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Abstract— The growing challenges of climate change, food insecurity, and the digital divide have motivated significant
research into artificial intelligence (Al), the Internet of Things (IoT), and digital education as enablers of sustainable farming.
This review synthesizes multiple internationally recognized papers published between 2015 and 2024, covering three thematic
domains: Al and IoT applications in farming, Al-powered education and digital literacy for rural communities, and farming’s
role in hunger mitigation within the framework of Sustainable Development Goal 2 (Zero Hunger). It was found that Al and
IoT innovations improve crop yield, resource efficiency, and pest management; Al-driven education platforms enhance
farmers’ skills and digital inclusion; and targeted agricultural interventions can significantly reduce hunger risk. However,
issues of infrastructure, affordability, digital literacy, and policy integration remain critical challenges. Future work has been
suggested toward integrated frameworks combining Al, IoT, and education platforms to enable scalable, inclusive, and
climate-resilient farming systems.
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1. INTRODUCTION Farming has also been directly linked to hunger
mitigation, where precision agriculture, crop
diversification, and food redistribution systems are
being studied as interventions[4, 5].

Food insecurity and rural poverty continue to threaten
millions of households worldwide[1]. Farmers face
yield losses due to pests, climate variability, and
inefficient resource use, while underserved This review aims to:
communities face exclusion from digital opportunities. |

e 1 . . . Analyze the role of Al and IoT in transforming
Artificial intelligence and IoT technologies have been

. ) i ) ) . farming practices.
increasingly applied to agriculture, offering solutions

such as yield prediction, pest detection, smart2. Examine Al-powered digital literacy initiatives for
irrigation, and supply chain optimization [2]. In  farmers and rural learners.
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3. A1 AND 10T FARMING

Al and IoT technologies are significantly transforming
precision agriculture by enabling smarter decision-c.
making and automation[7].

Precision Crop Monitoring: Machine learning
models (including deep CNNs and RNNs) have been
applied to predict crop yields with high accuracy [8].
In fact, some studies report yields prediction errors as
low as ~1.3% using ensemble neural networks[9].
Computer vision techniques for plant disease and pest
detection similarly show remarkable performance —
deep learning models (e.g. CNNs, YOLO) oftend.
exceed 90% accuracy in identifying plant diseases
from images [10]. For example, hyperspectral imaging
~99%
accuracy in detecting wheat rust infections in the field,
enabling much earlier and more precise disease
management[11-12].

combined with neural networks achieved

IoT Sensors and Smart Irrigation: Low-cost sensor
networks are improving resource efficiency on farms.
IoT-based irrigation systems that monitor soil
moisture and weather can autonomously optimize
water usage[13]. A field trial using a LoRaWAN
wireless sensor network in tomato farming
demonstrated a 22-28% improvement in water-use
efficiency and a 15-22% increase in crop yield under
an automated irrigation schedule[14]. Notably, the

entire IoT setup was built for under $1000,

highlighting that such solutions can be affordable for
smallholders[15].

Digital Twins and Farm Automation: Emerging
“digital twin” models are being used to simulate farm
scenarios before real-world deployment[16]. For
instance, researchers developed a digital twin of an
irrigation system that integrates real-time sensor data
(soil, weather, crop status) with a virtual farm model.
This allows farmers to test different irrigation
strategies virtually, reducing risk and improving
decision-making[17].

AloT Architectures: Many initiatives integrate Al
with [oT (“AloT”) through cloud and edge computing
frameworks to enable real-time farm analytics[18].
Drones, satellite data, and ground sensors together
feed big data platforms that Al algorithms analyze for
insights like pest outbreak predictions or fertilizer
optimization. Such data-driven agriculture techniques
could increase farm productivity by up to 45% while
reducing inputs like water by 35% under experimental
conditions. However, bridging these innovations to
broad practice remains a challenge. Rural connectivity
gaps, high device costs, and data privacy concerns are
persistent hurdles[19]. Even in developed countries,
fewer than 20% of farmers have adopted digital
agriculture tools so far, largely due to the cost and
uncertain ROI of sensors and analytics. These
challenges affordable
hardware and better infrastructure to fully realize
AI/IoT benefits in farming[20].

underscore the need for
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4. Al EDUCATION AND DIGITAL LITERACY FOR
RURAL COMMUNITIES

Empowering farmers with digital skills and Al-driven
knowledge is crucial.

Al-Powered Learning Platforms: Intelligent
educational tools are being deployed to bridge the
digital divide in rural areas. For example, Al chatbots
and voice-based assistants now deliver agricultural
advice in local languages, allowing even low-literacy
farmers to access information through simple
conversations. This personalization — farmers can ask
questions via voice, text, or images — helps overcome
language and literacy barriers in learning. Digital
Green’s FarmerChat is one such Al assistant that
works through voice/chat in the farmer’s native
language, providing real-time answers about farming
practices[21].

Inclusive and Contextual Learning: Notably, these
Al advisors have been especially empowering for
women farmers and extension agents. In a deployment
in India, women used the Al assistant twice as much
as their male counterparts, leveraging it for immediate,
confident advice on issues like climate-smart pest
management. This suggests Al tools can promote
inclusivity and gender equity in agricultural
knowledge access. Moreover, by using location-
specific data (weather, soil, market prices), the advice
can be tailored to each farmer’s context, making
learning immediately relevant[22].

Impact on Extension Services: Al-driven platforms
can dramatically lower the cost and scale of
agricultural extension. Traditional in-person extension
might cost around $35 per farmer reached, whereas an
Al chatbot system can deliver personalized guidance
for mere cents per farmer (about $0.35), a two-order-
of-magnitude reduction. This cost-effectiveness means
many more farmers can be served with timely advice
and tutorials, from best agronomic practices toa.
financial and market literacy[23].

