” program, for 

instance, introduced basic AI concepts and active 

learning tools into an agricultural high school 

curriculum to prepare future farmers for AI-enabled 

farming. Other efforts have explored gamified mobile 

learning apps and even augmented reality for farming 

education, aiming to engage rural youth. Early studies 

report that AI-personalized learning (e.g. 

recommending specific farming tips or training 

modules based on a user’s profile) increases farmer 

engagement and retention of knowledge. Overall, 

while AI can’t replace traditional human extension 

agents, it serves as a force-multiplier – enabling 

extension services to reach more people with 

customized support. The key is building farmers’ trust 

in these digital tools. Ensuring content is culturally 

relevant, in regional languages, and augmenting (not 

replacing) human experts are important for long-term 

adoption. As rural communities become more digitally 

literate through such initiatives, their capacity to adopt 

advanced farming technologies should rise in 

tandem[24]. 

 

5. FARMING AND HUNGER MITIGATION 

Agricultural innovation directly ties into global hunger 

reduction efforts (SDG 2: Zero Hunger). Boosting 

Yields and Food Supply: AI and IoT-driven farming 

can increase food availability by improving 

productivity and reducing losses. According to the 

World Health Organization, over 820 million people 

were undernourished in 2018.A number exacerbated 

by climate change and population growth. By 

leveraging AI, farmers can grow more food on the 

same land. For example, data-driven farming 

techniques (precision seeding, fertilizer optimization, 

smart irrigation) are projected to raise farm 

productivity significantly; one estimate suggests up to 

67% higher productivity globally by 2050 if such 

innovations are widely adopted. Early successes are 

promising: applying sensor-guided precision irrigation 

was shown to increase yields ~45% while using 35% 

less water, indicating more crop per drop – critical for 

food security in water-scarce regions. AI models are 

also used to predict crop failures or drought impacts, 

giving governments lead time to organize relief and 

thus averting food crises[25].  

a. Food Redistribution and Waste Reduction: 

Technology is addressing hunger not just by growing 

more food but by better distributing what we have. 

Notably, roughly 40% of food produced in some 

countries (e.g. the U.S.) is wasted instead of eaten. To 

tackle this inefficiency, ICT platforms like eFeed-

Hungers connect surplus food donors with those in 

need. Using a simple mobile-friendly app, restaurants, 

grocery stores, or even households can post 

information about excess food, and charities or hungry 

families can claim it. This kind of digital marketplace 

for leftover food has the dual benefit of reducing food 

waste and directly alleviating hunger in 

communities[26]. Early implementations have focused 
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on making the system as accessible as possible – for 

instance, donors drop off food at public pickup points 

like churches or pantries to streamline logistics. As 

smartphone usage becomes nearly ubiquitous even in 

developing regions, such platforms have potential for 

wide outreach (as one developer noted, “almost 

everyone has a cell phone,” which can facilitate wider 

participation in hunger relief networks). 

b. Climate-Smart Agriculture: Sustainable farming 

practices are crucial to reduce hunger under climate 

variability. AI is helping model and promote climate-

smart interventions – e.g. drought-tolerant crop 

varieties, improved storage, diversified cropping 

systems – which can buffer communities against 

famine. Simulation studies in sub-Saharan Africa have 

shown that adopting climate-smart strategies can 

significantly lower the risk of hunger. In Ethiopia, for 

example, an agent-based modeling study found that 

providing farmers with weather forecast information 

and corresponding advisories improved crop yields by 

about 17% in dry seasons and up to 30% in good 

seasons. Such yield gains directly translate to better 

food availability and resilience against drought-

induced shortages[27]. Likewise, other research using 

agent-based models suggests that a package of 

climate-smart practices (efficient water use, 

agroforestry, etc.) could reduce the population at risk 

of hunger by a substantial fraction (on the order of 20–

30% in certain scenarios).  

c. Regional Challenges and Interventions: Despite 

these technological gains, some regions face structural 

challenges in achieving food security. Sub-Saharan 

Africa, for instance, has huge yield gaps and rapid 

population growth, making it a focal point for Zero 

Hunger. A seminal study asked “Can sub-Saharan 

Africa feed itself?” and found that if current low yield 

growth rates persist, the region’s cereal self-

sufficiency could drop to ~40% by 2050 (from ~80% 

today). Even modest improvements (e.g. raising yields 

to 50% of attainable potential) would only lift self-

sufficiency to around 60%. This implies that without 

major agricultural intensification, many African 

nations will remain dependent on food imports or face 

higher hunger rates. The same study noted that if yields 

could reach 80% of their agronomic potential, some 

countries would produce surplus food, though others 

would still be below 75% self-sufficient. Thus, 

targeted interventions are needed – from providing AI-

driven advisory services to smallholders, to improving 

access to inputs like quality seed and fertilizer – to 

close these gaps. In regions like South Asia and parts 

of Latin America, the issue is often not just production 

but distribution and affordability of food, which again 

points to the importance of integrating technology with 

policy (e.g. price supports, food subsidy programs 

informed by AI analytics to target vulnerable 

populations). In summary, farming innovations are a 

linchpin in hunger mitigation: they increase food 

production, enable smarter response to crop failures, 

and facilitate more equitable food distribution. Yet 

technology alone is not a silver bullet; it must go hand-

in-hand with investments in rural infrastructure and 

inclusive policies so that the fruits of AI/IoT-

augmented agriculture reach the world’s poorest. As 

one report noted, the “war on hunger” will be won 

through a creative combination of human efforts and 

artificial intelligence, underscoring that social and 

technical solutions must work in tandem[28]. 

 

 
Figure 2: Farming and Hunger Mitigation-Key Insights 
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6. COMPARATIVE ANALYSIS 

The three thematic domains reviewed – smart farming 

technology, digital literacy, and hunger mitigation – 

are deeply interrelated and together paint a 

comprehensive picture of sustainable agriculture 

development: 

Farming Technology (AI & IoT): Advanced 

technologies offer clear gains in productivity and 

sustainability. Precision agriculture techniques (like 

sensor-guided irrigation and AI-based pest detection) 

improve yields while optimizing resource use. These 

innovations contribute to environmental goals (e.g. 

water conservation, lower pesticide usage) and can 

increase farmers’ income through higher efficiency. 

