International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

www.ijisae.org

1JISAE

ISSN:2147-6799 Original Research Paper

Tool-Supported UML Analysis for Early Detection of Software
Design Flaws

Sweta Singh Patel*! & Arpana Bharani’

Submitted:02/09/2024 Accepted:15/10/2024 Published:25/10/2024

Abstract: This research presents a UML-based approach for automated software architecture analysis aimed at improving
design quality and maintainability in software systems. The proposed methodology integrates UML modeling, XMI-based
data extraction, and Java-based metric computation to identify architectural weaknesses at an early stage. A case study on a
Student Record System was conducted, where key UML diagrams—Component, Deployment, Class, and Use Case—were
modeled using Enterprise Architect. A custom Java tool was developed to parse XMI files, extract structural information, and
compute object-oriented metrics such as Lines of Code (LOC), Weighted Methods per Class (WMC), Depth of Inheritance
Tree (DIT), Number of Children (NOC), Lack of Cohesion in Methods (LCOM), and Response for a Class (RFC). The metric
analysis revealed concise, low-complexity, and well-organized classes, demonstrating the effectiveness of the approach in
supporting maintainable and scalable software architecture. The tool’s graphical interface allows users to visualize UML
models, load XMI files, and perform automated architectural evaluation, making it accessible for both academic and
professional applications. Overall, this study illustrates that automated UML-based metric evaluation provides a practical and
efficient means to assess and enhance software design quality.

Keywords: UML, XMI Parsing, Software Architecture, Automated Analysis, Design Flaws, Software Metrics, Enterprise
Architect, Java tool.

Introduction: Software architecture represents the
high-level structure of a software system, defining
the components, their interactions, and overall
design decisions. A well-designed architecture
ensures system reliability, maintainability, and
scalability. However, as software systems become
larger and more complex, manual analysis and
detection of design flaws become time-consuming
and prone to human error. Even small architectural

readable format that allows automatic data exchange
between modeling tools and analysis systems.

This research focus on developing an automated
approach to detect design flaws in software
architecture using UML and XMI parsing. The
proposed approach extracts
information from UML models and computes
object-oriented design metrics such as weighted
methods per class (WMC), Depth of inheritance
Tree (DIT), Lack of cohesion of methods (LCOM),
Number of children (NOC), and Response for a class
(RFC). These metrics are then compared with

architectural

defects can lead to significant performance
degradation, poor maintainability, and higher
development costs in later stages.

To overcome these challenges, the use of Unified defined threshold values to identify design

Modeling Language (UML) and XML Metadata
Interchange (XMI) has become a standard practice
in model-driven software engineering. UML
provides a graphical representation of system
architecture, while XMI Serves as a machine-

*IResearch scholar at Dr APJ Abdul Kalam
University Indore, Madhya Pradesh
2Assistant professor at Dr APJ Abdul Kalam
University Indore, Madhya Pradesh
Crossholding author address-
Sweta.patel752@gmail.com

anomalies, such as excessive complexity, deep
inheritance, low cohesion, and high coupling.

Automation in the detection process minimizes
human involvement and ensures consistent and
repeatable results. The implementation of the
proposed tool in Java and its integration with
Enterprise Architect enables efficient parsing of
XMI files and generation of detailed analytical
reports. This study aims to enhance architectural
evaluation accuracy, reduce maintenance efforts,
and provide architects with actionable insights to
improve software quality.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3861-3869 |3861

mailto:Sweta.patel752@gmail.com

Literature Review: Software architecture analysis
has been a major area of research in software
engineering, as it directly influences system quality
and maintainability. Various researchers have
proposed different approaches to analyze and
evaluate software designs using UML models and
metrics-based evaluations.

Several studies emphasize the importance of UML
models for visualizing and understanding software
structure. Booch, Rumbaugh, and Jacobson (1999)
introduced UML as a standardized modeling
language to represent software systems at multiple
abstraction levels. Since then, UML has been widely
adopted for modeling architectural components and
their relationships.

Researchers such as Chidamber and Kemerer (1994)
developed a suite of object-oriented metrics (CK
Metrics), including WMC, DIT, NOC, LCOM, and
RFC, to measure software quality attributes like
complexity, cohesion, and coupling. These metrics
became the foundation for automated evaluation of
design quality.

