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Abstract: In recent years, some generalized structures of topologies were introduced. In this way, derivative topological space 

was introduced. To contribute in this orientation, we introduce and investigate the properties of differential neighborhoods and 

differential limit points in derivative topological spaces. We explore many properties of them and discuss their behaviour on 

derivative topological spaces. A differential limit point is a point in a differential ring that can be approached arbitrarily close 

by the elements that same set. These concepts serve as the building blocks for defining other key properties in derivative 

topological spaces. The relation between differential open sets, differential closure, differential neighborhoods and differential 

derived sets were obtained. 
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1. Introduction 

Throughout this paper, we focus only on differential 

rings. Let R denote the differential ring unless 

otherwise specified. The notion of the ring with 

derivation is quite old and plays a significant role in 

the integration of analysis, algebraic geometry and 

algebra. In 1950’s a new part of algebra called 

differential algebra was initiated by the works of Ritt 

and Kolchin. For many years, various authors [1,2,5] 

constructed some topologies over algebraic 

structures and they investigated the relations 

between the algebraic properties of given algebraic 

structures (such as rings, modules, lattices and fuzzy 

structures) and topological properties of these 

topologies. 

In this manner, we introduce a new topology, 

namely, derivative topology 𝜏 which has the 

structure that ∅, R are in 𝜏 and is closed under 

arbitrary union and arbitrary intersection. We 

observe that a derivative topology is different from 

general topology. 

During 20th century, real and complex analysis relied 

heavily on the concepts of open sets, closed set, 

neighborhood and limit point of a set. The concept 

of limit point is taken as primitive for topological 

spaces. In this paper, we introduce the notion of 

differential neighborhood, differential limit point 

and study its properties extensively. 

Section 2 deals with the preliminary concepts. In 

section 3, we introduce differential neighborhoods 

and study their basic properties. In section 4, we see 

the notions of differential limit point and discuss its 

properties. 

2. Preliminaries  

The purpose of this section is to give a review of 

some definitions and propositions concerning our 

subject. Throughout the work, R denote the 

differential ring. 

Definition 2.1 [7]: Let R be a commutative ring with 

identity. A derivation on R is a map                    d: 

R→ R such that 

(i) d(a+b)= 

d(a)+d(b) 

(ii) d(a.b)= 

d(a).b+a.d(b) 

A differential ring is a commutative ring with 

identity R together with the distinguished derivation 

d. If R is a differential ring and 𝑥 ∈R, then write 𝑥′ 

for 𝑑𝑥, 𝑥′′ for 𝑑2𝑥 and in general 𝑥(𝑛)for 𝑑𝑛𝑥.  
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Let R be a commutative ring with identity. A 

derivation d on R is said to be the trivial derivation 

if 𝑑(𝑎) = 0 for all 𝑎 ∈ 𝑅. 

The derivative of a non-empty set S is denoted by 

d(S) and defined as d(S) = {d(a)/a∈ 𝑆}. 

Definition 2.2 [7]: A subset S of a differential ring 

R is called a differential subset if it contains the 

derivative of each of its elements. Equivalently, 

d(S)⊆ S, where d(S) is the derivative of S. 

Proposition 2.3[10]: Let R be a differential ring 

with derivation d. Let 𝜏 be a collection of differential 

subsets of 𝑅. Then 

1. ∅, 𝑅 ∈ 𝜏 

2. Arbitrary union of differential subsets of R is 

a differential subset of R. 

3. Arbitrary intersection of differential subsets of 

R is a differential subset of R. 

Definition 2.4 [10]: A derivative topology on a 

differential ring R is a collection 𝜏 of differential 

subsets of R having the following properties: 

1. ∅, 𝑅 are in 𝜏. 

2. The union of the elements of any 

subcollection of 𝜏 is in 𝜏. 

3. The intersection of the elements of any 

subcollection of 𝜏 is in 𝜏. 

If R is a derivative topological space with derivative 

topology 𝜏, we say that a differential subset U of R 

is a differential open set of R if U belongs to  𝜏.   

Definition 2.5 [10]: Let (R, d, 𝜏) be a derivative 

topological space. A subset A of R is said to be 

differential closed if its complement is differential 

open of R. 

Proposition 2.6 [10]: Let (R, d, 𝜏) be a derivative 

topological space. Then the following properties 

hold: 

1. ∅ and R are differential closed sets 

2. Arbitrary intersection of differential closed sets 

is a differential closed set. 

3. Arbitrary union of differential closed sets is a 

differential closed set. 

