

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-679 9www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3861–3869 |3861

Tool-Supported UML Analysis for Early Detection of Software

Design Flaws

Sweta Singh Patel*1 & Arpana Bharani2

Submitted:02/09/2024 Accepted:15/10/2024 Published:25/10/2024

Abstract: This research presents a UML-based approach for automated software architecture analysis aimed at improving

design quality and maintainability in software systems. The proposed methodology integrates UML modeling, XMI-based

data extraction, and Java-based metric computation to identify architectural weaknesses at an early stage. A case study on a

Student Record System was conducted, where key UML diagrams—Component, Deployment, Class, and Use Case—were

modeled using Enterprise Architect. A custom Java tool was developed to parse XMI files, extract structural information, and

compute object-oriented metrics such as Lines of Code (LOC), Weighted Methods per Class (WMC), Depth of Inheritance

Tree (DIT), Number of Children (NOC), Lack of Cohesion in Methods (LCOM), and Response for a Class (RFC). The metric

analysis revealed concise, low-complexity, and well-organized classes, demonstrating the effectiveness of the approach in

supporting maintainable and scalable software architecture. The tool’s graphical interface allows users to visualize UML

models, load XMI files, and perform automated architectural evaluation, making it accessible for both academic and

professional applications. Overall, this study illustrates that automated UML-based metric evaluation provides a practical and

efficient means to assess and enhance software design quality.

Keywords: UML, XMI Parsing, Software Architecture, Automated Analysis, Design Flaws, Software Metrics, Enterprise

Architect, Java tool.

Introduction: Software architecture represents the

high-level structure of a software system, defining

the components, their interactions, and overall

design decisions. A well-designed architecture

ensures system reliability, maintainability, and

scalability. However, as software systems become

larger and more complex, manual analysis and

detection of design flaws become time-consuming

and prone to human error. Even small architectural

defects can lead to significant performance

degradation, poor maintainability, and higher

development costs in later stages.

To overcome these challenges, the use of Unified

Modeling Language (UML) and XML Metadata

Interchange (XMI) has become a standard practice

in model-driven software engineering. UML

provides a graphical representation of system

architecture, while XMI Serves as a machine-

readable format that allows automatic data exchange

between modeling tools and analysis systems.

This research focus on developing an automated

approach to detect design flaws in software

architecture using UML and XMI parsing. The

proposed approach extracts architectural

information from UML models and computes

object-oriented design metrics such as weighted

methods per class (WMC), Depth of inheritance

Tree (DIT), Lack of cohesion of methods (LCOM),

Number of children (NOC), and Response for a class

(RFC). These metrics are then compared with

defined threshold values to identify design

anomalies, such as excessive complexity, deep

inheritance, low cohesion, and high coupling.

Automation in the detection process minimizes

human involvement and ensures consistent and

repeatable results. The implementation of the

proposed tool in Java and its integration with

Enterprise Architect enables efficient parsing of

XMI files and generation of detailed analytical

reports. This study aims to enhance architectural

evaluation accuracy, reduce maintenance efforts,

and provide architects with actionable insights to

improve software quality.

* 1Research scholar at Dr APJ Abdul Kalam

University Indore, Madhya Pradesh
2Assistant professor at Dr APJ Abdul Kalam

University Indore, Madhya Pradesh

Crossholding author address-

Sweta.patel752@gmail.com

mailto:Sweta.patel752@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3861–3869 |3862

Literature Review: Software architecture analysis

has been a major area of research in software

engineering, as it directly influences system quality

and maintainability. Various researchers have

proposed different approaches to analyze and

evaluate software designs using UML models and

metrics-based evaluations.

Several studies emphasize the importance of UML

models for visualizing and understanding software

structure. Booch, Rumbaugh, and Jacobson (1999)

introduced UML as a standardized modeling

language to represent software systems at multiple

abstraction levels. Since then, UML has been widely

adopted for modeling architectural components and

their relationships.

Researchers such as Chidamber and Kemerer (1994)

developed a suite of object-oriented metrics (CK

Metrics), including WMC, DIT, NOC, LCOM, and

RFC, to measure software quality attributes like

complexity, cohesion, and coupling. These metrics

became the foundation for automated evaluation of

design quality.