Further studies integrated UML model with
automated tools to reduce manual analysis. France
and Rumpe (2007) discussed Model-Driven
Engineering (MDE), which allows automated
transformations and analysis using modeling
languages like UML. Similarly, tools such as
Enterprise Architect, MagicDraw, and StarUML,
support exporting models in XMI format, enabling
interoperability and automated data exchange.

In recent years, researchers have explored XMI-
based parsing techniques to extract model
information automatically. For example, Mishra et
al. (2017) proposed a Java-based parser to analyze
UML models for detecting design flaws through
metrics comparison. However, most of these tools
were either limited to specific metrics or lacked
integration with complete architectural analysis.

The present research improves upon previous
studies by designing a unified tool that automatically
parses XMI files, calculates multiple metrics, and
evaluates software architecture based on threshold
values. This approach not only minimizes manual
effort but also ensures consistency, scalability and
accuracy in detecting architectural design flaws.

Research Methodology: The proposed research
aims to develop an automated approach for detecting

design flaws in software architecture using Unified
Modeling Language (UML) and XML Metadata
Interchange (XMI). The methodology integrates
model-based design, automated metric extraction,
and empirical analysis to identify architectural
weaknesses during the design phase, thereby
improving software quality and maintainability.

1. Research Approach: The proposed
research follows a model-based analysis
combined with tool implementation. The
overall process consists of the following
stages:

1. Model Creation: Develop UML models
(Class Diagram) to represent the system
architecture.

2. XMI Export: Export the UML models to
XMI format using modeling tools such as
enterprise Architect.

3. Tool Development: Design and
implement a Java-based UML Analysis
tool capable of parsing XMI files.

4. Metric Extraction: Extract important

software design metrics such as

Lines of Code (LOC)

Weighted Methods per Class (WMC)

Depth of Inheritance Tree (DIT)

Number of Children (NOC)

Lack of Cohesion in Methods (LCOM)

Response for Class (RFC)

Threshold Comparison: Compare

extracted metric values against standard

threshold limits to identify design flaws

“ e e © 0 0 @

and architectural risks.

6. Report Generation: Generate metric
reports and graphical representations to
visualize complexity and flaw detection
results.

Software Metrics via Class Diagram

e A Class Diagram was modeled to
represent the internal structure of the
system, including its classes and
relationships.

e The Class Diagram was then exported as an
XMI file for further processing.

e A custom Java-based Swing GUI tool
was developed to parse the XMI file and
automatically extract key software
architecture metrics.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3861-3869 (3862

These metrics serve as quantitative indicators for
identifying potential design flaws and assessing the
architectural quality of the software system.

3. Tool Design and Implementation: The
proposed tool was developed using Java
and XML parsing techniques. The process
involves the following steps:

e Input: XMI file generated from
UML diagrams
e Process:
o Parse XMI elements

(classes, attributes,
operation,
relationships)

o Extract metrics
automatically

o Evaluate results
against predefined
threshold values

The tool assists in automated detection of structural
design issues such as excessive complexity, poor
cohesion, and deep inheritance, which are strong
indicators of potential flaws.

4. Empirical Analysis: To evaluate the
effectiveness of the proposed approach,
multiple UML models representing
different software systems were analyzed
using the developed tool.Each model was
processed to compute design metrics, and
the results were compared with their
respective threshold values.

Table - Threshold Values Used for Evaluation

Metric Threshold value Description
LOC >500 Large class size may reduce maintainability
WMC >20 More methods may indicate high complexity
DIT >5 Deeper inheritance may lead to design issue
NOC >10 More children could signal improper abstraction
LCOM >0.8 High value indicates poor cohesion
RFC >50 High number of methods/message affects testing

The comparison of calculated metrics with these
thresholds helped identify architectural risks,
complexity, and maintainability concerns.