Proposition 2.7 [11]: Let A be a subset of the 

derivative topological space R. Then 𝑥 ∈ 𝐶𝑙𝑑(𝐴) iff 

every differential open set U containing 𝑥 intersects 

A. 

Proposition 2.8 [11]: Let X be a subset of a 

derivative topological space (𝑅, 𝑑, 𝜏). Then         

i.𝐶𝑙𝑑(𝑋) ⊇ 𝑋. 

ii. 𝐶𝑙𝑑(𝑋) = 𝑋 if and only if 𝑋 is a differential closed 

subset of R. 

3. Differential Neighborhoods  

In this section, we will define differential 

neighborhood and see some results which connect 

differential neighborhoods with differential open 

sets and differential closure. 

Definition 3.1: Let (𝑅, 𝑑, 𝜏)  be a derivative 

topological space and 𝑥 ∈ 𝑅. A subset N of 𝑅 is 

called a differential neighborhood of 𝑥 if there exists 

a differential open set U such that                𝑥 ∈ 𝑈 ⊆

𝑁. 

Clearly, every differential neighborhood of 𝑥 

contains 𝑥. 

Proposition 3.2: A subset N of a derivative 

topological space (𝑅, 𝑑, 𝜏) is differential open in R 

iff N is a differential neighborhood of each of its 

points. 

Proof: Let N be a differential open set in R. Let 𝑥 ∈

𝑁. Obviously, 𝑥 ∈ 𝑁 ⊆ 𝑁. Therefore, N is a 

differential neighborhood of 𝑥. Hence, N is a 

differential neighborhood of each of its points. 

Conversely, suppose N is a differential 

neighborhood of each of its points. Then for any          

𝑥 ∈ 𝑁, there exists a differential open set 𝑈𝑥 such 

that 𝑥 ∈ 𝑈𝑥 ⊆ 𝑁. Therefore, ⋃ 𝑈𝑥 = 𝑁𝑥∈𝑁 . By 

Proposition 2.3 arbitrary union of differential open 

sets is differential open. Therefore, N is a differential 

open set. 

Proposition 3.3: If 𝐴 is a differential closed subset 

of a derivative topological space (𝑅, 𝑑, 𝜏) and 𝑥 ∈

𝑅 − 𝐴, then there exists a differential neighborhood 

𝑁 of 𝑥 such that 𝑁 ∩ 𝐴 = ∅. 

Proof: Let 𝐴 be a differential closed subset of R. 

Then 𝑅 − 𝐴 is a differential open set. Since   𝑥 ∈

𝑅 − 𝐴, by Proposition 3.2, 𝑅 − 𝐴 is a differential 

neighborhood of 𝑥. Take 𝑁 = (𝑅 − 𝐴). Then 𝑁 is a 

differential neighborhood of 𝑥 such that 𝑁 ∩ 𝐴 = ∅. 

Proposition 3.4: Let A be a subset of a derivative 

topological space (𝑅, 𝑑, 𝜏). Then 𝑥 ∈ 𝐶𝑙𝑑(𝐴) iff 

every differential neighborhood of 𝑥 intersects A. 

Proof: By Proposition 2.7, 𝑥 ∈ 𝐶𝑙𝑑(𝐴) iff every 

differential open set U containing 𝑥 intersects A. 

Also, by Proposition 3.2, N is differential open in R 

iff N is a differential neighborhood of each of its 
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points. Hence, 𝑥 ∈ 𝐶𝑙𝑑(𝐴) iff every differential 

neighborhood of 𝑥 intersects A. 

Proposition 3.5: Let (𝑅, 𝑑, 𝜏) be a derivative 

topological space. Let 𝑥 ∈ 𝑅.  Then every point 𝑥 

has at least one differential neighborhood. 

Proof: Since R is a differential open set, then by 

Proposition 3.2, it is a differential neighborhood of 

each of its points. Therefore, there exists at least one 

differential neighborhood namely, R for each 𝑥 ∈ 𝑅. 

Proposition 3.6: Let (𝑅, 𝑑, 𝜏) be a derivative 

topological space. Let 𝑥 ∈ 𝑅.  Then every super set 

of a differential neighborhood of 𝑥 is a differential 

neighborhood of 𝑥. 

Proof: Let N be a differential neighborhood of 𝑥 and 

M contains N. Therefore, there exists a differential 

open set U such that 𝑥 ∈ 𝑈 ⊆ 𝑁. Since N⊆ 𝑀, we 

have 𝑥 ∈ 𝑈 ⊆ 𝑀. Hence, 𝑀 is a differential 

neighborhood of 𝑥. 