 Further studies integrated UML model with

automated tools to reduce manual analysis. France

and Rumpe (2007) discussed Model-Driven

Engineering (MDE), which allows automated

transformations and analysis using modeling

languages like UML. Similarly, tools such as

Enterprise Architect, MagicDraw, and StarUML,

support exporting models in XMI format, enabling

interoperability and automated data exchange.

In recent years, researchers have explored XMI-

based parsing techniques to extract model

information automatically. For example, Mishra et

al. (2017) proposed a Java-based parser to analyze

UML models for detecting design flaws through

metrics comparison. However, most of these tools

were either limited to specific metrics or lacked

integration with complete architectural analysis.

The present research improves upon previous

studies by designing a unified tool that automatically

parses XMI files, calculates multiple metrics, and

evaluates software architecture based on threshold

values. This approach not only minimizes manual

effort but also ensures consistency, scalability and

accuracy in detecting architectural design flaws.

Research Methodology: The proposed research

aims to develop an automated approach for detecting

design flaws in software architecture using Unified

Modeling Language (UML) and XML Metadata

Interchange (XMI). The methodology integrates

model-based design, automated metric extraction,

and empirical analysis to identify architectural

weaknesses during the design phase, thereby

improving software quality and maintainability.

1. Research Approach: The proposed

research follows a model-based analysis

combined with tool implementation. The

overall process consists of the following

stages:

1. Model Creation: Develop UML models

(Class Diagram) to represent the system

architecture.

2. XMI Export: Export the UML models to

XMI format using modeling tools such as

enterprise Architect.

3. Tool Development: Design and

implement a Java-based UML Analysis

tool capable of parsing XMI files.

4. Metric Extraction: Extract important

software design metrics such as

● Lines of Code (LOC)

● Weighted Methods per Class (WMC)

● Depth of Inheritance Tree (DIT)

● Number of Children (NOC)

● Lack of Cohesion in Methods (LCOM)

● Response for Class (RFC)

5. Threshold Comparison: Compare

extracted metric values against standard

threshold limits to identify design flaws

and architectural risks.

6. Report Generation: Generate metric

reports and graphical representations to

visualize complexity and flaw detection

results.

2. Software Metrics via Class Diagram

● A Class Diagram was modeled to

represent the internal structure of the

system, including its classes and

relationships.

● The Class Diagram was then exported as an

XMI file for further processing.

● A custom Java-based Swing GUI tool

was developed to parse the XMI file and

automatically extract key software

architecture metrics.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3861–3869 |3863

These metrics serve as quantitative indicators for

identifying potential design flaws and assessing the

architectural quality of the software system.

3. Tool Design and Implementation: The

proposed tool was developed using Java

and XML parsing techniques. The process

involves the following steps:

● Input: XMI file generated from

UML diagrams

● Process:

o Parse XMI elements

(classes, attributes,

operation,

relationships)

o Extract metrics

automatically

o Evaluate results

against predefined

threshold values

The tool assists in automated detection of structural

design issues such as excessive complexity, poor

cohesion, and deep inheritance, which are strong

indicators of potential flaws.

4. Empirical Analysis: To evaluate the

effectiveness of the proposed approach,

multiple UML models representing

different software systems were analyzed

using the developed tool.Each model was

processed to compute design metrics, and

the results were compared with their

respective threshold values.

Table - Threshold Values Used for Evaluation

Metric Threshold value Description

LOC >500 Large class size may reduce maintainability

WMC >20 More methods may indicate high complexity

DIT >5 Deeper inheritance may lead to design issue

NOC >10 More children could signal improper abstraction

LCOM >0.8 High value indicates poor cohesion

RFC >50 High number of methods/message affects testing

The comparison of calculated metrics with these

thresholds helped identify architectural risks,

complexity, and maintainability concerns.

UML-Based Design and Implementation: Unified

Modeling Language (UML) class diagrams were

created using Enterprise Architect (version 17.1)

to design and visualize the Student Record System.