However, the mere availability of technology does not 

ensure its adoption or impact. Many of the reviewed 

studies highlight impressive technical results (high 

prediction accuracies, big yield boosts in pilot 

projects), but scaling those results to millions of farms 

remains challenging[29]. 

Digital Literacy and Education: This is the enabling 

layer that determines whether farming communities 

can leverage the new technologies. AI-powered 

platforms and mobile apps make agricultural 

knowledge more accessible – for instance, delivering 

advice in local languages via chatbots has shown 

success in engaging farmers. By improving farmers’ 

digital skills and confidence, these initiatives drive 

technology adoption from the ground up. In regions 

where farmers have received training (even informally 

through smartphone apps or extension videos), there is 

higher uptake of precision farming practices and better 

maintenance of IoT systems. Thus, investments in 

human capital – through education, demonstrations, 

and support-are as important as the tech itself. 

Hunger Mitigation via Farming: Agricultural 

development directly feeds into food security 

outcomes. The review finds a consensus that 

improving farming (through AI, IoT, or otherwise) is 

essential to meet Zero Hunger targets. Enhanced yields 

and reduced crop losses increase food availability 

locally and globally Moreover, tech-driven 

efficiencies (like better supply chain logistics or food 

recovery networks) help get food to the 

undernourished. That said, hunger is a multi-faceted 

problem – it is not only about producing enough food, 

but also about economic and physical access to food. 

This is why complementary measures (e.g. poverty 

alleviation, food distribution programs) must 

accompany farming interventions. Agricultural 

technology addresses the supply side of hunger; to 

fully eliminate hunger, demand-side issues 

(affordability, distribution equity) must be tackled 

through policy and social programs[30]. 

Gap and Dependencies: A recurring theme is that 

promising technologies alone cannot solve systemic 

issues without supportive infrastructure, affordability, 

and policies. For instance, an IoT sensor network 

might dramatically improve yields on a research farm, 

but a smallholder farmer will not adopt it if it’s too 

expensive or if they lack reliable internet and 

electricity. The gap between innovation and adoption 

is often bridged by education (as noted above) and by 

enabling environments created through policy. 

Government policies that subsidize rural connectivity, 

provide credit for farmers to buy tech, or protect data 

privacy can accelerate adoption. Likewise, multi-

stakeholder collaboration is needed – e.g. public-

private partnerships to develop localized AI tools, or 

open data initiatives to share agronomic data for AI 

model. In short, the effectiveness of AI/IoT in farming 

is intertwined with human and institutional factors. 

Without raising digital literacy and addressing 

economic barriers, the best technologies may remain 

underutilized. Conversely, when farmers are 

empowered and policies align (for example, India’s 

ambitious digital agriculture missions, or African 

programs combining farmer training with tech rollout), 

the impact of AI and IoT is magnified in achieving 

sustainable farming and hunger reduction[31]. 

Overall, the comparative analysis underlines that 

technology, education, and food security outcomes are 

part of one continuum. AI and IoT provide the tools, 

education provides the skills to use the tools, and the 

ultimate goal – reducing hunger – can be met when 

both tools and skills are applied appropriately. The 

“revolution” in agriculture from AI will thus be as 

much social as it is technical, requiring an integrated 

approach.  
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7. CHALLENGES 

a. Infrastructure Gaps (Connectivity, Electricity): 

Many rural areas lack reliable internet and electricity, 

which are prerequisites for running IoT devices, cloud-

based analytics, and AI-driven platforms. Even where 

mobile connectivity exists, bandwidth is often too low 

for high-frequency sensor data transmission or real-

time UAV imaging. Without substantial investment in 

digital infrastructure, AI/IoT systems remain 

inaccessible to the very farmers who could benefit the 

most. 

b. High Costs of IoT Devices and Sensors: While pilot 

studies demonstrate impressive yield and efficiency 

improvements, sensors, UAVs, and cloud 

subscriptions remain expensive for smallholders. For 

example, LoRaWAN-based smart irrigation setups can 

cost hundreds of dollars upfront, which is prohibitive 

in low-income regions. Until costs are reduced through 

subsidies, open-source designs, or affordable 

hardware, adoption will remain limited. 

c. Data Scarcity and Privacy Issues: AI models require 

large, high-quality datasets for training. However, 

agricultural data (soil health, yield records, pest 

patterns) is often fragmented, proprietary, or 

nonexistent in many regions. Where data collection 

does occur, privacy and ownership become concerns 

— farmers may be reluctant to share sensitive farm-

level data if they fear exploitation by corporations or 

lack legal protections. 

d. Low Farmer Digital Literacy: Even if AI and IoT 

tools are available, many farmers lack the digital skills 

to operate them effectively. This gap leads to 

underutilization of technology and reliance on 

intermediaries, which can reduce trust and adoption. 

Digital literacy training is thus a prerequisite for 

realizing the potential of AI-driven agriculture. 

d. Policy and Regulatory Barriers: Inconsistent or 

outdated agricultural and data policies can delay the 

scaling of AI/IoT solutions. For example, lack of clear 

regulations around drone usage in farming prevents 

UAV-based crop monitoring in some regions. 