Case Studies and Initiatives: Various projects
illustrate the trend of integrating Al into agricultural
education. The “Agro-Al Education” program, for
instance, introduced basic Al concepts and active
learning tools into an agricultural high school
curriculum to prepare future farmers for Al-enabled
farming. Other efforts have explored gamified mobile
learning apps and even augmented reality for farming
education, aiming to engage rural youth. Early studies
report  that  Al-personalized learning (e.g.
recommending specific farming tips or training

modules based on a user’s profile) increases farmer
engagement and retention of knowledge. Overall,
while Al can’t replace traditional human extension
agents, it serves as a force-multiplier — enabling
services to reach more people with
customized support. The key is building farmers’ trust
in these digital tools. Ensuring content is culturally
relevant, in regional languages, and augmenting (not
replacing) human experts are important for long-term
adoption. As rural communities become more digitally
literate through such initiatives, their capacity to adopt
advanced farming technologies should rise in
tandem[24].

extension

5. FARMING AND HUNGER MITIGATION

Agricultural innovation directly ties into global hunger
reduction efforts (SDG 2: Zero Hunger). Boosting
Yields and Food Supply: Al and IoT-driven farming
can increase food availability by
productivity and reducing losses. According to the
World Health Organization, over 820 million people
were undernourished in 2018.A number exacerbated
by climate change and population growth. By

improving

leveraging Al, farmers can grow more food on the
land. For example, data-driven farming
techniques (precision seeding, fertilizer optimization,
smart irrigation) are projected to
productivity significantly; one estimate suggests up to
67% higher productivity globally by 2050 if such
innovations are widely adopted. Early successes are
promising: applying sensor-guided precision irrigation
was shown to increase yields ~45% while using 35%
less water, indicating more crop per drop — critical for

same

raise farm

food security in water-scarce regions. Al models are
also used to predict crop failures or drought impacts,
giving governments lead time to organize relief and
thus averting food crises[25].

Food Redistribution and Waste
Technology is addressing hunger not just by growing
more food but by better distributing what we have.
Notably, roughly 40% of food produced in some
countries (e.g. the U.S.) is wasted instead of eaten. To
tackle this inefficiency, ICT platforms like eFeed-

Reduction:

Hungers connect surplus food donors with those in
need. Using a simple mobile-friendly app, restaurants,
grocery stores, or even households can post
information about excess food, and charities or hungry
families can claim it. This kind of digital marketplace
for leftover food has the dual benefit of reducing food
waste and directly alleviating hunger in
communities[26]. Early implementations have focused
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on making the system as accessible as possible — for
instance, donors drop off food at public pickup points
like churches or pantries to streamline logistics. As
smartphone usage becomes nearly ubiquitous even in
developing regions, such platforms have potential for
wide outreach (as one developer noted, “almost
everyone has a cell phone,” which can facilitate wider
participation in hunger relief networks).

Climate-Smart Agriculture: Sustainable farming
practices are crucial to reduce hunger under climate
variability. Al is helping model and promote climate-
smart interventions — e.g. drought-tolerant crop
varieties, improved storage, diversified cropping
systems — which can buffer communities against
famine. Simulation studies in sub-Saharan Africa have
shown that adopting climate-smart strategies can
significantly lower the risk of hunger. In Ethiopia, for
example, an agent-based modeling study found that
providing farmers with weather forecast information
and corresponding advisories improved crop yields by
about 17% in dry seasons and up to 30% in good
seasons. Such yield gains directly translate to better
food availability and resilience against drought-
induced shortages[27]. Likewise, other research using
agent-based models suggests that a package of
climate-smart  practices  (efficient
agroforestry, etc.) could reduce the population at risk
of hunger by a substantial fraction (on the order of 20—
30% in certain scenarios).

water use,

Regional Challenges and Interventions: Despite
these technological gains, some regions face structural
challenges in achieving food security. Sub-Saharan
Africa, for instance, has huge yield gaps and rapid
population growth, making it a focal point for Zero

Hunger. A seminal study asked “Can sub-Saharan
Africa feed itself?”” and found that if current low yield
growth rates persist, the region’s cereal self-
sufficiency could drop to ~40% by 2050 (from ~80%
today). Even modest improvements (e.g. raising yields
to 50% of attainable potential) would only lift self-
sufficiency to around 60%. This implies that without
major agricultural intensification, many African
nations will remain dependent on food imports or face
higher hunger rates. The same study noted that if yields
could reach 80% of their agronomic potential, some
countries would produce surplus food, though others
would still be below 75% self-sufficient. Thus,
targeted interventions are needed — from providing Al-
driven advisory services to smallholders, to improving
access to inputs like quality seed and fertilizer — to
close these gaps. In regions like South Asia and parts
of Latin America, the issue is often not just production
but distribution and affordability of food, which again
points to the importance of integrating technology with
policy (e.g. price supports, food subsidy programs
informed by Al analytics to target vulnerable
populations). In summary, farming innovations are a
linchpin in hunger mitigation: they increase food
production, enable smarter response to crop failures,
and facilitate more equitable food distribution. Yet
technology alone is not a silver bullet; it must go hand-
in-hand with investments in rural infrastructure and
inclusive policies so that the fruits of Al/loT-
augmented agriculture reach the world’s poorest. As
one report noted, the “war on hunger” will be won
through a creative combination of human efforts and
artificial intelligence, underscoring that social and
technical solutions must work in tandem[28].

Farming and Hunger Mitigation - Key Insights

Rogicnal Challergos

Clirnake-Smart Agriculturc

Thematic Area

Food Radistribution

Boosting ¥iclds & Supply

METE-srart grackices
¥ EOE

CoALAgar risk T s

0 Pand weastad
ST ear raalsts are

AGT T yieids by 5%
CIT SRS S wWATST

a 1o Z0

0

£ =0 &0 7o

Relative Emphasis (3]

Figure 2:

Farming and Hunger Mitigation-Key Insights

International Journal of Intelligent Systems and Applications in Engineering

LJISAE, 2024, 12(14s), 760-776 | 763



6. COMPARATIVE ANALYSIS

The three thematic domains reviewed — smart farming
technology, digital literacy, and hunger mitigation —
are deeply interrelated and together paint a
comprehensive picture of sustainable agriculture
development:

Farming Technology (Al & 1IoT): Advanced
technologies offer clear gains in productivity and
sustainability. Precision agriculture techniques (like
sensor-guided irrigation and Al-based pest detection)
improve yields while optimizing resource use. These
innovations contribute to environmental goals (e.g.
water conservation, lower pesticide usage) and can
increase farmers’ income through higher efficiency.
However, the mere availability of technology does not
ensure its adoption or impact. Many of the reviewed
studies highlight impressive technical results (high
prediction accuracies, big yield boosts in pilot
projects), but scaling those results to millions of farms
remains challenging[29].