Class Diagram – To model the static structure of

the Student Record System, a Class Diagram was

developed using Enterprise Architect (EA). The

Class Diagram plays a critical role in object-oriented

analysis and design. It shows the system’s classes,

their attributes, methods, and relationships such as

inheritance, association, and aggregation.

Figure 1: Internal Structure of the Student Record System

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3861–3869 |3864

This diagram provides a blueprint of the

internal structure of the software, making it

ideal for metric – based analysis of software

architecture quality.

Classes in the Diagram: The Class Diagram of

the Student Record System includes the

following key classes:

1. Student

Attributes: studentID, name

2. Course

Attributes: courseID, courseName

3. Enrollment

Attributes: enrollmentID, date, status

Relationships:

❖ A Student can enroll in multiple Courses

(association via Enrollment).

❖ The Enrollment class acts as a link between

Student and Course (aggregation).

❖ Generalization, association, and navigable

arrows are used where applicable.

Role in Metric Analysis:

The Class Diagram is the core diagram for

evaluating software quality using object-oriented

metrics. The Java tool developed for this research

parses the XMI file generated from this diagram and

extracts various metrics. The values of these metrics

help in analyzing the maintainability, complexity,

cohesion, and design quality of the software

architecture.

Description: The Class Diagram illustrates the

associations between the Student and Enrollment

classes (one-to-many), as well as between the

Enrollment and Course classes. This structure was

subsequently exported in XMI format for metric

analysis. Designed using Enterprise Architect, the

diagram serves as the foundation for object-level

analysis, enabling the application of software

metrics such as LOC, WMC, DIT, NOC, RFC, and

LCOM.

These models were exported in XMI (XML

Metadata Interchange) format for further processing

using the Java-based tool.

 Metric Evaluation Approach: To evaluate

software quality, the following object-oriented

metrics were calculated:

● Lines of Code (LOC): Measures the size

of the code.

● Weighted Methods per Class (WMC):

Measures class complexity.

● Depth of Inheritance Tree (DIT):

Indicates inheritance levels.

● Number of Children (NOC): Counts

subclasses derived from a class.

● Lack of Cohesion in Methods (LCOM):

Evaluates method-level cohesion.

● Response for Class (RFC): Measures the

number of methods that can be executed in

response to a message received by an

object.

Each metric was analyzed using standard

threshold values from software engineering

guidelines to determine whether design elements

met acceptable quality standards.

Generation and Use of XMI Files: Class diagrams

were created in Enterprise Architect 17.1 and

exported in XMI (XML Meta Data Interchange)

format. The exported XMI files were used as input

to the custom Java-based parser: These files

included:

1. Class Diagram XMI Files

Files 1: – Class Diagram from Exporting UML to XMI

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3861–3869 |3865

Java-Based Tool Development and Metric

Calculation: A custom Java-based tool was

developed using IntelliJ IDEA to parse XMI files

and automatically extract software metrics from

UML models. The tool facilitates automated metric

evaluation and visualization, enabling effective

analysis of software architecture quality.

Tool Architecture: The tool consists of the

following key components:

● XMI Reader Module: Parses XMI files

and identifies UML elements such as

classes, attributes, and relationships.

● Metric Calculator Module: Analyzes the

Class Diagram extracted from the XMI file

generated by Enterprise Architect (version

17.1) to compute software metrics.

● Output Generator Module: Displays and

visualizes the calculated results through an

interactive Java Swing GUI.

This modular architecture ensures separation of

concerns, simplifies maintenance, and enables

automated metric computation directly from UML

design artifacts.