Similarly, inadequate legal frameworks around data 

ownership discourage investment in digital platforms. 

e. Interoperability and Standardization Issues: 

Different IoT devices and platforms often operate on 

incompatible standards, making it difficult for farmers 

to integrate multiple tools (e.g., combining soil 

moisture sensors with UAV data). Without universal 

standards, technology ecosystems remain fragmented, 

driving up costs and complexity. 

f. Scalability of Pilot Projects: Most research 

demonstrates success in controlled trials or small-scale 

pilots, but scaling these to millions of smallholder 

farms is far more challenging. Variations in climate, 

soil, crop types, and socio-economic conditions mean 

that models trained in one region may perform poorly 

in another. The transition from research to real-world 

scalability remains a significant barrier[32]. 

g. Trust and Social Acceptance: Farmers may hesitate 

to adopt AI-driven advisory tools if they perceive them 

as “black boxes” without transparency. Cultural 

factors also matter — in some regions, farmers prefer 

traditional knowledge or advice from trusted local 

extension officers over algorithmic suggestions. 

Building trust through participatory design and 

explainable AI is critical. 

h. Environmental and E-Waste Concerns: While 

digital farming promises sustainability, mass adoption 

of IoT devices raises concerns about electronic waste, 

battery disposal, and carbon footprints from data 

centers powering AI models. Without responsible 

design and recycling systems, the environmental costs 

could undermine sustainability goals. 
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i. Unequal Access and Risk of Digital Divide: AI and 

IoT may disproportionately benefit large, commercial 

farms with capital to invest, while marginalizing 

smallholders. These risks widen the gap between rich 

and poor farmers, and between developed and 

developing countries. Ensuring equitable access 

through inclusive design and subsidies is therefore 

vital to avoid reinforcing inequalities. 

8. FUTURE DIRECTIONS 

Looking ahead, research and practice should converge 

on integrated strategies that combine technological 

innovation with inclusivity and scalability: 

a. Integrated AIoT and Education Ecosystems: Future 

frameworks will benefit from combining AI/IoT 

solutions with farmer-centered education platforms. 

Rather than deploying farm sensors or apps in 

isolation, there is a need for holistic systems where 

smart farming hardware comes bundled with training 

and advisory services. For example, an ideal scenario 

is an “AI farming assistant” that not only automates 

data collection (sensing soil moisture, detecting pests, 

etc.) but also teaches the farmer how to interpret and 

act on this data via a user-friendly interface or chatbot. 

Pilot programs with AI-driven advisory chatbots are a 

step in this direction, but these need scaling and 

localization. Researchers suggest developing 

community demonstration farms or “living labs” 

where farmers, extension agents, and AI systems work 

together – allowing iterative refinement of 

technologies with user feedback and building trust in 

AI recommendations. Integration across stakeholders 

(farmers, educators, technologists) ensures solutions 

are both high-tech and high-touch. 

b. Lightweight, Localized AI Models: A prominent 

future trend is creating AI models tailored for low-

resource environments. This includes lightweight 

algorithms that can run on inexpensive smartphones or 

micro-controllers at the farm edge (minimizing 

dependence on constant internet/cloud access). By 

compressing AI models or using efficient machine 

learning techniques, developers can enable offline or 

near-offline functionality, which is crucial in remote 

rural areas. Additionally, AI models need to be 

localized – trained on region-specific data (local crop 

varieties, soil conditions, dialects for language 

interfaces). A model that performs well in one country 

may need retraining or transfer learning to work 

effectively in another due to different farming 

contexts. Researchers are already working on 

federated learning approaches, where an AI system can 

improve itself on local farms’ data without requiring 

farmers to share sensitive data, thus respecting privacy 

while adapting to local needs. Future AIoT devices 

might come pre-loaded with regional agronomic 

knowledge and the ability to learn from the farmer’s 

own usage patterns, making them more personalized 

and useful over time[33]. 

c. Policy Support and Infrastructure Development: 

Achieving scale will require policy interventions 

aligned with the UN SDG 2030 timeline. Governments 

and international agencies should formulate policies 

that lower barriers to entry for AI/IoT in agriculture. 

This could involve subsidies or loans for farmers to 

acquire smart equipment, investments in rural 

broadband internet and electricity (since IoT can’t 

function without connectivity and power), and 

establishing data governance frameworks to protect 

farmers’ data rights. Equally important is 

incorporating digital literacy into agricultural 

extension policies – for example, national programs to 

train one tech-savvy “digital champion” in each village 

who can assist others. Policymakers are also 

encouraged to support open platforms and 

interoperability standards so that devices and data can 

work together seamlessly across different brands and 

programs. By creating an enabling environment – from 

robust telecom infrastructure to innovation-friendly 

regulations – policy can ensure that the benefits of AI 

and IoT are equitably distributed, reaching 

smallholders and marginal farmers and not just large 

commercial farms[34]. 

d. Expansion to Diverse Crops and Regions: Thus far, 

a lot of AI in agriculture research has focused on major 

staples (wheat, maize, rice) or high-value crops in 

specific regions. Future work should broaden this 

scope to cover a diversity of crops (including 

indigenous and climate-resilient crops) and farming 

systems. For instance, developing AI models for 

nutrient optimization in root and tuber crops like 

cassava or cocoyam can directly help food security in 

regions where these are staples. Similarly, IoT 

solutions should be designed for pastoral and mixed 

farming systems, not just crop monocultures – e.g. 

affordable sensors for livestock health monitoring or 

grazing land management. Region-specific solutions 

are critical: sub-Saharan Africa’s rainfed 

smallholdings, South Asia’s densely populated delta 

regions, and arid Middle Eastern farms all face unique 

challenges that AI/IoT can address with targeted 

research. Collaborations with local agricultural 

research stations and inclusion of traditional 

knowledge can guide more appropriate technology 
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design. In addition, future agriculture will contend 

with climate extremes, so AI models need to handle 

scenarios of drought, floods, and new pest patterns. 

Building climate resilience into AI recommendations 

(for example, suggesting crop rotation or water 

harvesting techniques when drought risk is high) will 

be a key direction. Ultimately, the next decade should 

see a proliferation of context-aware smart farming 

solutions – ones that are as diverse as the global 

agriculture they aim to serve[35]. 