Digital Literacy and Education: This is the enabling
layer that determines whether farming communities
can leverage the new technologies. Al-powered
platforms and mobile apps make agricultural
knowledge more accessible — for instance, delivering
advice in local languages via chatbots has shown
success in engaging farmers. By improving farmers’
digital skills and confidence, these initiatives drive
technology adoption from the ground up. In regions
where farmers have received training (even informally
through smartphone apps or extension videos), there is
higher uptake of precision farming practices and better
maintenance of IoT systems. Thus, investments in
human capital — through education, demonstrations,
and support-are as important as the tech itself.

Hunger Mitigation via Farming: Agricultural
development directly feeds security
The review finds a consensus that

into food
outcomes.
improving farming (through Al, IoT, or otherwise) is
essential to meet Zero Hunger targets. Enhanced yields
and reduced crop losses increase food availability
locally and globally Moreover, tech-driven
efficiencies (like better supply chain logistics or food

recovery networks) help get food to the

undernourished. That said, hunger is a multi-faceted
problem — it is not only about producing enough food,
but also about economic and physical access to food.
This is why complementary measures (e.g. poverty
alleviation, food distribution programs)
accompany farming interventions. Agricultural
technology addresses the supply side of hunger; to
fully eliminate hunger, demand-side
(affordability, distribution equity) must be tackled
through policy and social programs[30].

must

issues

Gap and Dependencies: A recurring theme is that
promising technologies alone cannot solve systemic
issues without supportive infrastructure, affordability,
and policies. For instance, an IoT sensor network
might dramatically improve yields on a research farm,
but a smallholder farmer will not adopt it if it’s too
expensive or if they lack reliable internet and
electricity. The gap between innovation and adoption
is often bridged by education (as noted above) and by
enabling environments created through policy.
Government policies that subsidize rural connectivity,
provide credit for farmers to buy tech, or protect data
privacy can accelerate adoption. Likewise, multi-
stakeholder collaboration is needed — e.g. public-
private partnerships to develop localized Al tools, or
open data initiatives to share agronomic data for Al
model. In short, the effectiveness of AI/IoT in farming
is intertwined with human and institutional factors.
Without raising digital literacy and addressing
economic barriers, the best technologies may remain
underutilized. when farmers are
empowered and policies align (for example, India’s
ambitious digital agriculture missions, or African

Conversely,

programs combining farmer training with tech rollout),
the impact of Al and IoT is magnified in achieving
sustainable farming and hunger reduction[31].

Overall, the comparative analysis underlines that
technology, education, and food security outcomes are
part of one continuum. Al and IoT provide the tools,
education provides the skills to use the tools, and the
ultimate goal — reducing hunger — can be met when
both tools and skills are applied appropriately. The
“revolution” in agriculture from AI will thus be as
much social as it is technical, requiring an integrated
approach.
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Comparative Analysis of Papers by Year and Focus Area
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7. CHALLENGES d.

Infrastructure Gaps (Connectivity, Electricity):
Many rural areas lack reliable internet and electricity,
which are prerequisites for running [oT devices, cloud-
based analytics, and Al-driven platforms. Even where
mobile connectivity exists, bandwidth is often too low
for high-frequency sensor data transmission or real-

time UAV imaging. Without substantial investment ine.

digital infrastructure, Al/loT remain
inaccessible to the very farmers who could benefit the

systems

most.

High Costs of IoT Devices and Sensors: While pilot
studies demonstrate impressive yield and efficiency
improvements, UAVs,
subscriptions remain expensive for smallholders. Forf.
example, LoRaWAN-based smart irrigation setups can
cost hundreds of dollars upfront, which is prohibitive
in low-income regions. Until costs are reduced through
subsidies, designs, or affordable
hardware, adoption will remain limited.

Sensors, and cloud

open-source

Data Scarcity and Privacy Issues: Al models require
large, high-quality datasets for training. However,

agricultural data (soil health, yield records, pestg.

patterns) is often fragmented, proprietary, or
nonexistent in many regions. Where data collection
does occur, privacy and ownership become concerns
— farmers may be reluctant to share sensitive farm-
level data if they fear exploitation by corporations or
lack legal protections.

Low Farmer Digital Literacy: Even if Al and IoT

tools are available, many farmers lack the digital skillsh.

to operate them effectively. This gap leads to
underutilization of technology and reliance on
intermediaries, which can reduce trust and adoption.
Digital literacy training is thus a prerequisite for
realizing the potential of Al-driven agriculture.

2025

Policy and Regulatory Barriers: Inconsistent or
outdated agricultural and data policies can delay the
scaling of Al/IoT solutions. For example, lack of clear
regulations around drone usage in farming prevents
UAV-based crop monitoring in
Similarly, inadequate legal frameworks around data
ownership discourage investment in digital platforms.

some regions.

Interoperability and Standardization Issues:
Different IoT devices and platforms often operate on
incompatible standards, making it difficult for farmers
to integrate multiple tools (e.g., combining soil
moisture sensors with UAV data). Without universal
standards, technology ecosystems remain fragmented,
driving up costs and complexity.

Scalability of Pilot Projects: Most research
demonstrates success in controlled trials or small-scale
pilots, but scaling these to millions of smallholder
farms is far more challenging. Variations in climate,
soil, crop types, and socio-economic conditions mean
that models trained in one region may perform poorly
in another. The transition from research to real-world

scalability remains a significant barrier[32].

Trust and Social Acceptance: Farmers may hesitate
to adopt Al-driven advisory tools if they perceive them
as “black boxes” without transparency. Cultural
factors also matter — in some regions, farmers prefer
traditional knowledge or advice from trusted local
extension officers over algorithmic suggestions.
Building trust through participatory design and
explainable Al is critical.

Environmental and E-Waste Concerns: While
digital farming promises sustainability, mass adoption
of IoT devices raises concerns about electronic waste,
battery disposal, and carbon footprints from data
centers powering Al models. Without responsible
design and recycling systems, the environmental costs
could undermine sustainability goals.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(14s), 760-776 | 765



Unequal Access and Risk of Digital Divide: Al and
IoT may disproportionately benefit large, commercial
farms with capital to invest, while marginalizing
smallholders. These risks widen the gap between rich
and poor farmers, and between developed and
developing countries. Ensuring equitable access

through inclusive design and subsidies is thereforec

vital to avoid reinforcing inequalities.
8. FUTURE DIRECTIONS

Looking ahead, research and practice should converge
on integrated strategies that combine technological
innovation with inclusivity and scalability:

Integrated AloT and Education Ecosystems: Future
frameworks will benefit from combining Al/IoT
solutions with farmer-centered education platforms.
Rather than deploying farm sensors or apps in
isolation, there is a need for holistic systems where
smart farming hardware comes bundled with training
and advisory services. For example, an ideal scenario
is an “Al farming assistant” that not only automates
data collection (sensing soil moisture, detecting pests,
etc.) but also teaches the farmer how to interpret and
act on this data via a user-friendly interface or chatbot.
Pilot programs with Al-driven advisory chatbots are a
step in this direction, but these need scaling and
localization. suggest  developing
community demonstration farms or “living labs”
where farmers, extension agents, and Al systems work
together — iterative refinement of
technologies with user feedback and building trust in

Researchers

allowing

AT recommendations. Integration across stakeholders

(farmers, educators, technologists) ensures solutions
are both high-tech and high-touch.