Proposition 3.7: Let (𝑅, 𝑑, 𝜏) be a derivative 

topological space. Let 𝑥 ∈ 𝑅.  Then the intersection 

of two differential neighborhoods of 𝑥 is also a 

differential neighborhood of 𝑥. 

Proof:  Let 𝑁 and 𝑀 be two differential 

neighborhoods of 𝑥. Then there exist differential 

open sets U and V in R such that 𝑥 ∈ 𝑈 ⊆ 𝑁 and 𝑥 ∈

𝑉 ⊆ 𝑀. Therefore, 𝑥 ∈ 𝑈 ∩ 𝑉 ⊆ 𝑁 ∩ 𝑀. Since U 

and V are differential open sets in R, by Proposition 

2.3 we have  𝑈 ∩ 𝑉 is differential open in R. 

Therefore,  𝑁 ∩ 𝑀 is a differential neighborhood of 

𝑥. 

Proposition 3.8: Let (𝑅, 𝑑, 𝜏) be a derivative 

topological space. Let 𝑥 ∈ 𝑅. Then the union of two 

differential neighborhoods of 𝑥 is also a differential 

neighborhood of 𝑥. 

Proof:  Let 𝑁 and 𝑀 be two differential 

neighborhoods of 𝑥. Then there exist differential 

open sets U and V in R such that 𝑥 ∈ 𝑈 ⊆ 𝑁 and 𝑥 ∈

𝑉 ⊆ 𝑀. Therefore, 𝑥 ∈ 𝑈 ∪ 𝑉 ⊆ 𝑁 ∪ 𝑀. Since U 

and V are differential open sets in R, by Proposition 

2.3 we have  𝑈 ∪ 𝑉 is differential open in R. 

Therefore,  𝑁 ∪ 𝑀 is a differential neighborhood of 

𝑥. 

Proposition 3.9: Let (𝑅, 𝑑, 𝜏) be a derivative 

topological space. Let 𝑥 ∈ 𝑅 and let 𝑁𝑑(𝑥) be the set 

of all differential neighborhood of 𝑥.  If 𝑁 ∈ 𝑁𝑑(𝑥), 

then there exists 𝑈 ∈ 𝑁𝑑(𝑥) such that 𝑈 ⊆ 𝑁 and 

𝑈 ∈ 𝑁𝑑(𝑦) for every 𝑦 ∈ 𝑈. 

Proof: Let 𝑁 ∈ 𝑁𝑑(𝑥). Then there exists differential 

open set U in R such that 𝑥 ∈ 𝑈 ⊆ 𝑁. Since U is a 

differential open set, by Proposition 3.2 it is a 

differential neighborhood of each of its points. 

Hence 𝑈 ∈ 𝑁𝑑(𝑦) for every 𝑦 ∈ 𝑈. 

4. Differential limit Points 

In this section we define differential limit points and 

differential derived set and establish its properties. 

Definition 4.1: Let A be a subset of a derivative 

topological space (𝑅, 𝑑, 𝜏). Then 𝑥 is a differential 

limit point of A if every differential neighborhood of 

𝑥 intersects A in some point other than 𝑥 itself. 

The set of all differential limit points of the set A is 

called a differential derived set of A and is denoted 

by 𝐷𝑑(𝐴). 

Proposition 4.2: Let A be a subset of a derivative 

topological space (R, d, 𝜏). Then 𝐶𝑙𝑑(A) = A ∪

Dd(A). 

Proof: Let 𝑥 ∈ A ∪ Dd(A). If 𝑥 ∈ 𝐴, then by 

Proposition 2.8, 𝑥 ∈ 𝐶𝑙𝑑(A). If 𝑥 ∉ 𝐴,  then             

𝑥 ∈ Dd(A). Therefore, every differential 

neighborhood of 𝑥 intersects A other than 𝑥. Hence 

by Proposition 2.7, 𝑥 ∈ 𝐶𝑙𝑑(A). Thus, Dd(A) ⊆ 

𝐶𝑙𝑑(A). Hence, A ∪ Dd(A) ⊆ 𝐶𝑙𝑑(A). On the other 

hand, let 𝑥 ∈ 𝐶𝑙𝑑(A). We show that 𝑥 ∈  A ∪ Dd(A). 