In conclusion, the convergence of AI, IoT, and digital 

education holds transformative potential for 

sustainable farming and hunger alleviation. The 

research to date paints an optimistic picture: AI and 

IoT can sharply increase efficiency and yields, and 

digital learning can empower farmers to adopt these 

innovations, which together can drive progress toward 

Zero Hunger. The coming years should focus on 

addressing the remaining challenges through 

interdisciplinary and inclusive approaches. By 

building technologies that are not only smart but also 

accessible, and by ensuring farmers are co-creators in 

this digital agricultural revolution, we can move 

toward farming systems that are highly productive, 

climate-resilient, and able to nourish the growing 

world population without leaving anyone behind[36]. 

 

9.ANALYTICAL REVIEW 

a. AI in Precision Farming: Recent studies highlight the 

power of AI and machine learning in precision 

agriculture, achieving notable successes in crop 

monitoring and prediction. For example, yield 

prediction models utilizing deep learning can forecast 

harvests with significant accuracy (often with 

R<sup>2</sup> values around 0.7–0.8), allowing 

farmers to anticipate outputs and plan resources. 

Similarly, image-based AI systems detect plant 

diseases and pests at early stages, in some cases 

identifying crop stress before visible symptoms 

emerge – a critical advantage for timely intervention. 

These AI-driven approaches help optimize inputs 

(water, fertilizer) and reduce losses, but they also face 

limitations: models often require large, high-quality 

datasets and can struggle to generalize across different 

regions or crop varieties. Notably, gaps remain in 

model robustness and scalability – many algorithms 

perform well in controlled experiments or pilot fields 

but need further validation in diverse real-world 

farming conditions[37]. 

b. IoT Architectures for Smart Agriculture: The 

Internet of Things underpins many smart farming 

initiatives by connecting sensors, devices, and 

machines across the farm. A typical IoT-based 

architecture integrates networks of soil-moisture 

sensors, weather stations, camera traps, and smart 

irrigation controllers with cloud or edge computing 

platforms. Such systems have demonstrated improved 

resource efficiency – for instance, automated irrigation 

guided by sensor data can save 20–30% of water usage 

while maintaining or boosting yields. IoT deployments 

enable real-time monitoring of field conditions (soil 

nutrients, microclimate) and precision control of 

equipment (drones for spraying, actuators for 

greenhouse climate control). Practical applications 

range from smart greenhouses to open-field crop 

management, showing tangible benefits in labor 

reduction and decision speed. However, 

interoperability and reliability are ongoing challenges: 

many studies note that custom IoT solutions often lack 

standardization and depend on stable connectivity and 

power, which can be problematic in rural areas. 

Consequently, a critical analysis in the literature points 

to the need for more robust, low-cost IoT frameworks 

that can function in harsh or connectivity-limited 

environments[38]. 

c. AI-Powered Education and Digital Literacy: 

Another core theme is the use of AI and digital 

platforms to empower farming communities through 

knowledge sharing and training. Several initiatives 

leverage mobile applications, e-learning platforms, 

and even AI chatbots to disseminate agricultural 

advice in user-friendly ways. These tools can provide 

personalized recommendations (for example, 

suggesting crop varieties or planting times based on 

local data) and deliver advisory content in local 

languages, often through voice or interactive mediums 

that cater to farmers with low literacy levels. The 

literature indicates that digital literacy programs 

augmented by AI – such as intelligent tutoring systems 

or smartphone-based agricultural extension services – 

have improved farmers’ understanding of modern 

practices and technology adoption rates. Practical 

examples include SMS or voice advisory systems that 

send timely tips on pest management or market prices, 

leading to better-informed decision making at the farm 

level. Still, a critical finding is that the impact of such 

digital interventions depends on accessibility and trust: 

if farmers lack internet access or confidence in the 

information source, the uptake remains limited. Thus, 

researchers identify a gap in last-mile connectivity and 

cultural tailoring of AI-driven educational content, 
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emphasizing that technology must be paired with on-

ground training and support to truly enhance digital 

literacy in rural populations[39]. 

d. Tech-Driven Hunger Mitigation: A significant body 

of work connects AI and IoT innovations with the 

broader goal of hunger mitigation and food security. 

Tech-driven interventions are helping optimize the 

entire agricultural value chain from production to 

distribution. On the production side, predictive 

analytics (such as drought forecasting or yield 

modeling) enable early warning of food shortages, so 

policymakers and NGOs can mobilize resources 

before crises deepen. There are case studies of 

machine learning models accurately predicting regions 

at risk of crop failure, allowing for proactive measures 

(like deploying drought-tolerant seeds or pre-

positioning food aid). In the post-harvest domain, IoT 

and data analytics are used to streamline supply chains 

and reduce food waste – for example, sensors and AI 

routing algorithms can ensure perishables are stored 

and transported under optimal conditions, and surplus 

produce is redirected efficiently to markets or relief 

networks. Evidence from pilot programs shows that 

such smart supply chain systems can significantly cut 

spoilage and improve food availability in underserved 

areas. Nonetheless, the literature critically notes that 

technology alone cannot solve hunger: many projects 

face obstacles in scaling up, coordinating stakeholders 

(farmers, distributors, policymakers), and operating in 

low-infrastructure settings. This highlights a gap 

between pilot successes and large-scale impact, 

suggesting that future efforts must integrate socio-

economic and policy dimensions with technological 

solutions to effectively mitigate hunger. 