Lightweight, Localized AI Models: A prominent
future trend is creating Al models tailored for low-
resource environments. This includes lightweight
algorithms that can run on inexpensive smartphones or
micro-controllers at the farm edge (minimizing
dependence on constant internet/cloud access). By
compressing Al models or using efficient machine
learning techniques, developers can enable offline or
near-offline functionality, which is crucial in remote
rural areas. Additionally, Al models need to be
localized — trained on region-specific data (local crop
varieties, soil conditions, dialects for language
interfaces). A model that performs well in one country
may need retraining or transfer learning to work
effectively in another due to different farming
contexts. Researchers are already working on
federated learning approaches, where an Al system can
improve itself on local farms’ data without requiring

farmers to share sensitive data, thus respecting privacy
while adapting to local needs. Future AloT devices
might come pre-loaded with regional agronomic
knowledge and the ability to learn from the farmer’s
own usage patterns, making them more personalized
and useful over time[33].

Policy Support and Infrastructure Development:
Achieving scale will require policy interventions
aligned with the UN SDG 2030 timeline. Governments
and international agencies should formulate policies
that lower barriers to entry for Al/IoT in agriculture.
This could involve subsidies or loans for farmers to
acquire smart equipment, investments in rural
broadband internet and electricity (since IoT can’t
function without connectivity and power), and
establishing data governance frameworks to protect

Equally important is
literacy into agricultural

farmers’ data rights.
incorporating  digital

extension policies — for example, national programs to
train one tech-savvy “digital champion” in each village
who can assist others. Policymakers are also
encouraged to support open platforms and
interoperability standards so that devices and data can
work together seamlessly across different brands and
programs. By creating an enabling environment — from
robust telecom infrastructure to innovation-friendly
regulations — policy can ensure that the benefits of Al
and IoT are equitably distributed, reaching
smallholders and marginal farmers and not just large

commercial farms[34].

Expansion to Diverse Crops and Regions: Thus far,
a lot of Al in agriculture research has focused on major
staples (wheat, maize, rice) or high-value crops in
specific regions. Future work should broaden this
scope to cover a diversity of crops (including
indigenous and climate-resilient crops) and farming
systems. For instance, developing AI models for
nutrient optimization in root and tuber crops like
cassava or cocoyam can directly help food security in
regions where these are staples. Similarly, IoT
solutions should be designed for pastoral and mixed
farming systems, not just crop monocultures — e.g.
affordable sensors for livestock health monitoring or
grazing land management. Region-specific solutions
are  critical:  sub-Saharan  Africa’s  rainfed
smallholdings, South Asia’s densely populated delta
regions, and arid Middle Eastern farms all face unique
challenges that Al/IoT can address with targeted
with local agricultural
inclusion of traditional

research. Collaborations
research stations and
knowledge can guide more appropriate technology
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design. In addition, future agriculture will contendb.
with climate extremes, so Al models need to handle
scenarios of drought, floods, and new pest patterns.
Building climate resilience into Al recommendations
(for example, suggesting crop rotation or water
harvesting techniques when drought risk is high) will
be a key direction. Ultimately, the next decade should
see a proliferation of context-aware smart farming
solutions — ones that are as diverse as the global
agriculture they aim to serve[35].

In conclusion, the convergence of Al, IoT, and digital
education holds transformative potential for
sustainable farming and hunger alleviation. The
research to date paints an optimistic picture: Al and
IoT can sharply increase efficiency and yields, and
digital learning can empower farmers to adopt these
innovations, which together can drive progress toward
Zero Hunger. The coming years should focus on
addressing the remaining challenges through
interdisciplinary and approaches. By
building technologies that are not only smart but also
accessible, and by ensuring farmers are co-creators in
this digital agricultural revolution, we can move

inclusive

toward farming systems that are highly productive,
climate-resilient, and able to nourish the growing
world population without leaving anyone behind[36].

c.

9.ANALYTICAL REVIEW

Al in Precision Farming: Recent studies highlight the
power of Al and machine learning in precision
agriculture, achieving notable successes in crop
monitoring and prediction. For example, yield
prediction models utilizing deep learning can forecast
with significant accuracy (often with
R<sup>2</sup> values around 0.7-0.8), allowing
farmers to anticipate outputs and plan resources.
Similarly, image-based Al systems detect plant
diseases and pests at early stages, in some cases
identifying crop stress before visible symptoms
emerge — a critical advantage for timely intervention.
These Al-driven approaches help optimize inputs
(water, fertilizer) and reduce losses, but they also face
limitations: models often require large, high-quality

harvests

datasets and can struggle to generalize across different
regions or crop varieties. Notably, gaps remain in
model robustness and scalability — many algorithms
perform well in controlled experiments or pilot fields
but need further validation in diverse real-world
farming conditions[37].

IoT Architectures for Smart Agriculture: The
Internet of Things underpins many smart farming
initiatives by connecting sensors, devices, and
machines across the farm. A typical IoT-based
architecture integrates networks of soil-moisture
sensors, weather stations, camera traps, and smart
irrigation controllers with cloud or edge computing
platforms. Such systems have demonstrated improved
resource efficiency — for instance, automated irrigation
guided by sensor data can save 20-30% of water usage
while maintaining or boosting yields. IoT deployments
enable real-time monitoring of field conditions (soil
nutrients, microclimate) and precision control of
equipment (drones for spraying, actuators for
greenhouse climate control). Practical applications
range from smart greenhouses to open-field crop
management, showing tangible benefits in labor
reduction speed.  However,
interoperability and reliability are ongoing challenges:
many studies note that custom IoT solutions often lack
standardization and depend on stable connectivity and
power, which can be problematic in rural areas.
Consequently, a critical analysis in the literature points

and decision

to the need for more robust, low-cost IoT frameworks
that can function in harsh or connectivity-limited
environments[38].