If 𝑥 ∈ 𝐴, then 𝑥 ∈  A ∪ Dd(A). If 𝑥 ∉ 𝐴, then we 

need to prove that  𝑥 ∈  Dd(A). Since 𝑥 ∈ 𝐶𝑙𝑑(A), 

by Proposition 2.7 every differential neighborhood 

U of 𝑥 intersects A. Since 𝑥 ∉ 𝐴, the differential 

neighborhood U of 𝑥 must intersect A in some point 

other than 𝑥. Therefore, 𝑥 is a differential limit point 

of A. Hence, 𝑥 ∈  Dd(A). Therefore, 𝑥 ∈ A ∪

Dd(A). Hence, 𝐶𝑙𝑑(A) ⊆ A ∪ Dd(A). Thus,     

𝐶𝑙𝑑(A) = A ∪ Dd(A). 

Proposition 4.3: A subset A of a derivative 

topological space (R, d, 𝜏) is differential closed iff it 

contains all of its differential limit points. 

Proof:  A is differential closed iff 𝑐𝑙𝑑(𝐴) = 𝐴 iff 

A ∪ Dd(A) = A iff  Dd(A) ⊆ A. 

Proposition 4.4: Let (R, d, 𝜏) be a derivative 

topological space. Let A and B be subsets of R. 

i.If 𝐴 ⊆ 𝐵, then Dd(A) ⊆  Dd(B) 

ii. Dd(A ∪ B) =  Dd(A) ∪ Dd(B) 

iii.Dd(A ∩ B) ⊆  Dd(A) ∩ Dd(B). 

Proof: i. Let A and B be subsets of R such that 𝐴 ⊆

𝐵. Let 𝑥 ∈ Dd(A). Then 𝑥 is the differential limit 

point of A. Therefore, every differential 
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neighborhood of 𝑥 intersects A other than 𝑥. Since 

𝐴 ⊆ 𝐵, we have every differential neighborhood of 

𝑥 intersects B other than 𝑥. Therefore, 𝑥 is a 

differential limit point of B. Hence, 𝑥 ∈ Dd(B). 

Thus, Dd(A) ⊆  Dd(B). 

ii. Since 𝐴 ∪ 𝐵 ⊇ 𝐴 and 𝐴 ∪ 𝐵 ⊇ 𝐵, by i, Dd(A ∪

B) ⊇  Dd(A) and Dd(A ∪ B) ⊇  Dd(B). Therefore, 

Dd(A ∪ B) ⊇  Dd(A) ∪ Dd(B). Let 𝑥 ∈ 𝐷𝑑(𝐴 ∪ 𝐵). 

We show that  𝑥 ∈ 𝐷𝑑(𝐴) ∪ 𝐷𝑑(𝐵). Suppose 𝑥 ∉ 

𝐷𝑑(𝐴) ∪ 𝐷𝑑(𝐵). Then 𝑥 ∉ 𝐷𝑑(𝐴) and 𝑥 ∉ 𝐷𝑑(𝐵). 

Therefore, 𝑥 is neither a differential limit point of A 

nor of B. Hence, there exist differential 

neighborhoods M and N of 𝑥 such that M contains 

no points A other than 𝑥 and N contains no points B 

other than 𝑥. Since M and N are differential 

neighborhood of 𝑥, by Proposition 2.3 we have 𝑀 ∩

𝑁 is differential neighborhood of 𝑥. Also, 𝑀 ∩ 𝑁 

contains no point of 𝐴 ∪ 𝐵 other than 𝑥. Therefore, 

𝑥 is not a differential limit point of  𝐴 ∪ 𝐵. Hence, 

𝑥 ∉ 𝐷𝑑(𝐴 ∪ 𝐵). This is a contradiction, since 

𝑥 ∈ 𝐷𝑑(𝐴 ∪ 𝐵). Therefore, 𝑥 ∈ 𝐷𝑑(𝐴) ∪ 𝐷𝑑(𝐵). 

Hence, 𝐷𝑑(𝐴 ∪ 𝐵) ⊆ 𝐷𝑑(𝐴) ∪ 𝐷𝑑(𝐵). Thus, 

Dd(A ∪ B) =  Dd(A) ∪ Dd(B). 

iii. We have 𝐴 ∩ 𝐵 ⊆ 𝐴 and 𝐴 ∩ 𝐵 ⊆ 𝐵. Then by i, 

Dd(A ∩ B) ⊆  Dd(A) and Dd(A ∩ B) ⊆  Dd(B). 

Therefore, Dd(A ∩ B) ⊆  Dd(A) ∩ Dd(B). 

Conclusion 

This work is devoted to introducing and discussing 

the concepts of differential limit points of a set with 

respect to differential open sets. We have established 

the properties of differential neighborhoods and 

differential limit points in derivative topological 

spaces. 
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