e. Climate-Smart Agriculture and Food 

Redistribution: Climate change adaptation in 

agriculture is another theme where AI and IoT play 

transformative roles. So-called climate-smart 

agriculture leverages predictive models and sensor 

networks to help farmers adjust to changing weather 

patterns and extreme events. For instance, AI-driven 

climate models and decision-support tools can 

recommend optimized sowing dates or irrigation 

schedules by analyzing seasonal forecasts and real-

time field data, thereby increasing resilience against 

droughts or floods. IoT-based climate monitoring 

(with distributed temperature, humidity, and rainfall 

sensors) further aids micro-climate management on 

farms, enabling fine-grained adjustments to farming 

practices in response to immediate weather 

fluctuations. Alongside adaptation, digital platforms 

are emerging for food redistribution to tackle hunger 

and waste: these platforms use algorithms to match 

excess food supply with demand (for example, 

connecting farmers or supermarkets with local food 

banks or communities in need). Studies report that 

such data-driven redistribution systems have increased 

the efficiency of food donation networks and diverted 

significant quantities of edible food from waste 

streams to consumption. The combined impact on 

sustainability is twofold – better adaptation of 

agriculture to climate stress (protecting yields and 

livelihoods) and more equitable distribution of food 

resources. Yet, researchers observe that these 

innovations require supportive infrastructure and 

governance to succeed: climate-smart tools must be 

integrated into national agricultural advisory services, 

and food redistribution networks need policy support 

and trust among participants. Thus, while promising, 

the full potential of AI/IoT in climate adaptation and 

hunger reduction will only be realized through 

interdisciplinary collaboration and long-term 

commitment beyond technological development. 

f.  

10.SOME RECENT METHODS IN 

LITERATURE 

a. AIoT Systems: The convergence of AI and IoT – 

often termed Artificial Intelligence of Things (AIoT) 

– has led to intelligent agricultural systems that sense, 

analyze, and act in a closed loop. Instead of IoT 

devices merely collecting data for offline analysis, 

AIoT architectures embed machine learning models 

directly into sensor networks and farm equipment. A 

recent trend is deploying edge AI on farms, where 

devices like camera-equipped drones or soil sensor 

hubs can process data on-site (e.g. identifying weeds 

or pest infestations using onboard neural networks) 

and trigger immediate actions such as targeted 

spraying. These AIoT systems have demonstrated 

faster decision-making and reduced dependence on 

internet connectivity; for example, a smart camera trap 

might instantly recognize and scare away a crop pest 

without waiting for cloud instructions. 

Implementations reported in the literature include 

autonomous irrigation controllers that adjust water 

release based on AI predictions of soil needs, and 

integrated crop monitoring systems where edge 

devices classify plant health in real time and send only 

summary alerts to farmers. The outcome is a more 

responsive and efficient farming process – one study 

noted improved water-use efficiency and yield 

stability using an AIoT-driven irrigation network. 
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Overall, AIoT exemplifies how combining AI’s 

intelligence with IoT’s ubiquity creates powerful tools 

for precision farming, though challenges remain in 

ensuring these distributed AI models are robust, 

secure, and easily updatable in the field[40]. 

b. Digital Twins: Digital twin technology has emerged 

as a cutting-edge method in agriculture, providing a 

virtual replica of farming systems (from individual 

plants or animals to entire fields and supply chains). In 

practice, a digital twin ingests real-time data from IoT 

sensors and farm records to mirror the state of the 

physical system in a computer model. This enables 

advanced simulation and forecasting: for instance, 

farmers can test “what-if” scenarios on the digital twin 

– such as adjusting fertilizer levels or introducing a 

new crop variety – and see predictive outcomes before 

trying them in reality. Recent implementations of 

agricultural digital twins include virtual greenhouses 

that simulate crop growth under different climate 

controls, and livestock health twins that model an 

animal’s condition to predict disease outbreaks or 

optimize nutrition. Experimental results are 

promising: some case studies report that digital twin-

assisted farming can reduce resource usage (water, 

fertilizer) by around 20–30% while maintaining or 

increasing yields, thanks to the optimizations 

identified in simulation. Additionally, digital twins 

help in risk management; a notable example is using a 

regional crop digital twin to anticipate yield impacts of 

an incoming drought and plan mitigation strategies. 

The contribution of this method lies in decision 

support and precision management at a systems level 

– it brings together sensor data, AI predictions, and 

domain knowledge into an interactive model. As high-

impact as the digital twin approach is, researchers also 

note its complexity: building accurate models requires 

extensive data and computing resources, and real-time 

synchronization between physical and virtual systems 

must be maintained. Nonetheless, digital twins are set 

to play an increasingly important role in strategic farm 

planning and sustainable agriculture research[41]. 

c. Edge-Cloud Architectures: To address latency and 

connectivity constraints in smart farming, edge-cloud 

architectures have gained traction. In this hybrid 

approach, computational tasks are split between local 

edge devices (on-farm computers, microcontrollers, or 

gateways) and remote cloud servers. Critical, time-

sensitive computations – like detecting a sudden drop 

in soil moisture or an onset of disease in imagery – are 

executed at the edge, enabling immediate responses 

(such as activating irrigation or alerting the farmer). 

Meanwhile, the cloud handles heavier tasks that 

require big data aggregation or complex modeling, for 

example, long-term yield forecasting or training of AI 

models on collected data from many farms. Literature 

from 2018–2024 describes numerous prototypes of 

edge-cloud systems: one example is a crop monitoring 

setup where drones perform initial image analysis on-

board to identify areas of concern, then upload concise 

reports to a cloud platform for more in-depth analysis 

and record-keeping. Another example is distributed 

sensor networks that preprocess and compress data 

locally, sending only relevant summaries to the cloud 

– a design which dramatically cuts bandwidth usage 

and costs. Reported outcomes of these architectures 

include lower decision latency (often by an order of 

magnitude, turning minutes of cloud communication 

into seconds or less on the edge) and improved 

resilience to network outages (since basic functions 

continue locally). The technical contribution of edge-

cloud designs is a scalable, efficient computing 

infrastructure tailored for agriculture’s needs. They 

demonstrate that by leveraging local processing, 

farmers get faster insights and reduced dependence on 

constant internet access. However, implementing 

edge-cloud solutions requires careful system 

engineering – ensuring synchronization between edge 

and cloud, managing data consistency, and securing 

distributed devices are all active research issues[42]. 

d. Federated Learning: Given concerns about data 

privacy and the need for diverse datasets, federated 

learning (FL) has appeared as an innovative method in 

agricultural AI. In a federated learning setup, AI 

models are trained collaboratively across multiple 

farms or devices without centralizing the raw data. For 

example, suppose several smart farms each have soil 

sensors and yield records; with FL, each farm’s local 

system can train a part of a shared machine learning 

model on its own data and only send the updated model 

parameters (not the actual farm data) to a central server 

to create a consensus model. Studies in recent years 

have applied FL to scenarios like pest detection and 

crop disease classification across different regions, 

with promising results: models trained via federated 

learning achieved accuracy close to a traditional 

centralized approach, while each farm’s sensitive data 

remained on-site. This approach not only alleviates 

privacy concerns but also addresses data scarcity per 

location by allowing knowledge transfer from farm to 

farm through the shared model. A notable 

implementation is an FL system for crop yield 

prediction that combined data from dozens of farms 

globally, improving the model’s generalizability to 
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new regions without exposing individual farm data. 