Al-Powered Education and Digital Literacy:
Another core theme is the use of Al and digital
platforms to empower farming communities through
knowledge sharing and training. Several initiatives
leverage mobile applications, e-learning platforms,
and even AI chatbots to disseminate agricultural
advice in user-friendly ways. These tools can provide
personalized (for  example,
suggesting crop varieties or planting times based on
local data) and deliver advisory content in local
languages, often through voice or interactive mediums
that cater to farmers with low literacy levels. The
literature indicates that digital literacy programs
augmented by Al —such as intelligent tutoring systems
or smartphone-based agricultural extension services —
have improved farmers’ understanding of modern
practices and technology adoption rates. Practical

recommendations

examples include SMS or voice advisory systems that
send timely tips on pest management or market prices,
leading to better-informed decision making at the farm
level. Still, a critical finding is that the impact of such
digital interventions depends on accessibility and trust:
if farmers lack internet access or confidence in the
information source, the uptake remains limited. Thus,
researchers identify a gap in last-mile connectivity and
cultural tailoring of Al-driven educational content,

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(14s), 760-776 | 767



emphasizing that technology must be paired with on-
ground training and support to truly enhance digital
literacy in rural populations[39].

Tech-Driven Hunger Mitigation: A significant body
of work connects Al and IoT innovations with the
broader goal of hunger mitigation and food security.
Tech-driven interventions are helping optimize the
entire agricultural value chain from production to
distribution. On the production side, predictive
analytics (such as drought forecasting or yield
modeling) enable early warning of food shortages, so
policymakers and NGOs can mobilize resources
before crises deepen. There are case studies of
machine learning models accurately predicting regions
at risk of crop failure, allowing for proactive measures
(like deploying drought-tolerant
positioning food aid). In the post-harvest domain, IoT

and data analytics are used to streamline supply chains

and reduce food waste — for example, sensors and Al

routing algorithms can ensure perishables are stored

and transported under optimal conditions, and surplus

produce is redirected efficiently to markets or relief

networks. Evidence from pilot programs shows thatf.

seeds or pre-

such smart supply chain systems can significantly cut
spoilage and improve food availability in underserved
areas. Nonetheless, the literature critically notes that
technology alone cannot solve hunger: many projectsa.
face obstacles in scaling up, coordinating stakeholders
(farmers, distributors, policymakers), and operating in
low-infrastructure settings. This highlights a gap
between pilot successes and large-scale impact,
suggesting that future efforts must integrate socio-
economic and policy dimensions with technological
solutions to effectively mitigate hunger.

Climate-Smart Agriculture and Food
Redistribution: Climate change adaptation in
agriculture is another theme where Al and IoT play
So-called climate-smart
agriculture leverages predictive models and sensor
networks to help farmers adjust to changing weather
patterns and extreme events. For instance, Al-driven
climate models and decision-support tools can

recommend optimized sowing dates or irrigation

transformative  roles.

schedules by analyzing seasonal forecasts and real-
time field data, thereby increasing resilience against
droughts or floods. IoT-based climate monitoring
(with distributed temperature, humidity, and rainfall
sensors) further aids micro-climate management on
farms, enabling fine-grained adjustments to farming
practices in response to immediate weather
fluctuations. Alongside adaptation, digital platforms

are emerging for food redistribution to tackle hunger
and waste: these platforms use algorithms to match
excess food supply with demand (for example,
connecting farmers or supermarkets with local food
banks or communities in need). Studies report that
such data-driven redistribution systems have increased
the efficiency of food donation networks and diverted
significant quantities of edible food from waste
streams to consumption. The combined impact on
sustainability is twofold — better adaptation of
agriculture to climate stress (protecting yields and
livelihoods) and more equitable distribution of food
resources. Yet, researchers observe that these
innovations require supportive infrastructure and
governance to succeed: climate-smart tools must be
integrated into national agricultural advisory services,
and food redistribution networks need policy support
and trust among participants. Thus, while promising,
the full potential of Al/IoT in climate adaptation and
hunger reduction will only be realized through
interdisciplinary ~ collaboration and  long-term
commitment beyond technological development.

10.SOME RECENT METHODS IN
LITERATURE

AloT Systems: The convergence of Al and IoT —
often termed Artificial Intelligence of Things (AloT)
— has led to intelligent agricultural systems that sense,
analyze, and act in a closed loop. Instead of IoT
devices merely collecting data for offline analysis,
AloT architectures embed machine learning models
directly into sensor networks and farm equipment. A
recent trend is deploying edge AI on farms, where
devices like camera-equipped drones or soil sensor
hubs can process data on-site (e.g. identifying weeds
or pest infestations using onboard neural networks)
and trigger immediate actions such as targeted
spraying. These AloT systems have demonstrated
faster decision-making and reduced dependence on
internet connectivity; for example, a smart camera trap
might instantly recognize and scare away a crop pest
without  waiting for cloud instructions.
Implementations reported in the literature include
autonomous irrigation controllers that adjust water
release based on Al predictions of soil needs, and
integrated crop monitoring systems where edge
devices classify plant health in real time and send only
summary alerts to farmers. The outcome is a more
responsive and efficient farming process — one study
noted improved water-use efficiency and yield
stability using an AloT-driven irrigation network.
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Overall, AloT exemplifies how combining Al’s
intelligence with IoT’s ubiquity creates powerful tools
for precision farming, though challenges remain in
ensuring these distributed AI models are robust,
secure, and easily updatable in the field[40].

Digital Twins: Digital twin technology has emerged
as a cutting-edge method in agriculture, providing a
virtual replica of farming systems (from individual
plants or animals to entire fields and supply chains). In
practice, a digital twin ingests real-time data from loT
sensors and farm records to mirror the state of the
physical system in a computer model. This enables
advanced simulation and forecasting: for instance,
farmers can test “what-if” scenarios on the digital twin
— such as adjusting fertilizer levels or introducing a
new crop variety — and see predictive outcomes before
trying them in reality. Recent implementations of
agricultural digital twins include virtual greenhouses
that simulate crop growth under different climate
controls, and livestock health twins that model an
animal’s condition to predict disease outbreaks or
optimize nutrition. Experimental results are
promising: some case studies report that digital twin-
assisted farming can reduce resource usage (water,
fertilizer) by around 20-30% while maintaining or
increasing yields, thanks to the optimizations
identified in simulation. Additionally, digital twins
help in risk management; a notable example is using a
regional crop digital twin to anticipate yield impacts ofd.
an incoming drought and plan mitigation strategies.
The contribution of this method lies in decision
support and precision management at a systems level
— it brings together sensor data, Al predictions, and
domain knowledge into an interactive model. As high-
impact as the digital twin approach is, researchers also
note its complexity: building accurate models requires
extensive data and computing resources, and real-time
synchronization between physical and virtual systems
must be maintained. Nonetheless, digital twins are set
to play an increasingly important role in strategic farm
planning and sustainable agriculture research[41].