UML-Based Design and Implementation: Unified
Modeling Language (UML) class diagrams were
created using Enterprise Architect (version 17.1)
to design and visualize the Student Record System.

| Student

= name: String
student_id: int

Class Diagram — To model the static structure of
the Student Record System, a Class Diagram was
developed using Enterprise Architect (EA). The
Class Diagram plays a critical role in object-oriented
analysis and design. It shows the system’s classes,
their attributes, methods, and relationships such as
inheritance, association, and aggregation.

| Course

title: String

‘ - course_id: int

| Enrollment

- course_id: int
enrod lment_id : int

Figure 1: Internal Structure of the Student Record System

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3861-3869 (3863

This diagram provides a blueprint of the
internal structure of the software, making it
ideal for metric — based analysis of software
architecture quality.

Classes in the Diagram: The Class Diagram of
the Student Record System includes the
following key classes:

1. Student
Attributes: studentID, name
2. Course

Attributes: courselD, courseName
3. Enrollment
Attributes: enrollmentID, date, status

Relationships:
< A Student can enroll in multiple Courses
(association via Enrollment).

« The Enrollment class acts as a link between
Student and Course (aggregation).

« Generalization, association, and navigable

arrows are used where applicable.

Role in Metric Analysis:

The Class Diagram is the core diagram for
evaluating software quality using object-oriented
metrics. The Java tool developed for this research
parses the XMI file generated from this diagram and
extracts various metrics. The values of these metrics
help in analyzing the maintainability, complexity,
cohesion, and design quality of the software
architecture.

Description: The Class Diagram illustrates the
associations between the Student and Enrollment
classes (one-to-many), as well as between the
Enrollment and Course classes. This structure was
subsequently exported in XMI format for metric
analysis. Designed using Enterprise Architect, the
diagram serves as the foundation for object-level

1. Class Diagram XMI Files

» > carn L =

CHNDNAUN

&
gy

UaUNEQUONDRAUNE

NNNNNNEFEEEERERE

=
=
==
==
=

= e] L — T e L e e ==t =

analysis, enabling the application of software
metrics such as LOC, WMC, DIT, NOC, RFC, and
LCOM.

These models were exported in XMI (XML
Metadata Interchange) format for further processing
using the Java-based tool.

Metric Evaluation Approach: To evaluate
software quality, the following object-oriented
metrics were calculated:

e Lines of Code (LOC): Measures the size
of the code.

e Weighted Methods per Class (WMC):
Measures class complexity.

e Depth of Inheritance Tree (DIT):
Indicates inheritance levels.

e Number of Children (NOC): Counts
subclasses derived from a class.

e Lack of Cohesion in Methods (LCOM):
Evaluates method-level cohesion.

e Response for Class (RFC): Measures the
number of methods that can be executed in
response to a message received by an
object.

Each metric was analyzed using standard
threshold values from software engineering
guidelines to determine whether design elements
met acceptable quality standards.

Generation and Use of XMI Files: Class diagrams
were created in Enterprise Architect 17.1 and
exported in XMI (XML Meta Data Interchange)
format. The exported XMI files were used as input
to the custom Java-based parser: These files
included:

RS AL ES T — S L S e ==

o T e — T I T
T e b e S5 T LS
;! -

Files 1: — Class Diagram from Exporting UML to XMI

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3861-3869 (3864

Java-Based Tool Development and Metric
Calculation: A custom Java-based tool was
developed using IntelliJ IDEA to parse XMI files
and automatically extract software metrics from
UML models. The tool facilitates automated metric
evaluation and visualization, enabling effective
analysis of software architecture quality.

Tool Architecture: The tool consists of the
following key components:

e XMI Reader Module: Parses XMI files
and identifies UML elements such as
classes, attributes, and relationships.

Program 1: Student.java

e Metric Calculator Module: Analyzes the
Class Diagram extracted from the XMI file
generated by Enterprise Architect (version
17.1) to compute software metrics.

e Output Generator Module: Displays and
visualizes the calculated results through an
interactive Java Swing GUI.

This modular architecture ensures separation of
concerns, simplifies maintenance, and enables
automated metric computation directly from UML
design artifacts.