The technical nuances include handling heterogeneous 

data (farms may have different sensors or crops) and 

communication efficiency (since devices must 

exchange model updates periodically). Overall, 

federated learning is contributing a privacy-

preserving, collaborative model development 

paradigm to agricultural AI. It shows potential to 

unlock richer models and insights, especially when 

data is fragmented, though current literature also 

points out challenges like higher communication 

overhead and the need for robust strategies against 

unreliable or dishonest participants in the 

federation[43]. 

e. Lightweight AI Models: In parallel with advanced 

algorithms, researchers have been developing 

lightweight AI models suitable for deployment on 

low-power agricultural devices. These are compact 

versions of machine learning models – achieved 

through techniques like model pruning, quantization, 

or using efficient architectures – that can run on 

hardware like smartphones, Arduino/ESP32 

microcontrollers, or small Raspberry Pi-based systems 

on the farm. Between 2018 and 2024, numerous papers 

have demonstrated that lightweight models can 

effectively perform tasks such as crop disease 

recognition, pest counting, or yield estimation with 

minimal resource consumption. For example, a 

compressed convolutional neural network was 

implemented on a handheld device to identify crop 

diseases from leaf images in the field; it achieved near 

real-time inference with accuracy only marginally 

lower (a few percentage points) than a much larger 

network trained on the same data. Another project built 

a tiny ML model for smart irrigation control that fits in 

a microcontroller’s memory and can predict soil 

moisture trends, thereby enabling an offline automated 

irrigation system for remote farms. The outcomes 

underline that by sacrificing a small amount of 

accuracy or complexity, these lightweight models 

drastically extend the reach of AI – bringing 

intelligence to settings with no reliable power or 

internet and cheap hardware. This is particularly 

impactful for smallholders in developing regions, as it 

opens the door to affordable AI-driven tools (like 

portable soil nutrient analyzers or battery-powered 

pest alert systems). The contribution of this line of 

work is a democratization of agri-tech: it’s making 

sophisticated analysis accessible on the edge. The 

literature does caution that developing such models 

requires careful training and optimization, and that 

maintaining them (e.g. updating the models as data 

evolves) can be difficult when devices are dispersed in 

the field[44]. 

f. Hyperspectral Imaging: Harnessing hyperspectral 

imaging (HSI) has proven to be a high-impact method 

for crop analysis in recent years. Unlike regular RGB 

cameras, hyperspectral sensors capture dozens or 

hundreds of narrow spectral bands, providing rich 

information on plant health, soil composition, and crop 

conditions. Advanced AI techniques (like deep 

spectral-spatial neural networks or machine learning 

classifiers) are then used to interpret these complex 

datasets. The literature reports impressive capabilities 

of HSI in agriculture: for instance, using hyperspectral 

drone imagery, researchers have achieved very high 

accuracy in identifying diseased versus healthy 

vegetation, sometimes exceeding 90–95% accuracy in 

detecting specific diseases or nutrient deficiencies 

even before symptoms are visible to the naked eye. 

Similarly, hyperspectral data has been used for precise 

yield forecasting and quality assessment – e.g., 

predicting grain protein content or fruit ripeness by 

analyzing spectral signatures. The practical 

applications demonstrated include early warning 

systems for crop disease outbreaks (giving farmers 

extra lead time to respond) and site-specific crop 

management like variable-rate fertilization guided by 

nutrient maps derived from HSI. This method’s 

contribution is particularly notable in the context of 

precision farming because it can uncover subtle 

biophysical indicators of stress or growth that simpler 

sensors would miss. However, hyperspectral imaging 

comes with challenges: the equipment (cameras and 

spectrometers) tends to be expensive and generates 

huge volumes of data, which require substantial 

processing power and storage. Moreover, collecting 

hyperspectral imagery might be limited by weather 

and lighting conditions. Thus, current research is not 

only refining the AI algorithms for HSI analysis but 

also exploring cost reduction (e.g., using lower-cost 

sensors with selective bands) and data-efficient 

techniques so that hyperspectral insights can be more 

widely adopted in farming[45]. 

 

g. Voice-Based Advisory Systems: With the goal of 

making AI accessible to all farmers, voice-based 

advisory systems have gained momentum as an 

innovative tool in the late 2010s and early 2020s. 

These systems provide agricultural information and 

guidance through natural spoken language, acting as 

virtual assistants or helplines for farmers. The core 

technologies include speech recognition (to 
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understand farmers’ questions or descriptions of 

problems) and natural language processing/generation 

(to formulate helpful responses or recommendations), 

often supplemented by an expert knowledge base or AI 

model that tailors advice to the situation. Deployments 

of voice-based systems are especially valuable in 

regions with low literacy rates – for example, an AI-

driven advisory service may allow farmers to call a 

number and ask, in their local language, how to treat a 

pest on their crop, and then receive an immediate 

spoken response with recommended actions. Some 

recent pilot projects and products use smartphone 

voice assistants or even basic mobile phones with 

interactive voice response to deliver weather forecasts, 

best farming practices, and market price updates. The 

literature documents that these voice systems have 

generally been well-received: farmers find them 

convenient and trustworthy when the advice is 

localized and the system can handle dialects/accents 

accurately. In terms of technical achievement, one 

study demonstrated a voice chatbot capable of 

answering a large range of agriculture FAQs with a 

high rate of user satisfaction, showcasing advances in 

domain-specific language models. The impact of voice 

advisory tools is seen in bridging the information gap 

– they effectively extend the reach of agricultural 

extension services through technology. As with any AI 

advisory, however, challenges include ensuring the 

accuracy and relevance of the information provided 

(since misguided recommendations could harm crops 

or livelihoods) and continually updating the 

knowledge base with the latest agronomic research. 