Edge-Cloud Architectures: To address latency and
connectivity constraints in smart farming, edge-cloud
architectures have gained traction. In this hybrid
approach, computational tasks are split between local
edge devices (on-farm computers, microcontrollers, or
gateways) and remote cloud servers. Critical, time-
sensitive computations — like detecting a sudden drop
in soil moisture or an onset of disease in imagery — are
executed at the edge, enabling immediate responses
(such as activating irrigation or alerting the farmer).

Meanwhile, the cloud handles heavier tasks that
require big data aggregation or complex modeling, for
example, long-term yield forecasting or training of Al
models on collected data from many farms. Literature
from 2018-2024 describes numerous prototypes of
edge-cloud systems: one example is a crop monitoring
setup where drones perform initial image analysis on-
board to identify areas of concern, then upload concise
reports to a cloud platform for more in-depth analysis
and record-keeping. Another example is distributed
sensor networks that preprocess and compress data
locally, sending only relevant summaries to the cloud
— a design which dramatically cuts bandwidth usage
and costs. Reported outcomes of these architectures
include lower decision latency (often by an order of
magnitude, turning minutes of cloud communication
into seconds or less on the edge) and improved
resilience to network outages (since basic functions
continue locally). The technical contribution of edge-
cloud designs is a scalable, efficient computing
infrastructure tailored for agriculture’s needs. They
demonstrate that by leveraging local processing,
farmers get faster insights and reduced dependence on
constant internet access. However, implementing
edge-cloud requires system
engineering — ensuring synchronization between edge
and cloud, managing data consistency, and securing
distributed devices are all active research issues[42].

solutions careful

Federated Learning: Given concerns about data
privacy and the need for diverse datasets, federated
learning (FL) has appeared as an innovative method in
agricultural Al. In a federated learning setup, Al
models are trained collaboratively across multiple
farms or devices without centralizing the raw data. For
example, suppose several smart farms each have soil
sensors and yield records; with FL, each farm’s local
system can train a part of a shared machine learning
model on its own data and only send the updated model
parameters (not the actual farm data) to a central server
to create a consensus model. Studies in recent years
have applied FL to scenarios like pest detection and
crop disease classification across different regions,
with promising results: models trained via federated
learning achieved accuracy close to a traditional
centralized approach, while each farm’s sensitive data
remained on-site. This approach not only alleviates
privacy concerns but also addresses data scarcity per
location by allowing knowledge transfer from farm to
farm through the shared model. A notable
implementation is an FL system for crop yield
prediction that combined data from dozens of farms
globally, improving the model’s generalizability to
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new regions without exposing individual farm data.
The technical nuances include handling heterogeneous
data (farms may have different sensors or crops) and f
efficiency (since devices
exchange model updates periodically). Overall,
federated learning is contributing a privacy-
preserving, collaborative model development
paradigm to agricultural Al It shows potential to
unlock richer models and insights, especially when
data is fragmented, though current literature also
points out challenges like higher communication
overhead and the need for robust strategies against
unreliable or dishonest participants in the
federation[43].

communication must

Lightweight AI Models: In parallel with advanced
algorithms, been developing
lightweight AI models suitable for deployment on
low-power agricultural devices. These are compact
versions of machine learning models — achieved
through techniques like model pruning, quantization,
or using efficient architectures — that can run on
hardware  like  smartphones,  Arduino/ESP32
microcontrollers, or small Raspberry Pi-based systems

researchers have

on the farm. Between 2018 and 2024, numerous papers
have demonstrated that lightweight models can
effectively perform tasks such as crop disease
recognition, pest counting, or yield estimation with
minimal resource consumption. For example, a
compressed convolutional
implemented on a handheld device to identify crop
diseases from leaf images in the field; it achieved near
real-time inference with accuracy only marginally
lower (a few percentage points) than a much larger

neural network was

network trained on the same data. Another project built
a tiny ML model for smart irrigation control that fits in
a microcontroller’s memory and can predict soil
moisture trends, thereby enabling an offline automated
irrigation system for remote farms. The outcomes
underline that by sacrificing a small amount of
accuracy or complexity, these lightweight models
drastically extend the reach of Al — bringing
intelligence to settings with no reliable power or
internet and cheap hardware. This is particularly
impactful for smallholders in developing regions, as it
opens the door to affordable Al-driven tools (likeg.
portable soil nutrient analyzers or battery-powered
pest alert systems). The contribution of this line of
work is a democratization of agri-tech: it’s making
sophisticated analysis accessible on the edge. The
literature does caution that developing such models
requires careful training and optimization, and that
maintaining them (e.g. updating the models as data

evolves) can be difficult when devices are dispersed in
the field[44].

Hyperspectral Imaging: Harnessing hyperspectral
imaging (HSI) has proven to be a high-impact method
for crop analysis in recent years. Unlike regular RGB
cameras, hyperspectral sensors capture dozens or
hundreds of narrow spectral bands, providing rich
information on plant health, soil composition, and crop
conditions. Advanced Al techniques (like deep
spectral-spatial neural networks or machine learning
classifiers) are then used to interpret these complex
datasets. The literature reports impressive capabilities
of HSI in agriculture: for instance, using hyperspectral
drone imagery, researchers have achieved very high
accuracy in identifying diseased versus healthy
vegetation, sometimes exceeding 90-95% accuracy in
detecting specific diseases or nutrient deficiencies
even before symptoms are visible to the naked eye.
Similarly, hyperspectral data has been used for precise
yield forecasting and quality assessment — e.g.,
predicting grain protein content or fruit ripeness by
spectral The practical
applications demonstrated include early warning

analyzing signatures.
systems for crop disease outbreaks (giving farmers
extra lead time to respond) and site-specific crop
management like variable-rate fertilization guided by
nutrient maps derived from HSI. This method’s
contribution is particularly notable in the context of
precision farming because it can uncover subtle
biophysical indicators of stress or growth that simpler
sensors would miss. However, hyperspectral imaging
comes with challenges: the equipment (cameras and
spectrometers) tends to be expensive and generates
huge volumes of data, which require substantial
processing power and storage. Moreover, collecting
hyperspectral imagery might be limited by weather
and lighting conditions. Thus, current research is not
only refining the Al algorithms for HSI analysis but
also exploring cost reduction (e.g., using lower-cost
sensors with selective bands) and data-efficient
techniques so that hyperspectral insights can be more
widely adopted in farming[45].