Program 1: Student.java

Public class Student {

 int studentId;

 String name;

 //Constructor

Public Student (int studentId, String name) {

 this.studentId = studentId;

 this.name = name;

}

 // Display Method

Public void display(){

System.out.println(“StudentId: ” + studentId);

System.out.println(“Name: ” + name);

}

}

Figure 1: Program Student.java

Program 2: Course.java

Public class Course {

 int courseId;

 String courseName;

 //Constructor

Public Student (int courseId, String courseName) {

 this.courseId = courseId;

 this.courseName = courseName;

}

 // Display Method

Public void display(){

System.out.println(“CourseId: ” + courseId);

System.out.println(“CourseName: ” + courseName);

}

}

Figure 2: Program Course.java

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3861–3869 |3866

Program 3: Enrollment.java

Public class Enrollment {

Student student;

Course course;

String enrollmentDate;

// Constructor

Public Enrollment(Student student, Course course,String enrollmentDate){

this.student = student;

this.course = course;

this.enrollmentDate = enrollmentDate;

}

// Display Method

Public void display(){

System.out.println(“Enrollment Details:”);

Student.display();

Course.display();

System.out.println(“EnrollmentDate:” + emrollmentDate);

}

}

Figure 3: Program Enrollment.java

Program: 4 Main.java

Public class Main {

Public static void main(String[] args){

Student student1 = new Student(1,“Sweta Singh”);

Course course1 = new Course(101,”Computer Science”);

Enrolment enrollment1 = new Enrolment(student1,course1,”11 June 2025”);

Enrollment1.display();

}

}

Figure 4: Program Main.java

CODING IN JAVA

All system classes were implemented in Java, with

each class containing relevant attributes and

methods to store and display data. The Main.java

class was responsible for creating objects of the

Student, Course, and Enrollment classes and

invoking their methods to simulate the system’s

real-world behavior.

Compilation and Execution

● The program was compiled in IntelliJ

IDEA by selecting Build → Build Project

from the menu.

● After successful compilation, the program

was executed by running Main.java using

the Run button.

● Output was displayed in the IntelliJ

console.

OUTPUT: The program successfully displayed

student names, courses enrolled, and enrollment

IDs, confirming correct interaction between the

three classes. A sample output is shown below:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3861–3869 |3867

Figure: Program Result Output

Architecture Analysis

To evaluate the designed software architecture of the

Student Record System, a set of object-oriented

software metrics was applied. These metrics provide

a quantitative basis for assessing the quality,

complexity, and maintainability of the architecture.

The system, modeled using UML, includes three

primary classes: Student, Course, and Enrollment.

Software Metric Calculation: The following

object-oriented metrics were calculated after

implementing the system classes:

● LOC (Lines of Code): Measures class size

and estimates development effort and

complexity.

● WMC (Weighted Methods per Class):

Sum of method complexities within a class.

In this study, each method is assigned a

complexity value of 1. WMC estimates

effort required to develop, understand, and

maintain the class.

● DIT (Depth of Inheritance Tree):

Maximum length from a class to the root of

the inheritance hierarchy. Higher values

indicate increased complexity. (No

inheritance is used; DIT = 0 for all

classes.)

● RFC (Response for a Class): Total

number of methods that can be invoked in

response to a message received by the

class. Higher RFC values indicate greater

complexity, affecting understand ability,

testing, and maintenance.

● NOC (Number of Children): Number of

immediate subclasses derived from a class.

A higher NOC can indicate reuse but may

increase maintenance complexity.

● LCOM (Lack of Cohesion in Methods):

Measures method dissimilarity within a

class. Higher LCOM values suggest low

cohesion, indicating potential design issues

and reduced maintainability.

These metrics help identify potential risks,

maintainability issues, and design weaknesses early

in the development lifecycle, supporting informed

architectural decisions.

Software Metrics Table:

Table 3.4: Software Metrics Table

Metric Student Course Enrolment

LOC(Line of code) 10 10 13

WMC(Weighted Methods per class) 1 1 3

DIT(Depth of Inheritance tree) 0 0 0

NOC(Number of children 0 0 0

RFC(Response for a Class) 1 1 3

LCOM(Lack of Cohesion) Low Low Low

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3861–3869 |3868

Summary of Metrics Evaluation: The metrics

extracted from the Class Diagram provide

valuable insights into the internal structure and

quality of the software system:

● Lines of Code (LOC): The Student,

Course, and Enrollment classes ranged

from 10 to 13 LOC, indicating concise

implementations that enhance readability,

simplify debugging, and improve

maintainability. Small classes generally

follow the Single Responsibility Principle

and are less prone to errors.