Additionally, background noise on farms and the 

diversity of languages pose engineering challenges for 

speech recognition. Despite these hurdles, voice-based 

AI advisors are rapidly evolving and are poised to 

become a key component of digital literacy and farmer 

support programs worldwide[46]. 

 

11.RESEARCH CHALLENGES 

a. Infrastructure Limitations: Inadequate rural 

infrastructure remains a fundamental barrier to tech-

driven agriculture. Many farming regions, particularly 

in developing countries, suffer from unreliable 

electricity and a lack of broadband connectivity. This 

means IoT sensors and AI platforms cannot function 

consistently, leading to data gaps and system 

downtimes. The persistence of this challenge is largely 

due to high costs of infrastructure development in 

remote areas and lower commercial incentives for 

providers to expand there. Overcoming infrastructure 

limitations will likely require public investment in 

rural electrification and internet access, as well as the 

design of offline-capable solutions – for example, 

solar-powered devices and edge computing systems 

that can operate with minimal connectivity[47]. 

b. Cost Barriers: The high cost of advanced agricultural 

technology is a recurring challenge identified across 

the literature. Precision farming tools (drones, sensors, 

farm management software, etc.) and AI services can 

be prohibitively expensive for smallholder and 

resource-poor farmers. Even when pilot projects 

demonstrate benefits, scaling up typically requires 

significant capital that individual farmers or 

communities cannot shoulder. These cost barriers 

persist because of expensive hardware, maintenance 

needs, and sometimes subscription fees for data 

services. To overcome this, researchers suggest a 

combination of cost-reduction strategies and 

supportive policies: development of low-cost, open-

source hardware alternatives, bulk procurement or 

service bundling to achieve economies of scale, and 

subsidies or financing programs to help farmers invest 

in technology that can improve productivity and 

income in the long run[48]. 

c. Lack of Datasets: A well-recognized challenge in 

applying AI to agriculture is the scarcity of large, high-

quality datasets. Building robust AI models (for crop 

disease detection, yield prediction, etc.) demands 

extensive training data – yet agricultural data 

collection is constrained by seasonality, diversity of 

crop conditions, and the need for expert labeling (e.g., 

identifying diseases in images). Many studies note that 

their models are trained on relatively small or narrow 

datasets, which limits performance and makes results 

less reliable. The lack of publicly available, diverse 

datasets persists because data gathering is labor-

intensive and often siloed (with different researchers 

or companies not sharing data). Addressing this issue 

calls for collaborative efforts to create open 

agricultural data repositories, standardized data 

collection protocols, and perhaps novel techniques like 

data augmentation or simulation to supplement real-

world data. Without a richer data foundation, AI 

innovations in farming will continue to face 

generalization and reliability problems[49]. 

d. Regional Model Transferability: Even when data is 

available, AI models frequently face transferability 

issues – an algorithm trained in one region or context 

often performs poorly when applied to another. 

Agriculture is highly location-specific: differences in 

climate, soil types, farming practices, and crop 
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varieties mean that a model for, say, maize disease 

detection in one country might not work in another. 

The literature highlights numerous instances of this 

problem, indicating that models need retraining or 

tuning for each new context, which is time-consuming 

and requires local expertise. This challenge persists 

because it’s inherently difficult for one model to 

capture all geographical and agronomic variations. 

Overcoming regional transferability hurdles may 

require developing more adaptive or generalized 

models (for example, using techniques from transfer 

learning or meta-learning that adjust to new conditions 

with minimal data) or building modular AI systems 

that can be quickly calibrated with local sensor inputs. 

Additionally, creating region-specific extensions of 

global models and involving local institutions in model 

development can improve relevance and acceptance, 

ensuring that AI tools are truly effective across diverse 

farming communities[50]. 

e. Data Privacy Concerns: The rise of data-driven 

farming brings about serious concerns around data 

privacy and ownership. Farmers are often wary of 

sharing their farm data (such as yield figures, soil data, 

or farm management practices) due to fears of misuse 

– for instance, companies might exploit data for profit, 

or sensitive information could be exposed. There is 

also a trust deficit in how securely platforms handle 

data and whether farmers will benefit from 

contributing their information. This issue persists 

because current regulations and data governance 

frameworks in agriculture are underdeveloped, and 

many tech providers have not prioritized transparent 

data policies. From a research perspective, privacy 

concerns limit data availability for developing robust 

models. Addressing this challenge will require clearer 

data governance policies (defining who owns farm 

data and how it can be used), as well as technical 

solutions like encryption and federated learning to 

protect privacy. Building trust through farmer-centric 

approaches – giving farmers control over their data and 

a share in the benefits – is key to resolving privacy 

issues and unlocking greater data sharing for collective 

agricultural intelligence[51]. 

f. Standardization and Interoperability: A recurring 

technical challenge is the lack of standardization 

across agricultural technologies. Currently, different 

IoT devices, platforms, and data formats often cannot 

communicate or integrate with each other seamlessly 

– a problem that leads to fragmented systems and 

vendor lock-in. For example, one company’s sensor 

network might use a proprietary protocol that isn’t 

compatible with another’s farm management software, 

complicating the task of combining datasets or scaling 

solutions. This lack of standardization persists partly 

because the agri-tech field is still evolving, with many 

startups and initiatives developing custom solutions in 

parallel, and there is no dominant set of standards or 

governing body enforcing interoperability. The 

literature points out that this fragmentation stifles 

innovation and adoption, as farmers fear investing in 

technology that might become obsolete or 

incompatible. Overcoming the standardization 

challenge will likely involve industry-wide 

collaboration to develop common protocols for data 

exchange, IoT communication (e.g., standardized 

APIs and data schemas), and even benchmarks for AI 

model performance in agriculture. Governments and 

international organizations could facilitate this by 

endorsing open standards and requiring that publicly 

funded projects adhere to interoperability guidelines, 

thereby creating a more cohesive ecosystem where 

disparate tools can work together effectively[52]. 

g. Scalability of Solutions: Many promising smart 

farming solutions encounter difficulties when moving 

from pilot scale to large-scale deployment. 