Voice-Based Advisory Systems: With the goal of
making Al accessible to all farmers, voice-based
advisory systems have gained momentum as an
innovative tool in the late 2010s and early 2020s.
These systems provide agricultural information and
guidance through natural spoken language, acting as
virtual assistants or helplines for farmers. The core
technologies include speech recognition (to

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(14s), 760-776 | 770



understand farmers’ questions or descriptions of
problems) and natural language processing/generation
(to formulate helpful responses or recommendations),
often supplemented by an expert knowledge base or Al
model that tailors advice to the situation. Deployments
of voice-based systems are especially valuable in
regions with low literacy rates — for example, an Al-
driven advisory service may allow farmers to call a
number and ask, in their local language, how to treat a
pest on their crop, and then receive an immediate
spoken response with recommended actions. Some
recent pilot projects and products use smartphone
voice assistants or even basic mobile phones with
interactive voice response to deliver weather forecasts,
best farming practices, and market price updates. The
literature documents that these voice systems have
generally been well-received: farmers find them
convenient and trustworthy when the advice is
localized and the system can handle dialects/accents
accurately. In terms of technical achievement, one
study demonstrated a voice chatbot capable of
answering a large range of agriculture FAQs with a
high rate of user satisfaction, showcasing advances in
domain-specific language models. The impact of voice
advisory tools is seen in bridging the information gap
— they effectively extend the reach of agriculturalc.
extension services through technology. As with any Al
advisory, however, challenges include ensuring the
accuracy and relevance of the information provided
(since misguided recommendations could harm crops
or livelihoods) and continually updating the
knowledge base with the latest agronomic research.
Additionally, background noise on farms and the
diversity of languages pose engineering challenges for
speech recognition. Despite these hurdles, voice-based
Al advisors are rapidly evolving and are poised to
become a key component of digital literacy and farmer
support programs worldwide[46].

11.RESEARCH CHALLENGES

Infrastructure Limitations: Inadequate rural
infrastructure remains a fundamental barrier to tech-
driven agriculture. Many farming regions, particularly
in developing countries, suffer from unreliable
electricity and a lack of broadband connectivity. This
means loT sensors and Al platforms cannot functiond.
consistently, leading to data gaps and system
downtimes. The persistence of this challenge is largely
due to high costs of infrastructure development in
remote areas and lower commercial incentives for
providers to expand there. Overcoming infrastructure

limitations will likely require public investment in
rural electrification and internet access, as well as the
design of offline-capable solutions — for example,
solar-powered devices and edge computing systems
that can operate with minimal connectivity[47].

Cost Barriers: The high cost of advanced agricultural
technology is a recurring challenge identified across
the literature. Precision farming tools (drones, sensors,
farm management software, etc.) and Al services can
be prohibitively expensive for smallholder and
resource-poor farmers. Even when pilot projects
demonstrate benefits, scaling up typically requires
significant capital that individual farmers or
communities cannot shoulder. These cost barriers
persist because of expensive hardware, maintenance
needs, and sometimes subscription fees for data
services. To overcome this, researchers suggest a
combination of strategies
supportive policies: development of low-cost, open-
source hardware alternatives, bulk procurement or
service bundling to achieve economies of scale, and
subsidies or financing programs to help farmers invest
in technology that can improve productivity and

cost-reduction and

income in the long run[48].

Lack of Datasets: A well-recognized challenge in
applying Al to agriculture is the scarcity of large, high-
quality datasets. Building robust AI models (for crop
disease detection, yield prediction, etc.) demands
extensive training data — yet agricultural data
collection is constrained by seasonality, diversity of
crop conditions, and the need for expert labeling (e.g.,
identifying diseases in images). Many studies note that
their models are trained on relatively small or narrow
datasets, which limits performance and makes results
less reliable. The lack of publicly available, diverse
datasets persists because data gathering is labor-
intensive and often siloed (with different researchers
or companies not sharing data). Addressing this issue
calls for collaborative efforts to create open
agricultural data repositories, standardized data
collection protocols, and perhaps novel techniques like
data augmentation or simulation to supplement real-
world data. Without a richer data foundation, Al
innovations in farming will continue to face
generalization and reliability problems[49].

Regional Model Transferability: Even when data is
available, AI models frequently face transferability
issues — an algorithm trained in one region or context
often performs poorly when applied to another.
Agriculture is highly location-specific: differences in
climate, soil types, farming practices, and crop

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(14s), 760-776 | 771



varieties mean that a model for, say, maize disease
detection in one country might not work in another.
The literature highlights numerous instances of this
problem, indicating that models need retraining or
tuning for each new context, which is time-consuming
and requires local expertise. This challenge persists
because it’s inherently difficult for one model to
capture all geographical and agronomic variations.
Overcoming regional transferability hurdles may
require developing more adaptive or generalized
models (for example, using techniques from transfer
learning or meta-learning that adjust to new conditions
with minimal data) or building modular Al systems
that can be quickly calibrated with local sensor inputs.
Additionally, creating region-specific extensions of
global models and involving local institutions in model
development can improve relevance and acceptance,
ensuring that Al tools are truly effective across diverse
farming communities[50].

Data Privacy Concerns: The rise of data-driven
farming brings about serious concerns around data
privacy and ownership. Farmers are often wary ofg.
sharing their farm data (such as yield figures, soil data,
or farm management practices) due to fears of misuse
— for instance, companies might exploit data for profit,
or sensitive information could be exposed. There is
also a trust deficit in how securely platforms handle
data and whether benefit
contributing their information. This issue persists
because current regulations and data governance
frameworks in agriculture are underdeveloped, and
many tech providers have not prioritized transparent
data policies. From a research perspective, privacy

farmers will from

concerns limit data availability for developing robust
models. Addressing this challenge will require clearer
data governance policies (defining who owns farm
data and how it can be used), as well as technical
solutions like encryption and federated learning to
protect privacy. Building trust through farmer-centric
approaches — giving farmers control over their data and
a share in the benefits — is key to resolving privacy
issues and unlocking greater data sharing for collective
agricultural intelligence[51].