Public class Student {
int studentld;
String name;
//Constructor
Public Student (int studentld, String name) {
this.studentld = studentld;
this.name = name;
H
// Display Method
Public void display() {
System.out.println(“Studentld: ” + studentId);
System.out.println(“Name: ” + name);
H
}

Figure 1: Program Student.java

Program 2: Course.java

Public class Course {
int courseld;
String courseName;
//Constructor

Public Student (int courseld, String courseName) {

this.courseld = courseld;
this.courseName = courseName;
}
// Display Method
Public void display(){
System.out.println(“Courseld: ” + courseld);

System.out.println(“CourseName: ” + courseName);

H
h

Figure 2: Program Course.java

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3861-3869 (3865

Program 3: Enrollment.java

Public class Enrollment {

Student student;

Course course;

String enrollmentDate;

// Constructor

Public Enrollment(Student student, Course course,String enrollmentDate) {
this.student = student;

this.course = course;

this.enrollmentDate = enrollmentDate;

}

// Display Method

Public void display() {

System.out.println(“Enrollment Details:”);
Student.display();

Course.display();

System.out.println(“EnrollmentDate:” + emrollmentDate);

}
}

Figure 3: Program Enrollment.java

Program: 4 Main.java

Public class Main {

Public static void main(String[] args){

Student studentl = new Student(1,“Sweta Singh”);

Course coursel = new Course(101,”’Computer Science”);

Enrolment enrollmentl = new Enrolment(studentl,coursel,”11 June 2025”);

Enrollmentl.display();

}
}
Figure 4: Program Main.java
CODING IN JAVA Compilation and Execution

All system classes were implemented in Java, with
each class containing relevant attributes and
methods to store and display data. The Main.java
class was responsible for creating objects of the
Student, Course, and Enrollment classes and
invoking their methods to simulate the system’s
real-world behavior.

e The program was compiled in IntelliJ
IDEA by selecting Build — Build Project
from the menu.

e After successful compilation, the program
was executed by running Main.java using
the Run button.

e Output was displayed in the IntelliJ
console.

OUTPUT: The program successfully displayed
student names, courses enrolled, and enrollment
IDs, confirming correct interaction between the
three classes. A sample output is shown below:

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3861-3869 (3866

Main

Figure: Program Result Output

Architecture Analysis

To evaluate the designed software architecture of the
Student Record System, a set of object-oriented
software metrics was applied. These metrics provide
a quantitative basis for assessing the quality,
complexity, and maintainability of the architecture.
The system, modeled using UML, includes three
primary classes: Student, Course, and Enrollment.

Software Metric Calculation: The following
object-oriented metrics were calculated after
implementing the system classes:

e LOC (Lines of Code): Measures class size
and estimates development effort and
complexity.

e WMC (Weighted Methods per Class):
Sum of method complexities within a class.
In this study, each method is assigned a
complexity value of 1. WMC estimates
effort required to develop, understand, and
maintain the class.

e DIT (Depth of Inheritance Tree):
Maximum length from a class to the root of

Software Metrics Table:

the inheritance hierarchy. Higher values
indicate increased complexity. (No
inheritance is used;, DIT = 0 for all
classes.)

e RFC (Response for a Class): Total
number of methods that can be invoked in
response to a message received by the
class. Higher RFC values indicate greater
complexity, affecting understand ability,
testing, and maintenance.

e NOC (Number of Children): Number of
immediate subclasses derived from a class.
A higher NOC can indicate reuse but may
increase maintenance complexity.

e LCOM (Lack of Cohesion in Methods):
Measures method dissimilarity within a
class. Higher LCOM values suggest low
cohesion, indicating potential design issues
and reduced maintainability.

These metrics help identify potential risks,
maintainability issues, and design weaknesses early
in the development lifecycle, supporting informed
architectural decisions.

Table 3.4: Software Metrics Table

Metric Student Course Enrolment
LOC(Line of code) 10 13
WMC(Weighted Methods per class) 1 3
DIT(Depth of Inheritance tree) 0 0
NOC(Number of children 0 0
RFC(Response for a Class) 1 3
LCOM(Lack of Cohesion) Low Low

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3861-3869 (3867

Summary of Metrics Evaluation: The metrics
extracted from the Class Diagram provide
valuable insights into the internal structure and
quality of the software system:

e Lines of Code (LOC): The Student,
Course, and Enrollment classes ranged
from 10 to 13 LOC, indicating concise
implementations that enhance readability,
simplify debugging, and improve
maintainability. Small classes generally
follow the Single Responsibility Principle
and are less prone to errors.

e Weighted Methods per Class (WMC):
Values of 1, 1, and 3 reflect minimal
internal complexity, reducing cognitive
load for developers and supporting future
scalability and modifications.

e Depth of Inheritance Tree (DIT): All
classes have a DIT of 0, indicating a flat
hierarchy without inheritance. While
deeper inheritance can support reuse, a flat
structure simplifies design and avoids
potential complexity from polymorphism.