Approaches that work well on a research farm or in a 

limited trial can face unanticipated issues in broader 

use – ranging from technical bottlenecks (such as 

cloud systems unable to handle the data deluge from 

thousands of sensors) to logistical challenges (like 

maintaining hardware across numerous villages). 

Scalability is a persistent challenge because 

agricultural environments are highly heterogeneous 

and often lack the infrastructure and support systems 

needed for widespread tech adoption. For instance, a 

drone surveillance system may show great results on a 

few farms, but scaling it to national programs would 

require trained operators, drone maintenance facilities, 

and regulatory clearances, which may not be in place. 

The literature suggests that achieving scalability 

requires designing solutions with simplicity and 

robustness in mind (so they require minimal expert 

intervention), and building capacity at the local level 

(through training and infrastructure development). 

Furthermore, partnerships with government agencies 

or large agribusinesses can provide the necessary 

backbone to roll out solutions on bigger scales. 

Without deliberate planning for scale, many 

innovations risk remaining stuck as niche 

demonstrations rather than benefiting global 

agriculture at large[53]. 
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h. Farmer Trust and Adoption: Finally, virtually all 

technological advances must reckon with the human 

factor – farmer trust, user acceptance, and socio-

cultural fit. Numerous studies emphasize that lack of 

trust in AI-driven recommendations or unfamiliar IoT 

gadgets can significantly slow down adoption[54]. 

Farmers often have generations of experiential 

knowledge, and they may be skeptical of algorithmic 

advice that contradicts traditional practices or is not 

explained in understandable terms. Early failures or 

inconsistent results can quickly lead to distrust[55]. 

This challenge persists because historically there has 

sometimes been a top-down introduction of 

technology without adequate farmer involvement, and 

because AI models are often “black boxes” that do not 

clearly justify their suggestions. Overcoming the trust 

barrier requires a participatory approach: involving 

farmers in the design and testing of technologies, 

providing transparent explanations for AI decisions 

(e.g., showing which factors led to a pest prediction), 

and demonstrating reliability over time[56]. Education 

and digital literacy efforts also play a role – as farmers 

become more familiar with technology, they are more 

likely to trust and effectively use it. In essence, 

building trust is about showing respect for local 

knowledge, ensuring solutions address real pain 

points, and establishing a track record of tangible 

benefits[57]. Researchers argue that without earning 

the end-users’ confidence, even the most advanced 

AI/IoT innovations will have limited impact on 

sustainable farming and hunger mitigation[58]. 

10. CONCLUSION 

a. AI and IoT as Drivers of Precision Farming: The 

review highlighted how artificial intelligence and 

Internet of Things technologies can transform 

agriculture through precision crop monitoring, disease 

detection, smart irrigation, and farm automation. 

These tools significantly enhance yields, optimize 

resource use, and reduce production risks, showing 

strong potential to reshape farming systems globally.  

b. Emergence of Digital Twins and AIoT 

Architectures: Beyond isolated tools, digital twin 

frameworks and integrated AIoT ecosystems represent 

the future of farm management. By combining real-

time sensor data with simulation and edge-cloud 

analytics, farmers can experiment with strategies 

virtually and implement optimized solutions, though 

adoption is still constrained by infrastructure and 

costs. 

c. AI-Powered Education and Digital Literacy: 

Technology adoption depends heavily on digital 

literacy. AI-enabled education platforms—chatbots, 

multilingual advisors, gamified apps—demonstrated 

the capacity to democratize knowledge transfer, lower 

extension costs, and engage underrepresented groups, 

especially women and rural youth. These efforts close 

the digital divide and empower farmers as co-creators 

of innovation. 

d. Role of Farming in Hunger Mitigation: Farming 

interventions remain central to addressing global 

hunger under SDG-2 (Zero Hunger). Precision 

farming increases food availability, redistribution 

platforms reduce waste, and climate-smart practices 

strengthen resilience against hunger shocks. Together, 

these tools address both supply and access dimensions 

of food security. 

e. Comparative Insights Across Themes: The review 

emphasized that while AI and IoT drive technical 

gains, education ensures adoption, and hunger 

mitigation represents the ultimate societal goal. The 

interplay among these three domains reveals that no 

single strand can succeed alone; technology, human 

capital, and food system outcomes are inseparably 

linked.  

f. Persistent Challenges: Despite clear benefits, 

obstacles remain: poor rural connectivity, high device 

costs, fragmented standards, limited datasets, low 

literacy levels, and inadequate policy frameworks. 

Issues of trust, scalability, and equity also pose 

significant barriers, reminding us that innovation must 

be coupled with inclusive strategies.  

g. Future Directions for Research and Practice: 

Opportunities lie in developing lightweight, localized 

AI models, building farmer-centered education 

ecosystems, standardizing IoT platforms, and 

expanding to diverse crops and regions. Policy support 

for affordability, connectivity, and data governance 

will be crucial to mainstream adoption by 2030. 

h. Towards Integrated, Sustainable Farming 

Systems: Ultimately, AI, IoT, and digital literacy are 

most powerful when integrated into holistic 

frameworks that combine technology, education, and 

policy. Only through such convergence can agriculture 

evolve into a climate-resilient, resource-efficient, and 

socially inclusive system capable of reducing hunger 

sustainably. 
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