● Weighted Methods per Class (WMC):

Values of 1, 1, and 3 reflect minimal

internal complexity, reducing cognitive

load for developers and supporting future

scalability and modifications.

● Depth of Inheritance Tree (DIT): All

classes have a DIT of 0, indicating a flat

hierarchy without inheritance. While

deeper inheritance can support reuse, a flat

structure simplifies design and avoids

potential complexity from polymorphism.

These results suggest that the system’s architecture

is well-structured, maintainable, and easy to

understand, with classes designed to minimize

complexity and maximize clarity.

Conclusion: This research demonstrates the

effectiveness of a UML-based approach for

automated software architecture analysis. By

integrating UML modeling, XMI parsing, and

Java-based metric computation, the proposed

methodology enables early detection of design flaws

and provides quantitative insights into the quality,

complexity, and maintainability of software

systems. The case study on the Student Record

System showed that the developed tool accurately

extracts key object-oriented metrics—such as LOC,

WMC, DIT, NOC, LCOM, and RFC—from UML

class diagrams, revealing concise, low-complexity,

and well-structured classes. The Java Swing-based

graphical interface allows users to visualize

models, perform evaluations, and interprets results

efficiently, making the tool practical for both

academic and professional use. Overall, this study

confirms that automated metric extraction from

UML diagrams is a valuable approach for

improving software design quality, supporting

informed architectural decisions, and enhancing

maintainability and scalability in the software

development lifecycle.

References

[1] Gill N S., Grover P. S., ''Software Size

Prediction Before Coding,'' ACM

SIGSOFT Software Engineering Notes,

Vol. 29, Issue 5, Page 1-4, 2004.

[2] Jacobson I., ''Object-Oriented Software

Engineering. A Use Case Driven

Approach'', Addison-Wesley 1993.

[3] Karner G., ''Metrics for Objectory'',

Diploma thesis, University of Linköping,

Sweden. No. LiTH-IDA-Ex-9344:21,

December 1993.

[4] Kim S., Lively W., Simmons D., ''An

Effort Estimation by UML points in the

early stage of software development'',

proceedings of the 2006 international

conference on software engineering

research & practice, p 415-421, June, 2006.

[5] Kusumoto S., Matukawa F., Inoue K.,

Hanabusa S., and Maegawa Y.,

''Estimating Effort by Use Case Points:

Method, Tool and Case Study,''

Proceedings of the 10th International

Symposium on Software Metrics

METRICS’04, (September14-16, 2004),

pp. 292 – 299.

[6] Mahmood, S., Lai, R., Kim, Y.S., Kim,

J.H., Park, S.C. and Oh, H.S., ''A survey of

component based system quality assurance

and assessment'', Information and Software

Technology 702 47, pp 693–707, 2005.

(DOI: 10.1016/j.infsof.2005.03.007)

[7] Massimo C., Giuseppe S., ''Fast & Serious:

a UML based metric for effort estimation'',

6th ECOOP Workshop on Quantitative

Approaches in Object-Oriented Software

Engineering, J, , Rome, Italy , Page 166-

170, 2002.

[8] Mohagheghi P., Anda B., Conradi R.,

''Effort estimation of Use Cases for

incremental large-scale software

development'', International Conference on

Software Engineering (ICSE), 2005, pp.

https://doi.org/10.1016/j.infsof.2005.03.007

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3861–3869 |3869

303-331. (DOI:

10.1109/ICSE.2005.1553573)

[9] Mili A, Chmiel S F, Gottumukkala R ,

Zhang L, ''An integrated cost model for

software reuse'', In Proceedings of the 22nd

international conference on Software

engineering, 2000, pp. 157–166. (DOI:

10.1109/ICSE.2000.870407)

[10] Minkiewicz A. F., ''The real costs of

COTS'', In Proceedings of IEEE Aerospace

Conference, (USA, March, 2001), pp.

2863–2869.

[11] Narasimhan V. L., Hendradjaya B.,

''Theoretical considerations for software

component metrics'', Proceedings of World

Academy of Science, Engineering and

Technology, Volume 10, Page 165-170,

2005.