These results suggest that the system’s architecture
is well-structured, maintainable, and easy to
understand, with classes designed to minimize
complexity and maximize clarity.

Conclusion: This research demonstrates the
effectiveness of a UML-based approach for
automated software architecture analysis. By
integrating UML modeling, XMI parsing, and
Java-based metric computation, the proposed
methodology enables early detection of design flaws
and provides quantitative insights into the quality,
complexity, and maintainability of software
systems. The case study on the Student Record
System showed that the developed tool accurately
extracts key object-oriented metrics—such as LOC,
WMC, DIT, NOC, LCOM, and RFC—from UML
class diagrams, revealing concise, low-complexity,
and well-structured classes. The Java Swing-based
graphical interface allows users to visualize
models, perform evaluations, and interprets results
efficiently, making the tool practical for both
academic and professional use. Overall, this study
confirms that automated metric extraction from
UML diagrams is a valuable approach for
improving software design quality, supporting
informed architectural decisions, and enhancing

[1]

[4]

[5]

[6]

[7]

maintainability and scalability in the software
development lifecycle.

References

Gill N S., Grover P. S., "Software Size
Prediction Before Coding,” ACM
SIGSOFT Software Engineering Notes,
Vol. 29, Issue 5, Page 1-4, 2004.

Jacobson 1., "Object-Oriented Software
Engineering. A Use Case Driven
Approach", Addison-Wesley 1993.

Karner G., "Metrics for Objectory",
Diploma thesis, University of Linkdping,
Sweden. No. LiTH-IDA-Ex-9344:21,
December 1993.

Kim S., Lively W., Simmons D., "An
Effort Estimation by UML points in the
early stage of software development",
proceedings of the 2006 international
conference on software engineering
research & practice, p 415-421, June, 2006.

Kusumoto S., Matukawa F., Inoue K.,
Hanabusa S., and Maegawa Y.,
"Estimating Effort by Use Case Points:
Method, Tool and Case Study,"
Proceedings of the 10th International
Symposium on Software = Metrics
METRICS’04, (Septemberl4-16, 2004),
pp. 292 —299.

Mahmood, S., Lai, R., Kim, Y.S., Kim,
J.H., Park, S.C. and Oh, H.S., "A survey of
component based system quality assurance
and assessment", Information and Software
Technology 702 47, pp 693-707, 2005.
(DOI: 10.1016/j.infsof.2005.03.007)

Massimo C., Giuseppe S., "Fast & Serious:
a UML based metric for effort estimation",
6th ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software
Engineering, J, , Rome, Italy , Page 166-
170, 2002.

Mohagheghi P., Anda B., Conradi R.,
"Effort estimation of Use Cases for
incremental large-scale software
development", International Conference on

Software Engineering (ICSE), 2005, pp.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3861-3869 3868

https://doi.org/10.1016/j.infsof.2005.03.007

303-331. (DOL:
10.1109/ICSE.2005.1553573)

[9] Mili A, Chmiel S F, Gottumukkala R ,
Zhang L, "An integrated cost model for
software reuse", In Proceedings of the 22nd
international conference on Software
engineering, 2000, pp. 157-166. (DOI:
10.1109/ICSE.2000.870407)

[10]Minkiewicz A. F., "The real costs of
COTS", In Proceedings of IEEE Aerospace
Conference, (USA, March, 2001), pp.
2863-2869.

[11]Narasimhan V. L., Hendradjaya B.,
"Theoretical considerations for software
component metrics", Proceedings of World
Academy of Science, Engineering and
Technology, Volume 10, Page 165-170,
2005.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3861-3869 (3869