Standardization and Interoperability: A recurring
technical challenge is the lack of standardization
across agricultural technologies. Currently, different
IoT devices, platforms, and data formats often cannot
communicate or integrate with each other seamlessly
— a problem that leads to fragmented systems and
vendor lock-in. For example, one company’s sensor
network might use a proprietary protocol that isn’t

compatible with another’s farm management software,
complicating the task of combining datasets or scaling
solutions. This lack of standardization persists partly
because the agri-tech field is still evolving, with many
startups and initiatives developing custom solutions in
parallel, and there is no dominant set of standards or
governing body enforcing interoperability. The
literature points out that this fragmentation stifles
innovation and adoption, as farmers fear investing in

technology that might become obsolete or
incompatible. Overcoming the standardization
challenge will likely involve industry-wide

collaboration to develop common protocols for data
exchange, IoT communication (e.g., standardized
APIs and data schemas), and even benchmarks for Al
model performance in agriculture. Governments and
international organizations could facilitate this by
endorsing open standards and requiring that publicly
funded projects adhere to interoperability guidelines,
thereby creating a more cohesive ecosystem where
disparate tools can work together effectively[52].

Scalability of Solutions: Many promising smart
farming solutions encounter difficulties when moving
from pilot scale to large-scale deployment.
Approaches that work well on a research farm or in a
limited trial can face unanticipated issues in broader
use — ranging from technical bottlenecks (such as
cloud systems unable to handle the data deluge from
thousands of sensors) to logistical challenges (like
maintaining hardware across numerous villages).
Scalability is a persistent challenge because
agricultural environments are highly heterogenecous
and often lack the infrastructure and support systems
needed for widespread tech adoption. For instance, a
drone surveillance system may show great results on a
few farms, but scaling it to national programs would
require trained operators, drone maintenance facilities,
and regulatory clearances, which may not be in place.
The literature suggests that achieving scalability
requires designing solutions with simplicity and
robustness in mind (so they require minimal expert
intervention), and building capacity at the local level
(through training and infrastructure development).
Furthermore, partnerships with government agencies
or large agribusinesses can provide the necessary
backbone to roll out solutions on bigger scales.

Without deliberate planning for scale, many
innovations risk remaining stuck as niche
demonstrations rather than Dbenefiting global

agriculture at large[53].
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Farmer Trust and Adoption: Finally, virtually all
technological advances must reckon with the human
factor — farmer trust, user acceptance, and socio-
cultural fit. Numerous studies emphasize that lack of
trust in Al-driven recommendations or unfamiliar IoT
gadgets can significantly slow down adoption[54].
Farmers often have generations of experiential
knowledge, and they may be skeptical of algorithmic d
advice that contradicts traditional practices or is not
explained in understandable terms. Early failures or
inconsistent results can quickly lead to distrust[55].
This challenge persists because historically there has
sometimes been a top-down introduction of
technology without adequate farmer involvement, and
because Al models are often “black boxes” that do not
clearly justify their suggestions. Overcoming the trust
barrier requires a participatory approach: involvinge.
farmers in the design and testing of technologies,
providing transparent explanations for Al decisions
(e.g., showing which factors led to a pest prediction),
and demonstrating reliability over time[56]. Education
and digital literacy efforts also play a role — as farmers
become more familiar with technology, they are more
likely to trust and effectively use it. In essence,
building trust is about showing respect for localf.
knowledge, ensuring solutions address real pain
points, and establishing a track record of tangible
benefits[57]. Researchers argue that without earning
the end-users’ confidence, even the most advanced
Al/IoT innovations will have limited impact on
sustainable farming and hunger mitigation[58].

10. CONCLUSION

Al and IoT as Drivers of Precision Farming: The
review highlighted how artificial intelligence and
Internet of Things technologies
agriculture through precision crop monitoring, disease
detection, smart irrigation, and farm automation.
These tools significantly enhance yields, optimize
resource use, and reduce production risks, showingh_
strong potential to reshape farming systems globally.

can transform

Emergence of Digital Twins and AloT
Architectures: Beyond isolated tools, digital twin
frameworks and integrated AloT ecosystems represent
the future of farm management. By combining real-
time sensor data with simulation and edge-cloud
analytics, farmers can experiment with strategies
virtually and implement optimized solutions, though
adoption is still constrained by infrastructure and
costs.

Al-Powered Education and Digital Literacy:
Technology adoption depends heavily on digital

literacy. Al-enabled education platforms—chatbots,
multilingual advisors, gamified apps—demonstrated
the capacity to democratize knowledge transfer, lower
extension costs, and engage underrepresented groups,
especially women and rural youth. These efforts close
the digital divide and empower farmers as co-creators
of innovation.

Role of Farming in Hunger Mitigation: Farming
interventions remain central to addressing global
hunger under SDG-2 (Zero Hunger). Precision
farming increases food availability, redistribution
platforms reduce waste, and climate-smart practices
strengthen resilience against hunger shocks. Together,
these tools address both supply and access dimensions
of food security.

Comparative Insights Across Themes: The review
emphasized that while Al and IoT drive technical
gains, adoption, and hunger
mitigation represents the ultimate societal goal. The
interplay among these three domains reveals that no
single strand can succeed alone; technology, human
capital, and food system outcomes are inseparably
linked.

education ensures

Persistent Challenges: Despite clear benefits,
obstacles remain: poor rural connectivity, high device
costs, fragmented standards, limited datasets, low
literacy levels, and inadequate policy frameworks.
Issues of trust, scalability, and equity also pose
significant barriers, reminding us that innovation must

be coupled with inclusive strategies.

Future Directions for Research and Practice:
Opportunities lie in developing lightweight, localized
Al models, building farmer-centered education
ecosystems, standardizing IoT platforms,
expanding to diverse crops and regions. Policy support
for affordability, connectivity, and data governance
will be crucial to mainstream adoption by 2030.

and

Towards Integrated, Sustainable Farming
Systems: Ultimately, Al IoT, and digital literacy are
most integrated into holistic
frameworks that combine technology, education, and
policy. Only through such convergence can agriculture

evolve into a climate-resilient, resource-efficient, and

powerful when

socially inclusive system capable of reducing hunger
sustainably.
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